Date

2021年11月2日 (火) 16:00 17:00

Professor Itai Shafrir,  Technion-Israel Institute of Technology

Title: Minimizers of a variational problem for nematic liquid crystals with variable degree of orientation in two dimensions

Date

2021年10月26日 (火) 9:30 10:30

Speaker: George Seelinger, University of Michigan

Title: Diagonal harmonics and shuffle theorems

Date

2021年11月2日 (火) 15:00 16:00

[Speaker] Prof. Masaki Satoh (Atmosphere and Ocean Research Institute, The University of Tokyo)

Date

2021年10月26日 (火) 16:00 17:00

Professor Oscar Domingues Bonilla, The University of Lyon

Title: John–Nirenberg spaces revisited

Abstract:

We study John—Nirenberg-type spaces where oscillations of functions are controlled via covering lemmas. Our methods give new surprising results and clarify classical inequalities. Joint work with Mario Milman (Florida and Buenos Aires).

Please click here to register
*After registering, you will receive a confirmation email containing information about joining the meeting.

Date

2021年10月19日 (火) 16:00 17:00

Dr. João Pedro Ramos, Eidgenössische Technische Hochschule Zürich

Title: STABILITY FOR GEOMETRIC AND FUNCTIONAL INEQUALITIES

Abstract

Date

2021年11月5日 (金) 11:00

Nikon New Confocal System "AX R"

Date

2021年11月16日 (火) 14:00

Automated light sheet imaging of cleared large samples using UltraMicroscope Blaze

Date

2021年11月1日 (月) 9:00

Language: English

Date

2021年10月13日 (水) 17:00

Seminar hosted by QG Unit.
Speaker: Karapet Mkrtchyan, Imperial College London
Title: Duality-symmetric formulation of electrodynamics and (chiral) p-form generalizations

Date

2021年10月14日 (木) 15:00 16:00

Analysis on Metric Spaces Fall Seminar

Title: Quasiconformal and Sobolev mappings in metric measure spaces

Speaker: Panu Lahti, Chinese Academy of Sciences

Abstract: Starting from Gehring, the equivalence between the metric, geometric, and analytic def- initions of quasiconformality has been investigated by various authors. There are many results stating that if a mapping is metrically quasiconformal, perhaps only in a relaxed sense, then it is analytically quasiconformal, or at least a Sobolev mapping. In recent joint work with Xiaodan Zhou, we have shown an improved version of such a result, which seems to detect more Sobolev mappings than previous results in the literature. I will discuss these results as well as the general strategy of the proofs.

Pages