OIST Representation Theory Seminar
Date
2022年3月22日 (火) 16:30 〜 17:30
Location
on Zoom
Description
John Murray, Maynooth University
Title: A Schur-positivity conjecture inspired by the Alperin-Mckay conjecture
Abstract: The McKay conjecture asserts that a finite group has the same number of odd degree irreducible characters as the normalizer of a Sylow 2-subgroup. The Alperin-McKay (A-M) conjecture generalizes this to the height-zero characters in 2-blocks.
In his original paper, McKay already showed that his conjecture holds for the finite symmetric groups S_n. In 2016, Giannelli, Tent and the speaker established a canonical bijection realising A-M for S_n; the height-zero irreducible characters in a 2-block are naturally parametrized by tuples of hooks whose lengths are certain powers of 2, and this parametrization is compatible with restriction to an appropriate 2-local subgroup.
Now corresponding to a 2-block of the symmetric group S_n, there is a 2-block of a maximal Young subgroup of S_n of the same weight. An obvious question is whether our canonical bijection is compatible with restriction of height-zero characters between these blocks.
Attempting to prove this compatibility lead me to formulate a conjecture asserting the Schur-positivity of certain differences of skew-Schur functions. The corresponding skew-shapes have triangular inner-shape, but otherwise do not refer to the 2-modular theory. I will describe my conjecture and give positive evidence in its favour.
All-OIST Category:
Subscribe to the OIST Calendar: Right-click to download, then open in your calendar application.