Past Events

Colloquium: "Simplicial homology, part I" by Dr. Guilherme Sadovski

2020年2月10日 (月) 10:00 12:00
B714a, Lab 3

Speaker: Dr. Sadovski is a member of this unit (visit his page)

Minicurse: Morse Theory

2020年2月7日 (金) 13:00
D014

Speaker: Prof. Andrew Lobb


Morse theory is a branch of mathematics with which we can infer topological information of manifolds. In this series of lectures we will explore its formulation and how it encodes topology.

Colloquium: "Basics of differential geometry and General Relativity" by Mr. Ryusei Maeda

2020年2月7日 (金) 10:00 12:00
B714b

Speaker: Mr. Ryusei Maeda is a 3rd year undergratuate student at University of Tokyo and is currently visiting OIST as a research intern.

Minicurse: Morse Theory

2020年2月6日 (木) 9:30
C015

Speaker: Prof. Andrew Lobb


Morse theory is a branch of mathematics with which we can infer topological information of manifolds. In this series of lectures we will explore its formulation and how it encodes topology.

Colloquium: "General homology theory" by Dr. Guilherme Sadovski

2020年2月5日 (水) 10:00 12:00
A613, Lab 2

Speaker: Dr. Sadovski is a member of this unit (visit his page)

Coloquium: "Functional methods in QFT and renormalization, part IV" by Dr. Riccardo Martini

2020年1月30日 (木) 14:00
B714b

In this seminar we introduce the regulator functional that is at the core of the Functional renormalization group and discuss its properties.

Research Intern: Ryusei Maeda

2020年1月30日 (木) (All day)2020年3月11日 (水) (All day)
Research Intern: Ryusei Maeda

Research Intern:  Ryusei Maeda

Seminar: "Melonic CFTs" by Prof. Dario Benedetti

2020年1月20日 (月) 10:30 12:00
B712, Lab 3

Speaker: Dr. Benedetti is a professor at Ecole Polytechnique.

Visit: Prof. Dario Benedetti (Ecole Polytechnique)

2020年1月17日 (金) (All day)2020年1月24日 (金) (All day)

  

Minicurse: Morse Theory

2020年1月16日 (木) 9:30
A719

Speaker: Prof. Andrew Lobb

Morse theory is a branch of mathematics with which we can infer topological information of manifolds. In this series of lectures we will explore its formulation and how it encodes topology.

Pages