Date

2021年11月10日 (水) 16:00 17:00

OIST - Osaka University: A Recipe for Scientific Synergy-Series 1 by Dr. Svante Pääbo and Dr. Hisashi Arase

Date

2021年10月12日 (火) 9:00 10:00

Theory of Quantum Matter Unit and Quantum Machines Unit joint Seminar.

 

Date

2021年10月12日 (火) 15:00 16:00

Speaker: Paul Wedrich, University of Hamburg

Title: Knots and quivers, HOMFLYPT and DT

Date

2021年10月12日 (火) 10:00 11:00

Professor Alex Iosevich, University of Rochester

Title: Finite point configurations and the Vapnik-Chervonenkis dimension

Abstract:

The Vapnik-Chervonenkis (VC) dimension was invented in 1970 to study learning models. This notion has since become one of the cornerstones of modern data science. This beautiful idea has also found applications in other areas of mathematics. In this talk we are going to describe how the study of the VC-dimension in the context of families of indicator functions of spheres centered at points in sets of a given Hausdorff dimension (or in sets of a given size inside vector spaces over finite fields) gives rise to interesting, and in some sense extremal, point configurations. 

 

Date

2021年10月8日 (金) 10:00 11:00

Analysis on Metric Spaces Fall Seminar

Title: On weak solutions to first-order discount mean field games

Speaker: Hiroyoshi Mitake, University of Tokyo

 

Date

2021年10月6日 (水) 15:00

Seminar hosted by QG Unit.
Speaker: Prof. Augusto Sagnotti, Scuola Normale Superiore
Title: On Broken Supersymmetry in String Theory

Date

2021年9月28日 (火) 16:30 17:30

Speaker: Hankyung Ko, Uppsala University

Title: Bruhat orders and Verma modules

Date

2021年10月7日 (木) 9:00

Professor Genevieve Konopka

Jon Heighten Scholar in Autism Research

University of Texas Southwestern Medical Center

Date

2021年9月28日 (火) 16:00 17:00

Speaker: Dr. S. Ravichandran, Nordic Institute for Theoretical Physics, Stockholm, Sweden

Date

2021年10月5日 (火) 9:00 10:00

FALL 2021 Nonlinear Analysis Online Seminar Seminar Series

Sagun Chanillo, Rutgers University

Title: Local Version of Courant's Nodal domain theorem.

Abstract:

Consider a smooth, compact Riemannian manifold with no boundary, endowed with a smooth metric. A famous theorem of Courant states that the k-th eigenfunction for the Laplace-Beltrami operator can have at most k nodal domains. Nodal domains are the open and connected sets where the eigenfunction does not vanish. H. Donnelly and Fefferman obtained some 30 years ago a local version of this theorem. Improvements were made by Chanillo-Muckenhoupt and others. In this talk we obtain the optimal local version of the local Courant theorem. We also relate this result to conjectures of S.-T. Yau on nodal sets, that is the zero set of eigenfunctions. The results of our talk have been obtained jointly with A. Logunov, E. Mallinikova and D. Mangoubi.

Pages