適応システムグループの出版物

2017

2016

2015

  • Elfwing, S., Uchibe, E., & Doya, K. (2015). Expected energy-based restricted Boltzmann machine for classification. Neural Networks. vol. 64, 29-38.
  • Reinke, C., Uchibe, E., & Doya, K. (2015). Maximizing the average reward in episodic reinforcement learning tasks. In Proc. of IEEE International Conference on Intelligent Informatics and BioMedical Sciences, Okinawa, pp, 420-421, 2015.
  • Wang, J., Uchibe, E., & Doya, K. (2015). Two-wheeled smartphone robot learns to stand up and balance by EM-based policy hyper parameter exploration. In Proc. of the 20th International Symposium on Artificial Life and Robotics.
  • Uchibe, E., & Doya, K. (2015). Inverse Reinforcement Learning with Density Ratio Estimation. The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, University of Alberta, Canada, poster.
  • Reinke, C., Uchibe, E., & Doya, K. (2015). Gamma-QCL: Learning multiple goals with a gamma submodular reinforcement learning framework. In Winter Workshop on Mechanism of Brain and Mind. (poster presentation).

2014

  • Elfwing, S., & Doya, K. (2014). Emergence of polymorphic mating strategies in robot colonies. PLoS ONE, 9(4), e93622.
  • Uchibe, E., & Doya, K. (2014).Inverse Reinforcement Learning Using Dynamic Policy Programming. In Proc. of the 4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, pp. 222-228.
  • Uchibe, E., & Doya, K. (2014).Combining learned controllers to achieve new goals based on linearly solvable MDPs. In Proc. of IEEE International Conference on Robotics and Automation, pp. 5252-5259.
  • Kinjo, K., Uchibe, E., & Doya, K. (2014). Robustness of Linearly Solvable Markov Games with inaccurate dynamics model. In Proc. of the 19th International Symposium on Artificial Life and Robotics.
  • Wang, J. Uchibe, E., & Doya, K. (2014). Control of Two-Wheeled Balancing and Standing-up Behaviors by an Android Phone Robot. Proc. of the 32nd Annual Conference of Robotics Society of Japan, Kyushu Sangyo University.
  • Eren Sezener, C., Uchibe, E., & Doya, K. (2014). Ters Peki,stirmeli Ogrenme ile Farelerin Odul Fonksiyonunun Elde Edilmesi. In Proc. of Turkiye Otonom Robotlar Konferans? (TORK). [published in Turkey, but see also anEnglish version].
  • 内部英治,銅谷賢治 (2014).密度比推定を用いた逆強化学習.第32回日本ロボット学会学術講演会予稿集,九州産業大学.

2013

  • Kinjo, K., Uchibe, E., & Doya, K. (2013). Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task. Frontiers in Neurorobotics, 7(7).
  • Elfwing, S., Uchibe, E., & Doya, K. (2013). Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces. Frontiers in Neurorobotics, 7(February), 3.
  • Sakuma, T., Shimizu, T., Miki, Y., Doya, K., & Uchibe, E. (2013). Computation of Driving Pleasure based on Driver's Learning Process Simulation by Reinforcement Learning. In Proc. of Asia Pacific Automotive Engineering Conference.
  • Yoshida, N., Uchibe, E., & Doya, K. (2013). Reinforcement learning with state-dependent discount factor. In Proc. of the 3rd Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (pp. 1-6). IEEE.
  • Wang, J., Uchibe, E., & Doya, K. (2013). Standing-up and Balancing Behaviors of Android Phone Robot. In Proc. of IEICE-NLP2013-122, 49-54.
  • 内部英治,銅谷賢治 (2013).オープンソースソフトウェアを用いた強化学習アルゴリズムの実現.クラウドネットワークロボティクス研究会,1-6.
  • Uchibe, E., Ota, S., & Doya, K. (2013). Inverse Reinforcement Learning for Analysis of Human Behaviors. The 1st Multidisciplinary Conference on Reinforcement Learning and Decision Making, Princeton, New Jersey, USA, poster.
  • Ota, S., Uchibe, E., & Doya, K. (2013). Analysis of human behaviors by inverse reinforcement learning in a pole balancing task. The 3rd International Symposium on Biology of Decision Making, Paris, France, poster.
  • 内部英治,銅谷賢治 (2013).密度比推定を用いた逆強化学習.第16回情報論的学習理論ワークショップ (IBIS2013), ポスター.

2012

  • 吉田尚人,吉本潤一郎,内部英治,銅谷賢治 (2012).スマートフォンを用いたロボットプラットホームの開発.第30回日本ロボット学会学術講演会.
  • 金城健,内部英治,吉本潤一郎,銅谷賢治 (2012).運動―視覚ダイナミクス学習と線形ベルマン方程式によるロボット制御.情報通信学会研究報告,バイオ情報学,2012-BIO-29(4), 1-6.

2011

  • Uchibe, E., & Doya, K. (2011). Evolution of rewards and learning mechanisms in Cyber Rodents. J. K. Krichmar and H. Wagatsuma (eds.), Neuromorphic and Brain-Based Robotics, chapter 6, 109-128.
  • Elfwing, S., Uchibe, E., Doya, K., & Christensen, H. I. (2011). Darwinian embodied evolution of the learning ability for survival. Adaptive Behavior, 19(2), 101-120.
  • 金城健,内部英治,吉本潤一郎,銅谷賢治 (2011).線形ベルマン方程式に基づくロボット制御:システム同定と指数価値関数近似.電子情報通信学会技術研究報告,NCニューロコンピューティング 110(461) 107-112.

2010

2009

2008

2007

2006

  • Uchibe, E., & Asada, M. (2006). Incremental Coevolution With Competitive and Cooperative Tasks in a Multirobot Environment. Proceedings of the IEEE, 94(7), 1412-1424.
  • 上岡拓未,内部英治,銅谷賢治 (2006).複数の価値関数を用いた多目的強化学習.ニューロコンピューティング研究会,玉川大学.
  • 内部英治,銅谷賢治 (2006).複数の報酬によって与えられる拘束のもとでの強化学習.ニューロコンピューティング研究会,OIST.
  • Brunskill, E., Uchibe, E., & Doya, K. (2006). Adaptive state space construction with reinforcement learning for robots. poster presentation in Proc. of the International Conference on Robotics and Automation.

2005

2004

  • 内部英治,銅谷賢治 (2004).複数報酬のもとでの階層強化学習.日本ロボット学会誌.Vol. 22, No. 1, pp. 120-129.
  • Elfwing, S., Uchibe, E., Doya, K., & Christensen, H. I. (2004). Multi-agent reinforcement learning: using macro actions to learn a mating task. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 4, pp. 3164-3169).
  • Uchibe, E., & Doya, K. (2004). Competitive-Cooperative-Concurrent Reinforcement Learning with Importance Sampling. In S. Schaal, A. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, & J.-A. Meyer (Eds.), Proc. of the Eighth International Conference on Simulation of Adaptive Behavior: From Animals to Animats 8 (pp. 287?296). MIT Press, Cambridge, MA.