Reina Komiya, Ph.D.

Science and Technology Associate (Project Leader)
Science and Technology Group


The genome of higher organisms is composed of more than 90% of non-coding genomic regions. A recently large number of non-coding RNAs transcribed from these intergenic regions have been identified in many organisms. However, most biological functions remain unknown in plants and animals. I identified more than 770 types of reproductive long non-coding RNAs and numerous small RNAs derived from these long non-coding RNAs in rice (Komiya et al., 2014). The primary aim of this research is to elucidate the comprehensive reproductive system via NON-coding RNAs in plants and the significance of non-coding genomic regions presented in higher organisms.



Non-coding RNA, Germ cell, Reproduction, Rice



3D imaging of the male organ in rice

The stamen is the male reproductive organ in plants that contains the germ cells (Germ) and somatic wall (Soma). We successfully developed a method to visualize the three-dimensional (3D) structure of the whole rice stamens, which can also be used for distinguishing the internal structure of the stamens (Koizumi and Komiya 2022; Figure 1). We successfully developed a 3D organ-immunoimaging technique with single-cell and intracellular resolution (Araki et al., 2022).

Spatial control of ARGONAUTEs-mediated silencing in stamen

Argonaute protein (AGO) in association with small RNAs is the core machinery of RNA silencing, an essential mechanism for precise development and defense against pathogens in many organisms. We identified two AGOs, AGO1b and AGO1d, that cell type-specifically regulate stamen development by acting as mobile carriers of small RNAs from the soma to the germ cells. Our study also highlights a new mode of reproductive RNA silencing via the specific nuclear and cytoplasmic localization of three AGOs, AGO1b, AGO1d, and MEL1, in rice germ cells (Figure 2B; Tamotsu et al., 2023).



Tamotsu, H., Koizumi, K., Briones, A. and Komiya, R†.  Spatial control of ARGONAUTE-mediated RNA silencing in anther development. Nature Communications 14:3333 (2023).

Araki, S., Tamotsu, H. and Komiya, R†.  3D-multiple immunoimaging using whole male organs in rice. Scientific Reports 12:15426 (2022).

Koizumi, K. and Komiya, R.  3D imaging and in situ hybridization for uncovering the functions of microRNA in rice anther. Methods in Molecular Biology. 2509, 93-104 (2022).

Komiya, R. Spatiotemporal regulation and roles of reproductive phasiRNAs in plants. Genes &  Genetic Systems. 96 (5) 209-215 (2021).

Araki, S., Le, TN., Koizumi, K., Briones, A., Nonomura, K., Endo, M., Inoue, H., Saze, H. and Komiya, R. miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nature Communications.11:3115 (2020).

Kurokawa, R., Komiya, R., Oyoshi T, Matsuno, Y., Tani, H., et al. Multiplicity in Long Noncoding RNA in Living Cells. Biomedical Sciences. 4, 1-18 (2018).

Komiya, R. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. Journal of Plant Research. 130, 17-23 (2017).

Komiya, R., Nonomura, K.I. Isolation and bioinformatic analyses of small RNAs interacting with germ-cell specific Argonaute in rice. Methods in Molecular Biology. 1093, 235-245 (2014).

Komiya, R., Ohyanagi, H., Niihama, M., Watanabe, T., Nakano, M., Kurata, N. and Nonomura, K. I. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. The Plant Journal. 78, 385-397 (2014).

Shirasawa, S., Kifuji, Y., Komiya, R., Kitashiba, H., Nishimura, M. and Nishio, T.  Identification of a single nucleotide deletion of OsDFR2A causing frameshift in a genic male sterile mutant of rice and its possible application to F1 hybrid breeding. Molecular Breeding. 31, 805-814 (2013).

Komiya, R., Yokoi, S. and Shimamoto, K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development. 136, 3443-3450 (2009).

Tuji, H., Tamaki, S., Komiya, R. and Shimamoto, K. Florigen and the Photoperiodic Control of Flowering in Rice. Rice. 1, 25-35 (2008).

Komiya, R. and Shimamoto, K. Genetic and epigenetic regulation of flowering in rice. Plant Biotechnology. 25, 279-284 (2008).

Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S. and Shimamoto, K. Hd3a and RFT1 are essential for flowering in rice. Development. 135, 767-774 (2008).



Reviews in Japanese (和文総説)

1. Komiya, R. Diverse functions of various non-coding RNAs. Journal of Bioscience and Bioengineering ,96, 349(2018).

小宮怜奈 多種のノンコーディングRNAが担う多様な機能. 生物工学. 96, 349(2018).


2. Komiya, R. RNAi pioneered by co-suppression in plants. Experimental MedicineNon-coding RNA textbook, 33, 26-27 (2015).

小宮怜奈 植物『コサプレッション』が先駆けとなったRNAi.実験医学 増刊 ノンコーディングRNAテキストブック. 33, 26-27 (2015).


3. Takahashi, Y., Ymauchi, T., Kadoi, H., Terauchi, R., Ohyanagi, H., Komiya, R., Miyabe, H. and Naito, K. Next-generation genetics and breeding. Breeding Science. 15, 115-121 (2013).

高橋有, 山内卓樹, 角井宏行, 寺内良平, 大柳一, 小宮怜奈, 宮武宏治, 内藤健 次世代の遺伝学と育種. 育種学研究. 15, 115-121 (2013).



Address: 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
Phone: +81-(0)98-966-1569
FAX:  +81-(0)98-966-1064
E-mail: reina.komiya at