Code - Fujin - Validation - Volume of Fluid

Zalesak's disk

The Zalesak’s disk [1], i.e., a slotted disk undergoing solid body rotation, is a standard benchmark to validate numerical schemes for advection problems, since the initial shape should not deform under rigid body rotation. We consider a domain of unit size with the slotted disk defined by the geometrical relation

\(\left( y -0.5 \right)^2 + \left( z - 0.75 \right)^2 \le 0.15^2 \wedge \left( \vert y - 0.5 \vert \ge 0.025 \vee z \ge 0.85 \right).\)

The velocity field is imposed equal to

\(v = 0.5 - z,\)

\(w = y - 0.5.\)

Numerical tests are carried out on three grids with \(100\)\(150\) and \(200\) grid points per side of the domain. The results are evalauted at \(t = 2 \pi\) (one revolution) and \(t = 10 \pi\) (five revolutions).

config.h

#define _FLOW_FIXED_
#define _MULTIPHASE_
#define _MULTIPHASE_VOF_
#define _MULTIPHASE_VOF_ZALESAK_
#define _MULTIPHASE_VOF_2D_
#define _MULTIPHASE_VOF_QUADRATIC_

param.f90

!Total number of grid points in X, Y and Z
integer, parameter :: nxt = 4, nyt = 100, nzt = 100
!Size of the domain in X, Y and Z
real, parameter :: lx = 4.0/100.0, ly = 1.0, lz = 1.0
!Output frequency
integer,parameter :: iout0d = 1000000, iout1d = 1000000, iout2d = 1, iout3d = 1000000, ioutfld = 1000000

main.f90

! Simulation initial step
iStart = 0
! Simulation final step
iEnd   = 400000
! Choose the timestep
dt = 0.5/(2.0*0.5/(1.0/100.0))

 

The 2D Zalesak’s disk [1]: simulation of a slotted disk undergoing solid body rotation. The black line denotes the initial solution, whereas blue and red the solutions obtained after one and five full revolutions; the results in the panels are obtained with 100, 150 and 200 grid points per domain side.

 


Deformed interface in a shear flow

We study a deformed interface in a shear flow in order to evaluate the capability of the method to capture a heavily deformed and stretched interface [2]. We consider a circle of radius \(0.2 \pi\), centered at \(\left[ 0.5 \pi, -0.2 \left( \pi + 1 \right) \right]\) in a box of side \(\pi\) with the prescribed velocity field

\(v = \sin \left( y \right) \cos \left( z \right),\)

\(w = -\cos \left( y \right) \sin \left( z \right).\)

First, the interface deforms due to the imposed velocity field reaching its maximum stretching at \( t = 5 \pi\) when the flow is reversed. The interface deformation starts reducing and finally, at time \(t = 10 \pi\) the interface goes back to its initial position.

config.h

#define _FLOW_FIXED_
#define _MULTIPHASE_
#define _MULTIPHASE_VOF_
#define _MULTIPHASE_VOF_DROPLETS_
#define _MULTIPHASE_VOF_2D_
#define _MULTIPHASE_VOF_QUADRATIC_

param.f90

!Total number of grid points in X, Y and Z
integer, parameter :: nxt = 4, nyt = 100, nzt = 100
!Size of the domain in X, Y and Z
real, parameter :: lx = 4.0*ACOS(-1.0)/100.0, ly = ACOS(-1.0), lz = ACOS(-1.0)
!Output frequency
integer,parameter :: iout0d = 1000000, iout1d = 1000000, iout2d = 1, iout3d = 1000000, ioutfld = 1000000

main.f90

! Simulation initial step
iStart = 0
! Simulation final step
iEnd   = 400000
! Choose the timestep
dt = 0.0025*ACOS(-1.0)

initDropletPosition.dat

1.570796326794897       0.828318530717959       0.628318530717959

 

Deformed interface in a shear flow [2]: simulation of a disk undergoing forward and backward stretching. The black line denotes the initial solution at t=0, whereas blue and red the solutions obtained at t=5π and t=10π; the results in the panels are obtained with 100, 150 and 200 grid points per domain side.

 


 

Buoyancy-driven flow

 

Sketch of the computational domain and of the Cartesian coordinate system.

 

We consider a 2D droplet of radius \(R\) rising in a fluid with different density and viscosity. The droplet has viscosity \(\mu_1\) and density and \(\rho_1\), while the surrounding fluid has viscosity \(\mu_2\) and density \(\rho_2\), providing a viscosity and density ratio equal to \(k_\mu = 10\) and \(k_\rho = 10\). The two fluids are separted by an interface with interfacial surface tension \(\sigma\). The domain is rectangular with size \(4 R \times 8 R\), no-slip boundary conditions are applied on the horizontal walls and free-slip boundary conditions on the sides. The droplet is initially round and placed at the centerline of the channel at a distance of \(2R\) from the bottom wall. The non-dimensional parameters governing the flow are the Reynolds number \(Re = \rho_1 U_g 2 R / \mu_1\) equal to \(35\), the Eotvos number \(Eo = \rho_1 U_g^2 2R / \sigma\) equal to \(10\), and the Capillary number \(Ca = \mu_1 U_g / \sigma\) equal to \(0.2875\), where \(U_g = \sqrt{g2R}\) being \(g\) the gravitational acceleration.

config.h

#define _FLOW_COUETTE_
#define _SOLVER_FFT2D_
#define _MULTIPHASE_
#define _MULTIPHASE_VOF_
#define _MULTIPHASE_VOF_DROPLETS_
#define _MULTIPHASE_VISCOSITY_VARIABLE_
#define _MULTIPHASE_DENSITY_VARIABLE_
#define _MULTIPHASE_VOF_2D_
#define _MULTIPHASE_VOF_QUADRATIC_

param.f90

!Total number of grid points in X, Y and Z
integer, parameter :: nxt = 4, nyt = 128, nzt = 256
!Size of the domain in X, Y and Z
real, parameter :: lx = 4.0*1.0/128.0, ly = 1.0, lz = 2.0
!Fluid viscosity and density
real, parameter :: vis = 10.0, rho = 1000.0
!Reference velocity (bulk velocity or wall velocity)
real, parameter :: refVel = 0.0
!Gravitational acceleration
real, dimension(3), parameter :: gr=(/0.0,0.0,-0.98/)
!Output frequency
integer,parameter :: iout0d = 100, iout1d = 10000, iout2d = 10000, iout3d = 10000, ioutfld = 10000
!Number of droplets
integer, parameter :: vofN = 1
!Interfacial surface tension
real, parameter :: vofSigma = 24.5
!Viscosity of the disphersed phase (phi=1)
real, parameter :: vofVis1 = 1.0
!Viscosity of the carrier phase (phi=0)
real, parameter :: vofVis2 = vis
!Density of the disphersed phase (phi=1)
real, parameter :: vofRho1 = 100.0
!Density of the carrier phase (phi=0)
real, parameter :: vofRho2 = rho

main.f90

! Simulation initial step
iStart = 0
! Simulation final step
iEnd = 9999999
! Choose the timestep
dt = 0.00001

initDropletPosition.dat

0.5 0.5 0.25

 

Time evolution of the droplet shape (black line) and vorticity (color contour).
Center of mass position and rising speed of a 2D droplet in a Newtonian fluid. The line denotes the numerical results and the symbols those from Ref. [3].

 


Droplet deformation in a shear flow

 

Sketch of the computational domain and of the Cartesian coordinate system.

 

We consider a 3D spherical drop of radius \(R\) located at the center of a computational domain of size \(8R \times 16R \times 16R\), discretised with a resolution of \(20\) grid points per drop diameter. The top and bottom walls move with opposite velocity \(\pm V_w\), providing a shear rate \(\dot{\gamma} = 2 V_w/16R\), while periodic boundary conditions are imposed in the remaining directions. The same density and viscosity are specified for the spherical drop and the surrounding fluid, the Reynolds number \(Re = \rho \dot{\gamma} R^2/\mu\) is fixed to \(0.1\), and six capillary numbers are studied: \(0.05\), \(0.10\), \(0.15\), \(0.20\), \(0.25\) and \(0.30\).

config.h

#define _FLOW_COUETTE_
#define _SOLVER_FFT2D_
#define _MULTIPHASE_
#define _MULTIPHASE_VOF_
#define _MULTIPHASE_VOF_DROPLETS_
#define _MULTIPHASE_VISCOSITY_UNIFORM_
#define _MULTIPHASE_DENSITY_UNIFORM_
#define _MULTIPHASE_VOF_3D_
#define _MULTIPHASE_VOF_QUADRATIC_

param.f90

!Total number of grid points in X, Y and Z
integer, parameter :: nxt = 80, nyt = 160, nzt = 160
!Size of the domain in X, Y and Z
real, parameter :: lx = 4.0, ly = 8.0, lz = 8.0
!Fluid viscosity and density
real, parameter :: vis = 0.5**2/0.1, rho = 1.0
!Reference velocity (bulk velocity or wall velocity)
real, parameter :: refVel = 4.0
!Gravitational acceleration
real, dimension(3), parameter :: gr=(/0.0,0.0,-0.0/)
!Output frequency
integer,parameter :: iout0d = 100, iout1d = 100000, iout2d = 20000, iout3d = 100000, ioutfld = 100000
!Number of droplets
integer, parameter :: vofN = 1
!Interfacial surface tension
real, parameter :: vofSigma = vis*0.5/0.05

main.f90

! Simulation initial step
iStart = 0
! Simulation final step
iEnd = 9999999
! Choose the timestep
dt = 0.0001/2.0

initDropletPosition.dat

2.0 4.0 4.0 0.5

 

The deformed interface for increasing capillary numbers.
Taylor deformation parameter versus the capillary number. The blue symbols are the present numerical results, the red ones those by Ref. [4] and the solid line the theoretical analysis by Taylor Ref [5] on the assumptions of small deformation and Stokes flow.

 



References:

[1] S. T. Zalesak. Fully multidimensional flux-corrected transport. Journal of Computational Physics, 31:335–362, 1979.

[2] M. Rudman. Volume-tracking methods for interfacial flow calculations. International Journal for Nu- merical Methods in Fluids, 24(7):671–691, 1997.

[3] S. R. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. Tobiska. Quantitative benchmark computations of two-dimensional bubble dynamics. International Journal for Numerical Methods in Fluids, 60(11):1259-1288, 2009.

[4] S. Ii, K. Sugiyama, S. Takeuchi, S. Takagi, Y. Matsumoto, and F. Xiao. An interface capturing method with a continuous function: the THINC method with multi-dimensional reconstruction. Journal of Computational Physics, 231(5):2328–2358, 2012.

[5] G. I. Taylor. The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 146(858):501–523, 1934.