Date
OIST Centre for Quantum Technologies Colloquium
AN ION MEETS A RYDBERG ATOM
Dr. Robert Loew, University of Stuttgart (Germany)
Date
Physics colloquium.
Speaker: Igor Klebanov (Princeton University).
Title: "1+1 Dimensional Gauge Theory: Lattice vs. Continuum".
Date
OIST Center for Quantum Technologies Colloquium: Potential of Diamond Quantum Sensors
Prof. Mutsuko Hatano, Professor, Tokyo Institute of Technology
Date
We are happy to invite you to a lecture by Prof. Serge Haroche. This is a part of our summer school CQD2023, and he will give a talk on Quantum Science with Rydberg Atoms.
Target audience: OIST community
Date
The colloquium will be held once a month online. Each event consists of a one-hour talk on mathematics followed by a one-hour diversity panel discussion session. Please register before July 18, 5 pm. Click here to register!
Speaker: Professor Motoko Kotani, Tohoku University
Abstract: Discrete geometric analysis is an attempt to discretize geometric analysis. Mathematics is often said “a common language of science”. As our world consists of atoms, which we consider as discrete objects, developing language to describe discrete objects, their geometric structures in particular, is important. I would like to discuss our challenge to establish discrete geometric analysis and its application to other science.
Part II
Have fun in interacting with people from different interests.
Date
Title: The level-set mean curvature flow equation versus the total variation flow equation
Abstract: The level-set mean curvature flow equation has been introduced to track an evolving hypersurface by its mean curvature after it develops singularities. A level-set of a solution of the level-set mean curvature flow equation moves its mean curvature. The total variation flow equation is often used to remove noise from images. Although these two equations look similar, analytic properties are quite different; the former equation is a local equation while the latter is a nonlocal equation. In this talk, we compare these two equations as well as a few applications.
Discussion Theme (for the 2nd part of the event) :
How to collaborate with researchers other than mathematicians
The colloquium will be held once a month online. Each event consists of a one-hour talk on mathematics followed by a one-hour diversity panel discussion session. Please register before May , 5 pm. Click here to register!
Date
In describing properties of disordered media, physicists have long been interested in the behaviour of random walks on random graphs that arise in statistical mechanics, such as percolation clusters and various models of random trees. Random walks on random graphs are also of interest to computer scientists in studies of complex networks. In ‘critical’ regimes, many of the canonical models exhibit large-scale fractal properties, which means it is often a challenge to describe their geometry, let alone the associated random walks. In this talk, I will describe an approach suitable for understanding various ‘low-dimensional’ models of random walks on random graphs that builds on the deep connections that exist between electrical networks and stochastic processes.
Part II Discussion Theme:
Working in different places, and especially in different countries, naturally leads one to draw comparisons. Through such, one learns more about the working cultures of each. After some brief general musings on this topic, I plan to share some of my experiences from the UK of working on a departmental committee that was responsible for staff welfare (including work-life balance and gender equality).
The colloquium will be held once a month online. Each event consists of a one-hour talk on mathematics followed by a one-hour diversity panel discussion session. Please register before April 7, 5 pm. Click here to register!
Date
Monge-Ampère type equations are fully nonlinear elliptic partial differential equations that arise when considering the deformation of volume induced by some kind of transformation. In this talk I will discuss two such cases, the optimal transport problem, and geometric optics problems. The former discusses the most efficient way of transporting some resource to another location, and the second is a simplified model for optical instruments (such as lenses or mirrors) in which light is treated as a particle rather than a wave. I will attempt to focus more on heuristics rather than technical details; no knowledge of PDEs is assumed. A portion of this talk is based on joint work with N. Guillen.
Please register before February 17, 5 pm. Click here to register!
The colloquium will be held once a month online. Each event consists of a one-hour talk on mathematics followed by a one-hour diversity panel discussion session. February speaker is Jun Kitagawa from Michigan State University.
In the mathematics part, we will hear an exciting overview talk for a general audience. In the discussion session, we will hear about the speaker's experience as a mathematician. You can take inspiration from them and exchange ideas with other participants in a small group. After the sessions are over, there will be a tea time where participants can chat freely.
Date
The colloquium will be held once a month. It will be held online for the time being. Each event consists of a one-hour talk on mathematics followed by a one-hour diversity panel discussion session. Please register before January 14, 5 pm. Click here to register!
In the mathematics part, we will hear an exciting overview talk for a general audience. January speaker is Ade Irma Suriajaya from Kyushu University. In the discussion session, we will hear about the speaker's experience as a mathematician. You can take inspiration from them and exchange ideas with other participants in a small group. After the sessions are over, there will be a tea time where participants can chat freely.
Part I Expository math talk 3-4 pm
Speaker: Ade Irma Suriajaya Kyushu University
Talk Title : Goldbach’s Conjecture and the Riemann Hypothesis in Number Theory, and Their Relations to Zeta Functions
Abstract: Number Theory has a very long history that dates back to thousands of years ago. The main goal of this study is to understand properties of numbers which can essentially be reduced to understanding prime numbers. Number Theory has evolved over time and yet we are still left with several important old problems. Among, Goldbach’s conjecture which is celebrating its 280th anniversary this year (by the time of my talk in 2022) and the Riemann hypothesis which is now over 160 years old remain unsolved. In this talk, I would like to explain what these problems are about and briefly introduce a few recent works which are related to them, especially how the distribution of zeros of the Riemann zeta function comes into play. My talk will be given in the perspective of Analytic Number Theory.
Abstract: Part II Diversity Panel Discussion 4-5 pm
Date
This colloquium will be held once a month. It will be held online for the time being. Each event consists of a one-hour talk on mathematics followed by a one-hour diversity panel discussion session.
In the mathematics part, we will hear an exciting overview talk for a general audience. November speaker is Masato Mimura from Tohoku University. In the discussion session, we will hear about the speaker's experience as a mathematician, especially in choosing fields of research. You can take inspiration from them and exchange ideas with other participants in a small group. After the sessions are over, there will be a tea time where participants can chat freely.
You can join Part I only or both parts of the colloquium. Please register before November 19, 5 pm. Click here to register!
Part I Expository math talk 3-4 pm
Speaker: Masato Mimura 見村万佐人 (Tohoku University 東北大学)
Talk Title : The Green--Tao theorem for number fields
Abstract: The celebrated Green--Tao theorem states that an upper dense subset of the set of rational primes contains arbitrarily long arithmetic progressions. Later, Tao proved that an upper dense subset of the set of Gaussian primes, namely, prime elements in the integer ring $\mathbb{Z}[\sqrt{-1}]$ of the number field $\mathbb{Q}(\sqrt{-1})$ contains arbitrarily shaped constellations. (We will explain the precise statement in the talk.) In the paper, Tao asked whether the same conclusion holds in the setting of arbitrary number fields. In this joint work with Wataru Kai (Tohoku U.), Akihiro Munemasa (Tohoku U.), Shin-ichiro Seki (Aoyama Gakuin U.) and Kiyoto Yoshino (Tohoku U.), we answer Tao's question in the affirmative. We have an application to the setting of a binary quadratic form. More precisely, given a form $F$, we study combinatorics on the set of pair of integers $(x,y)$ for which $F(x,y)$ is a rational prime. No serious background of number theory is required for this talk.
Part II Diversity Panel Discussion 4-5 pm