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1 Quantum Mechanics

1.1 From topology to quantum mechanics

In this section I want to briefly outline the structure of the second half of the course. Let us

recall some results about the topology:

• Topology is a shape of a smooth manifold, which we can describe using topological

invariants.

• De Rham cohomology is one of the most popular and useful topological invariants.

• Hodge theorem relates de Rham cohomology to the harmonic forms.

• H0(T3) is in one to one corresponence with solutions

∆f =
3∑
i=1

∂2
i f = 0 (1.1)

Let us recall some basis results from quantum mechanics
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• The wave-functionΨ(x, y, z, t) of point particle moving in R3 obeys the Schrodinger

equation

i~
∂

∂t
Ψ =

[
− ~2

2m

∂2

∂x2
− ~2

2m

∂2

∂y2
− ~2

2m

∂2

∂z2
+ V (x, y, z)

]
Ψ (1.2)

• We can consider stationary solutions

Ψ(x, y, z, t) = ΨE(x, y, z)e−
i
~Et (1.3)

with stationary wave-function ΨE(x, y, z) obeying the stationary Schrodinger equation[
−

3∑
i=1

~2

2m
∂2
i + V (x)

]
ΨE = EΨE (1.4)

• We assume zero potential

−
3∑
i=1

~2

2m
∂2
i ΨE = EΨE (1.5)

• The E = 0 stationary wavefunctions obey

− ~2

2m

3∑
i=1

∂2
i Ψ0 = 0 (1.6)

Observation: The H0(T3) is in one to one correspondence with the E = 0 wavefunctions

for the free particle in T3.

Outline of the second part of the course

1. Review the derivation of the Schrodinger equation for point particle in R3 and T3.

2. Generalize to H0(Tn).

3. Include Grassmann variables to generalize to Hk(Tn)

4. Generalize to Hk(M)

5. Add potential and relate to Morse theory

6. Use SUSY localization to simplify Hk(M)
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1.2 Stationary action principle

Classical mechanics is about describing the trajectory x(t) of a particle as a function of time

t. In most cases trajectory is a solution to the second order differential equation

ma = mẍ =
d2x

dt2
= F (x) = −∂xV = −V ′ (1.7)

known as a Newton’s law. We need to supplement the second order differential equation with

initial data: initial position x(0) and velocity ẋ(0).

Theoretical physics describes the same system using stationary action principle: Let us

consider a functional on the space of trajectories T = C∞Map(I,R)

S : T → R, S[x(t)] =

∫
I

L(x, ẋ)dt =

∫
I

dt

(
1

2
mẋ2 − V (x)

)
, (1.8)

with L known as a Lagrangian. Let us choose I = [0, 1]. The equations of motion describe

trajectories x(t), that extremize the action at fixed boundary values

x(0) = xI , x(1) = xF , δx(0) = δx(1) = 0. (1.9)

The variation of the action

δS = S[x(t) + δx(t)]− S[x(t)] =

∫ 1

0

dt(mẋδẋ− V ′δx)

=

∫ 1

0

dt(∂t(mẋδx)−m∂t(ẋ)δx− V ′δx)

= mẋδx
∣∣∣1
0
−
∫ 1

0

dt(mẍ+ V ′)δx

= mẋ(1)δx(1)−mẋ(0)δx(0)−
∫ 1

0

dt(mẍ+ V ′)δx

= −
∫ 1

0

dt(mẍ+ V ′)δx

(1.10)

vanishes for arbitrary trajectory variation δx(t) if and only if

mẍ(t) + V ′(x(t)) = 0 (1.11)

holds for all t ∈ [0, 1], what matches with the Newton’s law.

In case of general Lagrangian L(x, ẋ) the extremum of the action is on trajectories which
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solve
d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 (1.12)

The equation above is kown as the Euler-Lagrange equation

1.3 Phase space

We can turn the second order differential equation into pair of the first order ones:

p(t) = mẋ(t), ṗ(t) = −V ′(x(t)) (1.13)

We can derive these equations from first order stationary action principle

S[x, p] =

∫
I

dt

(
pẋ− p2

2m
− V (x)

)
, (1.14)

The boundary conditions for variations are

x(0) = xI , x(1) = xF , δx(0) = δx(1) = 0. (1.15)

while p is unconstrained.

In case of generic Euler-Lagrange equation the corresponding first order equations

ṗ = −∂H
∂x

, ẋ =
∂H

∂p
(1.16)

are known as the Hamilton’s equations with Hamiltonian H(p, x) being Legendre transform

of the Lagrangian L(x, ẋ)

H(p, x) = pẋ− L(x, ẋ), p =
∂L

∂ẋ
. (1.17)

The p, x are coordinates on the phase space of one-dimensional point particle. The phase

space is R2 endowed with a non-degenerate two form

ω = dp ∧ dx ∈ Ω2(R2) (1.18)

what makes a pair (R2, ω) into a symplectic manifold.

Definition: A pair (M,ω) defines a symplectic manifold iff M is an even dimensional and
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two-form ω ∈ Ω2(M) is such that

• ω is closed form i.e.

dω = 0, (1.19)

• ω is non-degenerate form, i.e.

∀p ∈M ∀ξ 6= 0 ∃η : ω(p, ξ, η) 6= 0, ξ, η ∈ TpM. (1.20)

Corollary: For closed compact M of dimension 2n = dim(M), then we can define a nonva-

nishing 2n form ωn ∈ Ω2n(M), which is the volume form i.e.∫
M

ωn = Vol(M) 6= 0 (1.21)

Being top form ωn is a closed form, while it cannot be exact because integral above is nonzero.

Thus we conclude that

ωn ∈ H2n
dR(M) 6= 0 (1.22)

Moreover, lower powers ωk are also nontrivial in cohomology. By construction they are closed

forms

dωk = kdω ∧ ωk−1 = 0. (1.23)

Suppose ωk is exact i.e.

ωk = dα (1.24)

then we can multiply it by ωn−k and arrive into contradiction

0 6= Vol(M) =

∫
M

ωn =

∫
M

ωk ∧ ωn−k =

∫
M

dα ∧ ωn−k =

∫
M

d(α ∧ ωn−k) = 0. (1.25)

Let us describe several useful examples of symplectic manifolds:

• The (R2,Ω0) is a trivial example. The form is trivially closed dΩ0 = d(dx ∧ dy) = 0

and non-degenerate since ωxy = 1.

• Let X be a smooth manifold and T ∗X being the cotangent bundle, then there is a

canonical symplectic form ωcan =
∑
dpi ∧ dxi that makes (T ∗X,ωcan) into symplectic

manifold.
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• Let U be an open subset in a symplectic manifold (M,ω) then (U, ω|U) is a symplectic

manifold.

• The round unit sphere S2 with coordinates (φ, θ) and the standard volume form

ωS2 = sin θ dθ ∧ dφ

makes a pair (S2, ωS2) into symplectic manifold.

• Let Σ be any oriented surface and ω any volume form on Σ then (Σ, ω) is a symplectic

manifold. In particular ω is closed since dim(Σ) = 2 and it is non-degenerate due to

being a volume form.

• The S4 is not a symplectic manifold. Given a properties of symplectic form we im-

mediately conclude that the symplectic manifold should have nontrivial H2k
dR(M) In

particular for the 4d manifold there should be H2
dR(M) 6= 0 while in case of S4 we have

H2
dR(S4) = 0!

1.4 Canonical transformations

Definition: Let (M1, ω1) and (M2, ω2) be symplectic manifolds. A smooth map f : M1 →
M2 is called a symplectomorphism (or a canonical transformation) if it is a diffeomorphism

and

f ∗ω2 = ω1. (1.26)

We can use the symplectomorphism to locally represent any symplectic manifold as (R2n,Ω0).

Theorem (Darboux): Let (M,ω) be a symplectic manifold of dimension 2n. Then form

any p ∈ M , there exists a neighborhood p ∈ U ⊂ M and a neighborhood p ∈ U0 ⊂ R2n so

that (U, ω) is symplectomorphic to (U0,Ω0), where Ω0 is the standard symplectic form on R2n.

Corollary: A smooth map f : M → M is symplectomorphism (or a canonical transfor-

mation) if it is a diffeomorphism and it preserves the symplectic form ω on M i.e.

f ∗ω = ω. (1.27)

Definition: Let M be a smooth manifold and Vect(M) the set of all smooth vectors on M .

6



We can turn Vect(M) into Lie algebra if we define a Lie bracket

[·, ·] : Vect(M)× Vect(M)→ Vect(M), (X, Y ) 7→ [X, Y ] = XY − Y X (1.28)

that is bilinear, antisymmetric and obeys Jacobi identity

[[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0. (1.29)

Thus a pair (Vect(M), [·, ·]) is an (infinite dimensional) Lie algebra. The corresponding Lie

group is the topologically trivial (contractible to the identity) diffeomorphisms Diff0(M) of

M

Diff0(M) = {φ : M →M |φ is a diffemorphism}. (1.30)

We can define a group of symplectomorhisms Symp(M,ω) for a symplectic manifold (M,ω)

as subgroup of diffeormorphisms

Symp(M,ω) = {φ : M →M |φ∗ω = ω, φ is a diffemorphism} (1.31)

The last statement makes Symp(M,ω) into a proper subgroup of Diff0(M), while both are

typically infinite dimensional.

1.5 Hamiltonian vector fields

The Lie algebra of Symp(M,ω) is a sub-algebra of (Vect(M), [·, ·]) that includes vector fields

that preserve ω

symp(M,ω) = {Lξω = 0, ξ ∈ Vect(M)} (1.32)

what is straightforwardly follows from the Lie derivative property

L[ξ,η]ω = LξLηω − LηLξω. (1.33)

Given a symplectic vector field ξ we can use the Cartan formula for a Lie derivative and

closeness of ω to simplify

0 = Lξω = (ιξδ + διξ)ω = δ(ιξω) (1.34)
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Locally we can write any closed form as an exact form i.e.

ιξω = δHξ (1.35)

while globally the nontrivial H1(M) prevents from doing so. Thus we can define the Hamilto-

nian vector field as the vector field ξ such that there is a global function Hξ. Straightforward

check

ι[ξ,η]ω = (Lξιη − ιηLξ)ω = (LξδHη − ιηLξω) = (διξ + ιξδ)δHη

= διξδHη = δ(ιξδ + διξ)Hη = δLξHη = δ(LξHη)
(1.36)

implies that the Hamiltonian vector fields form a Lie algebra ham(M,ω).

In a language of exact sequences the relation between symplectic and hamiltonian vector

fields.

0→ ham(M,ω)→ symp(M,ω)→ H1(M)→ 0 (1.37)

Using symplectic form non-degeneracy of ω we can ”invert” so for arbitrary function H on

M there is a vector field XH

H 7→ XH , dH = ιXHω (1.38)

1.6 Poisson structure

We can use ω to turn C∞(M) into Lie algebra with Poisson bracket

{G,H} = ιXH ιXGω = ιXHdG = LXHG (1.39)

Proposition: The Lie algebra C∞(M) in general is a central extension of ham(M) i.e.

{Hη, Hξ} = H[η,ξ] + c(η, ξ) (1.40)

Proof: We can verify the expression above explicitly

d{Hη, Hξ} = dιηιξω = 1
2
dιηιξω − 1

2
dιξιηω = 1

2
dιηdHξ − 1

2
dιξdHη

= 1
2
(dιη + ιηd)dHξ − 1

2
(dιξ + ιξd)dHη = 1

2
LηdHξ − 1

2
LξdHη

= 1
2
(Lηιξ − Lξιη)ω = ι[η,ξ]ω = dH[η,ξ]

(1.41)
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1.7 Symmetries

An infinitesimal action of the Lie algebra g is a Lie-algebra morphism

g→ Vec(M) : ε 7→ Vε, V[ε,η] = [Vε, Vη] (1.42)

Similarly we can define a Hamiltonian action as Lie algebra morphism

g→ ham(M,ω) (1.43)

δεF = LVεF = {F,HVε} (1.44)

The Hamiltonians can be encoded in terms of moment map µ : M → g∗ so that

HVε = 〈ε, µ〉. (1.45)

with 〈·, ·〉 being the canonical paring between g and g∗. The dual Lie algebra g∗, is equipped

with the canonical actionG in the form of coadjoint action Ad∗g−1 , so we can define equivariant

moment map obeying

µ(Φg(x)) = Ad∗g−1µ(x), ∀g ∈ G (1.46)

The action of a Lie group G on (M, ω) is called Hamiltonian action if there exists an equiv-

ariant map.

Example: Let us considerM = R2 with coordinates p, x and symplectic form ω = dp∧ dx.

The infinitesimal rotations

δαx = −αp, δαp = αx (1.47)

are generated by the Hamiltonian vector field

Vα = αx
∂

∂p
− αp ∂

∂x
, ιVαω = dHα (1.48)

with Hamiltonian

Hα =
1

2
α(p2 + x2). (1.49)

1.8 Quantization

The quantum description of the point particle consists of the Hilbert space of states H and

the time evolution operator, quantum Hamiltonian Ĥ. The wavefunction of the system Ψ
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obeys the Schrodinger equation

− i~∂tΨ = ĤΨ (1.50)

Let us review the construction for the Hilbert space and quantum Hamiltonian.

Definition: A quantization of the symplectic manifold (M,ω) provides

• A Hilbert space H.

• A map assigning a self-adjoint operator, quantum observable, f̂ to every function clas-

sical observable f ∈ C∞(M) satisfying:

1. Linearity

̂af + bg = af̂ + bĝ, ∀f, g ∈ C∞(M). (1.51)

2. Constants map to constant operators

1̂ = 1H. (1.52)

3. Hermiticity

f̂ † = f̂ , ∀f ∈ C∞(M). (1.53)

4. Dirac’s correspondence principle

[f̂ , ĝ] = −i~{̂f, g}. (1.54)

5. H is an irreducible representation of any irreducible subalgebra of C∞(M). If

{g1, ..., gn} is a complete set of observables, {ĝ1, ..., ĝn} is a complete set of oper-

ators. Being the complete set of observables is such that

∀k : {f, gk} = 0 ⇒ f ∈ C. (1.55)

Similarly the complete set of operators {ĝk} implies that any operator Â com-

muting with them is scalar i.e.

∀k [Â, ĝk] = 0 ⇒ Â = λ · 1H, λ ∈ C. (1.56)

Proposition: Requirements (axioms) are too strong so we need to relax some of them to

get quantization. There is an extensive discussion of this proposition in the literature.
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There are different types of quantization, depending on the assumptions that we preserve:

• Deformation (Canonical) quantization: Dirac’s correspondence principle is re-

quired only asymptotically as ~→ 0 - deformation of the usual product in C∞(M).

• Geometric quantization: Consider irreducible representations of only some irre-

ducible subalgebras of C∞(M).

• Path integral quantization.

1.9 Canonical quantization

The canonical quantization is typically the first quantization that we encounter in a physics

courses. The idea is simple enough: Given trivial symplectic manifold R2 with canonical

symplectic structure

ω = dp ∧ dq (1.57)

or equivalently a canonical Poisson bracket

{p, q} = 1 (1.58)

we represent

q → q̂ = q, p→ p̂ = −i~ ∂
∂q
. (1.59)

The Hilbert space is

H = L2(R), 〈ψ, η〉 =

∫
R
ψ̄(q)η(q) dq (1.60)

while the classical observables f(p, q) ∈ C∞ are represented

f(p, q) 7→ f̂ =: f(p̂, q̂) : (1.61)

with : : stands for ordering choice. Let us chose the so called normal ordering with all

derivatives being to the right.
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Operators p̂ and q̂ are hermitian operators. Indeed simple check shows that

〈q̂†ψ, η〉 =〈ψ, q̂η〉 =

∫
R
ψ̄(q) · q̂η(q) dq =

∫
R
ψ̄(q) · qη(q) dq

=

∫
R
qψ̄(q) · η(q) dq =

∫
R
qψ(q) · η(q) dq =

∫
R
q̂ψ(q) · η(q) dq

= 〈q̂ψ, η〉

(1.62)

and

〈p̂†ψ, η〉 = 〈ψ, p̂η〉 =

∫
R
ψ̄(q) · p̂η(q) dq = −i~

∫
R
ψ̄(q)∂qη(q) dq

= i~
∫
R
∂qψ̄(q) · η(q) dq =

∫
R
−i∂qψ(q) · η(q) dq =

∫
R
p̂ψ(q) · η(q) dq

= 〈p̂ψ, η〉

(1.63)

Remark: In Canonical quantization the Dirac’s correspondence principle only holds at

O(~) and can be corrected at higher orders!

1.10 Time evolution

The particle trajectory in phase space is a solution to Hamilton’s equations

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
(1.64)

which we can rewrite in terms of Poisson bracket

ṗ = {H, p}, q̇ = {H, q} (1.65)

In a similar way we can describe the time evolution of the classical observable

Ȯ(p, q) = q̇
∂O
∂q

+ ṗ
∂O
∂p

=
∂H

∂p

∂O
∂q
− ∂H

∂q

∂O
∂p

= {H,O(p, q)} (1.66)

In quantum theory we replace the Poisson bracket by commutator to arrive into

˙̂O =
i

~
[Ĥ, Ô] (1.67)
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what can be solved

Ô(t) = e
i
~ ĤtÔ(0)e−

i
~ Ĥt (1.68)

The time dependent operators with stationary wave-functions ψ is known as the Heisenberg

picture. There is a physically equivalent description - Schrodinger’s picture with station-

ary operators and time-dependent wave functions ψ(t). The observables - probability of

observing certain eigenvalue for Hermitian operator are the same in both pictures

p(t) = 〈ψ|O|ψ〉 =

∫
R
dq ψ̄(q)Ô(t)ψ(q) =

∫
R
dq ψ̄(q, t)Ô(0)ψ(q, t) (1.69)

if we describe the time evolution of wave-functions via unitary operator

ψ(t) = Uψ(0) = e−
i
~ Ĥtψ(0) (1.70)

Equivalently we can say that ψ(t) solves the Scrodinger’s equation

i~
∂ψ

∂t
= Ĥψ. (1.71)

1.11 Path integral in Hamiltonian formulation

We have already observed that the classical equations of motion

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
(1.72)

follow from the extremum of the action

S[p(t), q(t)] =

∫ T

0

(pq̇ −H(p, q)). (1.73)

An extremum of the action determines the saddle points of the partition function

Z(T ) =

∫
Maps(I,M)

DqDp e
i
~S[p(t),q(t)] (1.74)

so it is natural to ask the question about the meaning of the partition function. The answer

to this question is rather interesting

Z(T ) = 〈qF |e−
i
~ ĤT |qI〉 (1.75)
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with qi and qf being initial and final positions of the particle

qI = q(0), qF = q(T ). (1.76)

Let us sketch the derivation of the path integral for

H =
p2

2m
+ V (q) (1.77)

Let us use the completness

IH =

∫
dp |p〉〈p|, IH =

∫
dq |q〉〈q|, (1.78)

of position and momentum basises

q̂|q〉 = q|q〉, p̂|p〉 = p|p〉 (1.79)

to rewrite

Z(T ) =

∫
dp〈qF |e−

i
~ ĤT |p〉〈p|qI〉 (1.80)

Let us split the interval [0, T ] into N parts and introduce notations

pk = p(k∆t), qk = q(k∆t) (1.81)

Then we can rewtrite the partition function

Z(T ) =

∫
dp1....dpN

∫
dq1...dqN−1

N∏
k=0

〈qk|e−
i
~ Ĥ∆t|pk〉〈pk|qk−1〉

=

∫
dp1....dpN

∫
dq1...dqN−1

N∏
k=0

1

2π~
exp

[
ipk(qk − qk−1)

~
− i∆t

~
H(pk, qk)

]

=

∫
dp1....dpN

∫
dq1...dqN−1

N∏
k=0

1

2π~
exp

[
i∆

~
(pkq̇k −H(pk, qk))

]
=

∫
DqDp e

i
~
∫ T
0 (pq̇−H(p,q)) =

∫
Maps(I,R2)

DqDp e
i
~S[p(t),q(t)]

(1.82)

We used

〈p|q〉 =
1√
2π~

e−
ipq
~ (1.83)
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and

〈q|e−
i
~ Ĥ∆t|p〉 = 〈q|e

− i
~

(
p̂2

2m
+V (q̂)

)
∆t
|p〉 = 〈q|

[
1− i

~

(
p̂2

2m
+ V (q̂)

)
∆t+O(∆t)2

]
|p〉

=
1√
2π~

e
ipq
~

(
1− i∆t

~
p2

2m
− i∆t

~
V (q) +O(∆t)2

)
=

1√
2π~

e
ipq
~ −

i∆t
~ H(p,q) +O(∆t)2

(1.84)

and

et(A+B) = etAetB(1 + t2[A,B] +O(t3)) (1.85)

1.12 Path integral for symplectic manifold∗

The Hamiltonian formulation of the path integral

〈qF |e−
i
~ ĤT |qI〉 =

∫
Maps(I,R2)

DqDp exp

(
i

~

∫ T

0

dt(pq̇ −H(p, q))

)
(1.86)

The boundary conditions for map space are

γq(0) = qI , γq(T ) = qF , ∀γ ∈Maps(I,R2) (1.87)

which geometrically means that γ stretches between two Lagrangian submanifolds

γ(0) ∈ LqI = {(p, qI)| p ∈ R}, γ(T ) ∈ LqF = {(p, qF )| p ∈ R} (1.88)

The pq̇ term in action is the pullback of canonical 1-form θ = pdq on R2 = T ∗R∫ T

0

dt pq̇ =

∫
I

γ∗θ, dθ = ω, θ
∣∣∣
Lq

= 0 (1.89)

On QM side the states |q〉 are quasi-classicaly supported on Lq. We can define the path

integral quantization via the formula

〈qF |
∏
Ôi|qI〉 =

∫
Maps(I,R2)

DqDp exp

(
i

~

∫ T

0

dtpq̇

) ∏
Oi(p(t), q(t)) (1.90)
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The trace formula

Tr
(∏

Ôi
)

=

∫
Maps(S1,R2)

Dγ exp

(
i

~

∫
S1

γ∗θ

) ∏
Oi(γ(ti)) (1.91)

allows us to drop the polarization dependence.

1.13 Path integral in Lagrangian formulation

We can use the saddle point approximation to evaluate the momentum space path integral

ZT =

∫
Maps(I,T ∗X)

DqDp e
i
~S[p(t),q(t)] (1.92)

The critical points of the action

δS

δp(t)
= q̇(t)− ∂H

∂p
(t) (1.93)

can be solved for p(t) in terms of q(t) and q̇(t). The equation above is the part of the

Legendre transform from Hamiltonian H(p, q) to Lagrangian L(q, q̇). The action S, evaluated

on solution to saddle point equation is the integral of Lagrangian

S[pcl(t), q(t)] =

∫
(pclq̇ −H(pcl, q)) dt =

∫
dt L(q, q̇) (1.94)

The path integral at leading order in ~ becomes an integral

ZT = 〈xF |e
i
~ ĤT |xI〉 =

∫
T
Dx e

i
~S[x(t)] +O(~0) (1.95)

over over space of trajectories

T = C∞Map([0, T ],R), x(0) = xI , x(T ) = xF (1.96)

where

S : T → R, S[x(t)] =

∫
I

L(x, ẋ)dt =

∫
I

dt

(
1

2
mẋ2 − V (x)

)
, (1.97)

being the action functional we discussed before. Similarly we can express more complicated

expressions, amplitudes for example

〈xF |e
i
~ Ĥt1Ô1e

i
~ Ĥ(t2−t1)....Ône

i
~ Ĥ(T−tn)|xI〉 =

∫
T
Dx e

i
~SO1(x(t1)) · ...O(x(tn)) (1.98)
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We can describe the path integral formulation of the trace

TrO =

∫
dx〈x|O|x〉 (1.99)

in the form

Tr(e
i
~ Ĥt1Ô1e

i
~ Ĥ(t2−t1)....Ône

i
~ Ĥ(T−tn)) =

∫
T0
Dx e

i
~SO1(x(t1)) · ...O(x(tn)) (1.100)

with T0 being loop space for R

T0 = C∞Map(S1,R). (1.101)

There are multiple advantages in representation of the QM in the form of integral

• We can use saddle point approximation method to evaluate the integral as power series

expansion in ~ also known as the Feynmann diagram expansion.

Z(~) =

∫
γ

dx ei~
−1S(x) =

∑
x0:S(x0)=0

ei~
−1S(x)− 1

2
logS′(x0)+O(~) (1.102)

• We can perform change of integration variables in integral. For example we can use it

to go from position space representation of the evolution operator to the momentum

space.

• We can use the simplifications of the integration of a total derivative. It will be very

useful in our discussion of supersymmetry.

• We can use the analytic continuation idea to describe the tunneling effects in QM which

are not the saddle point expansion around the classical trajectory, due to absence of

any (real) classical solutions.

Remark: We can and in part we will discuss the relation of the Morse theory and SQM

without using the Path integral. However the Path integral has so many applications in

modern physics and math, so getting some knowledge of it will be beneficial for everyone.

1.14 Geometric quantization∗

Definition: The quantization of symplectic manifold (M,ω) is the prequantization (M,ω,L, h,∇)

of M together withe choice of polarization P ⊂ TM of M. The Hilbert space of theory HP
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is the space of P -polarized, square integrable sections of L. The observables are the (pre-

quantized) classical observables, compatible with the choice of polarization.

1. Definition: A symplectic manifold (M,ω) is prequantizable when there exists a line

bundle π : L → M with Hermitian structure h and connection ∇ : Γ(M,L) →
Γ(M,L⊗ Ω1(M)), such that the curvature F∇ is proportional to the symplectic form

ω = i~F∇.

Theorem: Let ω be a closed 2-form on M such that [ω] ∈ H2(M,R) ⊂ H2(M,Z).

Then there exists a complex line bundle L → M and a connection ∇ such that

ω = i
2π
F∇. (In particular, this means that c1(L) = [ω]. )

Corollary: The symplectic manifold (M,ω) is prequantizible if

c1(L) =
i

2π
[F ] =

[ ω

2π~

]
∈ H2(M,Z). (1.103)

The statement above is equivalent

1

2π~

∫
Σ

ω ∈ Z (1.104)

for any closed two cycle Σ ∈ H2(M,Z).

Remark: The integrality of the periods of ω is typically discussed in QM course

under the name Bohr-Sommerfeld (BS) quantization and typically formulated in the

form ∫
C

pidq
i = 2π~(n+ εC), (1.105)

with C being a closed contour and εC being some quantum correction. If there is a

surface S such that ∂S = C then we can rewrite an expression above into

1

2π~

∫
C

pidq
i =

1

2π~

∫
S

ω, (1.106)

with ω = dpi ∧ dqi being the canonical form on phase space T ∗X for a particle moving

on configuration space X. The BS contours are chosen on the surface of constant

energy

H(p, q) = E. (1.107)
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2. The Hilbert space H is the space Γpol(M,L) of polarized sections

Γpol(M,L) = {s ∈ Γ(M,L) |∇Xs = 0 ∀X ∈ P} (1.108)

Definition: A polarization of a symplectic manifold is a foliation of the manifold by

Lagrangian subspaces. That is, a sub-bundle P ⊂ TM such that

• Pm is closed under commutator: for all X, Y ∈ Pm ⊂ TmM

[X, Y ]
∣∣∣
m
∈ Pm (1.109)

• Pm is Lagrangian:

ω|Pm = 0. (1.110)

3. The observables map is defined to be

f̂(σ) = −i~∇Xfσ + fσ, f ∈ C∞(M), σ ∈ H. (1.111)

where

df + ιXfω = 0 (1.112)

Observables obey the Dirac’s correspondence principle i.e.

[f̂ , ĝ] = −i~{̂f, g}. (1.113)

4. Observable f is compatible with polarization P i.e.

∇Xs = 0 ⇒ ∇X f̂ s = 0 (1.114)

if and only if

[X,Xf ] ∈ P. (1.115)

Example: Let us apply the geometric quantization approach to the simplest example

of 2d symplectic manifold M = R2 with canonical symplectic structure ω = dp ∧ dq. The

connection is

∇ = d+ A, A = − i
~
pdq i~F = i~dA = ω (1.116)
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For the classical observables p and q the corresponding Hamilton vector fields

Xp = ∂q, Xq = −∂p (1.117)

lead to the operator representation

p̂ = −i~∇Xp + p = −i~ιXp(dq∂q + dp∂p −
i

~
pdq) + p = −i~∂q, (1.118)

and

q̂ = −i~∇Xq + q = i~∂p + q. (1.119)

The real polarized sections are

∂ps(p, q) = 0 ⇒ s(p, q) = s(q). (1.120)

The p̂ and q̂ are compatible observables.
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