SUPERSYMMETRIC QUANTUM MECHANICS AND MORSE THEORY

Vyacheslav Lysov

Okinawa Institute for Science and Technology

Lectures 12-15: d = 0 Supersymmetry v0

Contents

1	d =	0 Supersymmetry	1
	1.1	Grassmann-odd symmetry	2
	1.2	Localization in simple model	3
	1.3	Intersection theory	5
	1.4	Saddle point approximation	8
	1.5	Subleading terms [*]	10
	1.6	Deformation of distribution	12
	1.7	Deformation of potential	13
	1.8	Localization via deformation	14
	1.9	Supersymmetry algebra	15
	1.10	Superspace formalism	17

1 d = 0 Supersymmetry

Let us consider an integral

$$Z_W = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-W^2} W' dx$$
 (1.1)

for W(x) being polynomial of degree n i.e.

$$W(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{0}.$$
(1.2)

In physics literature integrals similar to (1.1) appear in many different models. The Z_W is often referred as the *partition function* while the argument of exponent - as *action of theory*.

We can perform a change of variables

$$y = W(x), \quad dy = W'(x)dx \tag{1.3}$$

to turn the integral (1.1) into the Gaussian inegral

$$Z_W = \frac{1}{\sqrt{\pi}} \int_{W(-\infty)}^{W(+\infty)} dy \ e^{-y^2}.$$
 (1.4)

The integration result depends on the limits of integration, which are determined by degree of polynomial n and the sign of the top coefficient a_n

$$Z_W = \begin{cases} 0 & n \mod 2 = 0, \quad W(\pm \infty) = +\infty, \\ 1 & n \mod 2 = 1, a_n > 0 \quad W(\pm \infty) = \pm \infty, \\ -1 & n \mod 2 = 1, a_n < 0 \quad W(\pm \infty) = \mp \infty. \end{cases}$$
(1.5)

1.1 Grassmann-odd symmetry

Let us use the pair of Grassmann-odd variables ψ and $\bar{\psi}$ to lift the W' into the action

$$W'(x) = \int_{\mathbb{R}^{0|2}} d\psi d\bar{\psi} \ e^{W'\psi\bar{\psi}},\tag{1.6}$$

while the partition function becomes

$$Z_W = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}^{1|2}} dx d\psi d\bar{\psi} \ e^{-W^2 + W'\psi\bar{\psi}} = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}^{1|2}} dx d\psi d\bar{\psi} \ e^{-S(x,\psi,\bar{\psi})}.$$
 (1.7)

The new action

$$S(x,\psi,\bar{\psi}) = W^2 - W'\psi\bar{\psi}$$
(1.8)

depends on both even and odd variables and usually denoted as *supersymmetric action* in physics literature. The supersymmetric action is invariant under transformations

$$\delta_{\epsilon}x = \bar{\epsilon}\psi + \epsilon\bar{\psi},$$

$$\delta_{\epsilon}\psi = 2W\epsilon,$$

$$\delta_{\epsilon}\bar{\psi} = -2W\bar{\epsilon}.$$

(1.9)

The parameters ϵ and $\overline{\epsilon}$ are Grassmann-odd variables i.e they obey

$$\epsilon \bar{\epsilon} = -\bar{\epsilon}\epsilon, \ \epsilon^2 = \bar{\epsilon}^2 = 0,$$

$$\{\epsilon, \psi\} = \{\epsilon, \bar{\psi}\} = \{\bar{\epsilon}, \psi\} = \{\bar{\epsilon}, \bar{\psi}\} = 0.$$

(1.10)

The symmetry transformation mixes parity even (bosonic) and parity odd (fermionic) variables and is denoted by *supersymmetry transformation* in physics literature. The change in action S

$$\delta_{\epsilon}S = 2WW'\delta_{\epsilon}x - W''\delta_{\epsilon}x \cdot \psi\bar{\psi} - W'\delta_{\epsilon}\psi \cdot \bar{\psi} - W'\psi \cdot \delta_{\epsilon}\bar{\psi}$$

$$= 2WW'(\bar{\epsilon}\psi + \epsilon\bar{\psi}) - W'(2W\epsilon)\bar{\psi} - W'\psi(-2\bar{\epsilon}W) = 0.$$
 (1.11)

Under the change of variables the integration measure $dxd\psi d\bar{\psi}$ transforms by super-determinant

$$dx'd\psi'd\bar{\psi}' = \operatorname{sdet}(J) \cdot dxd\psi d\bar{\psi} \tag{1.12}$$

with J being Jacobian for the change of variables

$$\begin{aligned} x' &= x + \epsilon \bar{\psi} + \bar{\epsilon} \psi, \\ \psi' &= \psi + 2W\epsilon, \\ \bar{\psi}' &= \bar{\psi} - 2W\bar{\epsilon}. \end{aligned}$$
(1.13)

In matrix form the Jacobian

$$J = \begin{pmatrix} \frac{\partial x'}{\partial x} & \frac{\partial x'}{\partial \psi} & \frac{\partial x'}{\partial \bar{\psi}} \\ \frac{\partial \psi'}{\partial x} & \frac{\partial \psi'}{\partial \psi} & \frac{\partial \psi'}{\partial \bar{\psi}} \\ \frac{\partial \bar{\psi}'}{\partial x} & \frac{\partial \bar{\psi}'}{\partial \psi} & \frac{\partial \bar{\psi}'}{\partial \bar{\psi}} \end{pmatrix} = \begin{pmatrix} 1 & -\bar{\epsilon} & -\epsilon \\ 2W'\epsilon & 1 & 0 \\ -2W'\bar{\epsilon} & 0 & 1 \end{pmatrix},$$
(1.14)

while the superdeterminant

$$\operatorname{sdet}(J) = \operatorname{Ber}(J) = 1 + 4W'\bar{\epsilon}\epsilon = 1 + \mathcal{O}(\epsilon,\bar{\epsilon})$$
 (1.15)

The superdeterminant is identity when $\epsilon = 0$ or $\bar{\epsilon} = 0$, while being corrected by the second order terms in ϵ in general case.

1.2 Localization in simple model

The supersymmetry transformations act as linear shift of ψ

$$\psi \to \psi + 2\epsilon W(x),$$
 (1.16)

so in case W(x) is non-vanishing we can use the symmetry to set ψ to zero in the action. The Grassmann integration of ψ -independent action makes the partition function vanish. In particular we can perform a change of variables

$$y = x - \frac{\psi \bar{\psi}}{2W(x)},$$

$$\chi = \sqrt{W(x)}\psi,$$

$$\bar{\chi} = \bar{\psi},$$

(1.17)

to make the action in action χ -independent

$$S = W^{2}(y) = W^{2}(x) - W'(x)\psi\bar{\psi}.$$
(1.18)

The Jacobian matrix of coordinate transformation (1.17)

$$J = \begin{pmatrix} 1 + W' \frac{\psi\bar{\psi}}{2W^2} & -\frac{\bar{\psi}}{2W(x)} & \frac{\psi}{2W(x)} \\ \frac{1}{2}\frac{W'}{\sqrt{W}}\psi & \sqrt{W} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(1.19)

while its super-determinant

$$\operatorname{sdet}(J) = \frac{1}{\sqrt{W}} \left[1 + W' \frac{\psi \bar{\psi}}{2W^2} - \left(-\frac{\bar{\psi}}{2W} \right) \frac{1}{\sqrt{W}} \frac{1}{2} \frac{W'}{\sqrt{W}} \psi \right]$$
$$= \frac{1}{\sqrt{W}} \left[1 + W' \frac{\psi \bar{\psi}}{4W^2} \right] = \frac{1}{\sqrt{W} \left[1 - W' \frac{\psi \bar{\psi}}{2W^2} \right]}$$
$$= \frac{1}{\sqrt{W(x) - W'(x)} \frac{\psi \bar{\psi}}{2W(x)}} = \frac{1}{\sqrt{W} \left(x - \frac{\psi \bar{\psi}}{2W(x)} \right)}$$
$$= \frac{1}{\sqrt{W(y)}}.$$
$$(1.20)$$

The integration measures are related via

$$dyd\chi d\bar{\chi} = \operatorname{sdet}(J) \, dxd\psi d\bar{\psi}, \ dxd\psi d\bar{\psi} = \sqrt{W(y)} \, dyd\chi d\bar{\chi},$$
 (1.21)

while the integral

$$Z_W = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}^{1|2}} dx d\psi d\bar{\psi} \ e^{-W^2 + W'\psi\bar{\psi}} = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}^{1|2}} dy d\chi d\bar{\chi} \ \sqrt{W(y)} \ e^{-W^2(y)} = 0$$
(1.22)

vanishes because of the Grassmann integral over χ of the χ -independent expression.

In case of W(x), which has zeroes we can split the integration over x into two regions: the one that does not contain zeros of W and the small regions around zeroes. The integral over

former region vanishes while the integral over latter can be written using Taylor exapansion

$$Z_{W} = \sum_{x_{0}:W(x_{0})=0} \frac{1}{\sqrt{\pi}} \int dx d\psi d\bar{\psi} \ e^{-[W'(x_{0})]^{2}(x-x_{0})^{2}+W'(x_{0})\psi\bar{\psi}+\dots}$$

$$= \sum_{x_{0}:W(x_{0})=0} \frac{1}{\sqrt{\pi}} \sqrt{\frac{\pi}{[W'(x_{0})]^{2}}} \cdot W'(x_{0}) = \sum_{x_{0}:W(x_{0})=0} \frac{W'(x_{0})}{|W'(x_{0})|}$$

$$= \sum_{x_{0}:W(x_{0})=0} \operatorname{sign}(W'(x_{0})).$$
(1.23)

1.3 Intersection theory

The answer to the integral Z_W is an integer number, so it very reasonable to assume that it counts something (with a sign). As we will see later in this section Z_W counts the number of intersection points between graph of W(x) and x-axis with multiplicities defined from relative orientation. In order to prove this statement we need to introduce some notations from intersection theory.

Definition: Let C_1 and C_2 being two sub-manifolds inside *n*-dimensional smooth manifold M. Let us assume that dim C_1 + dim C_2 = dim M and transversality of intersection i.e.

$$TC_1 + TC_2 = TM \tag{1.24}$$

We can define the *intersection number* between C_1 and C_2 denoted as $C_1 \cdot C_2$ via

$$C_1 \cdot C_2 = \sum_{p \in C_1 \cap C_2} \epsilon(p) \tag{1.25}$$

with $\epsilon(p)$ being the orientation of the point p, induced by the relative orientation of C_1, C_2 to M.

Example: Let $W : \mathbb{R} \to \mathbb{R}$ be a (polynomial) function. We can consider graph Γ_W for W defined as

$$\Gamma_W : \mathbb{R} \to \mathbb{R}^2 : x \mapsto (x, W(x)) \tag{1.26}$$

The dimensions

$$\dim(\Gamma_W) + \dim(\Gamma_0) = 2 = \dim(\mathbb{R})$$
(1.27)

The intersection of graph Γ_W and x-axis Γ_0 is transverse while the orientation ϵ_{x_0} of the individual intersection points is

$$\epsilon(x_0) = \operatorname{sign}(W'(x_0)). \tag{1.28}$$

The intersection number

$$\Gamma_W \cdot \Gamma_0 = \sum_{x_0 \in \Gamma_W \cap \Gamma_0} \operatorname{sign}(W'(x_0)) \in \mathbb{Z}$$
(1.29)

matches with the localization formula from previous section.

We can express intersection number as an integral using the Poincare duality. For closed *p*-dimensional submanifold C inside a compact *n*-dimensional manifold M we can integrate the $\omega \in H^k(M)$ over it, what gives us a linear map

$$H^k(M) \to \mathbb{R} : \omega \mapsto \int_C \omega$$
 (1.30)

while the Poincare duality tells us that we can represent this map as

$$\int_{C} \omega = \int_{M} \eta_{C} \wedge \omega, \ \eta_{C} \in H^{n-k}(M)$$
(1.31)

We denote η_C as the *Poincare dual class* to the submanifold C. The intersection number in terms of Poincare-dual forms is

$$C_1 \cdot C_2 = \int_M \eta_{C_1} \wedge \eta_{C_2} \tag{1.32}$$

Example: The Poincare dual form for the graph $\Gamma_W \subset \mathbb{R}^2_{xy}$ is

$$\eta_{\Gamma_W} = \delta(y - W(x))(dy - W'(x)dx) \in \Omega^1(\mathbb{R}^2_{xy})$$
(1.33)

Indeed let us consider an arbitrary 1-form on \mathbb{R}^2

$$\omega = \omega_x(x, y)dx + \omega_y(x, y)dy. \tag{1.34}$$

The integral of ω over graph $\Gamma_W:\mathbb{R}\to\mathbb{R}^2:t\mapsto(t,W(t))$ is

$$\int_{\Gamma_W} \omega = \int_{\mathbb{R}} \Gamma_W^* \omega = \int_{-\infty}^{+\infty} dt [\omega_x(t, W(t)) + \omega_y(t, W(t))W'(t)]$$
(1.35)

while the \mathbb{R}^2 integral is

$$\int_{\mathbb{R}^2} \omega \wedge \eta_{\Gamma_W} = \int_{\mathbb{R}^2} [\omega_x(x, y)dx + \omega_y(x, y)dy] \wedge \delta(y - W(x))[dy - W'(x)dx]$$
$$= \int_{\mathbb{R}^2} \delta(y - W(x))[\omega_x(x, y)dx \wedge dy + W'(x)\omega_y(x, y)dx \wedge dy]$$
$$= \int_{\mathbb{R}^2} dx \ [\omega_x(x, W(x)) + W'(x)\omega_y(x, W(x))].$$
(1.36)

Let us describe some useful properties of Poincare dual forms.

• Linearity

$$\eta(\alpha C_1 + \beta C_2) = \alpha \eta_{C_1} + \beta \eta_{C_2} \tag{1.37}$$

follows from

$$\int_{\alpha C_1 + \beta C_2} \omega = \alpha \int_{C_1} \omega + \beta \int_{C_2} \omega = \alpha \int_M \omega \wedge \eta_{C_1} + \beta \int_M \omega \wedge \eta_{C_2}$$

=
$$\int_M \omega \wedge (\alpha \eta_{C_1} + \beta \eta_{C_2})$$
 (1.38)

• Boundary

$$\eta_{\partial S} = d\eta_S \tag{1.39}$$

follows from

$$\int_{M} \omega \wedge \eta_{\partial S} = \int_{\partial S} \omega = \int_{S} d\omega = \int_{M} d\omega \wedge \eta_{S} = \pm \int_{M} \omega \wedge d\eta_{S}$$
(1.40)

• Intersection

$$\eta_{C_1 \cap C_2} = \eta_{C_1} \wedge \eta_{C_2} \tag{1.41}$$

Proposition: The intersection number is the topological invariant, i.e that it is invariant under the continuous deformations.

Proof: We can express continuous deformation of C_1 in the form

$$C_1 \to C_1' = C_1 + \partial S \tag{1.42}$$

The corresponding intersection number in integral form

$$C'_{1} \cdot C_{2} = \int_{M} \eta_{C'_{1}} \wedge \eta_{C_{2}} = \int_{M} (\eta_{C_{1}} + \eta_{\partial S}) \wedge \eta_{C_{2}}$$

= $C_{1} \cdot C_{2} \pm \int_{M} d\eta_{S} \wedge \eta_{C_{2}} = C_{1} \cdot C_{2} \pm \int_{M} d(\eta_{S} \wedge \eta_{C_{2}})$ (1.43)
= $C_{1} \cdot C_{2}$

Example: The intersection number between graph of Γ and x-axis in integral represenation

$$\Gamma_{W} \cdot \Gamma_{0} = \int_{\mathbb{R}^{2}} \delta(y - W(x))(dy - W'(x)dx) \wedge \delta(y)dy$$

$$= -\int_{\mathbb{R}^{2}} W'(x)\delta(y)\delta(y - W(x))dx \wedge dy = -\int_{\mathbb{R}} W'(x)\delta(-W(x))dx$$

$$= \int_{\mathbb{R}} W'(x)\delta(W(x))dx = \Theta(W(x))\Big|_{-\infty}^{+\infty} = \Theta(W(+\infty)) - \Theta(W(-\infty))$$

(1.44)

matches with the result of Gaussian integral. We can use one of the properties of δ -function

$$\delta(W(x)) = \sum_{x_0:W(x_0)=0} \frac{\delta(x-x_0)}{|W'(x_0)|}$$
(1.45)

to rewrite the intersection number

$$\Gamma_W \cdot \Gamma_0 = \int_{\mathbb{R}} \sum_{x_0: W(x_0)=0} \frac{W'(x_0)}{|W'(x_0)|} \delta(x - x_0) = \sum_{x_0: W(x_0)=0} \frac{W'(x_0)}{|W'(x_0)|}$$
(1.46)

so it matches with the localization formula.

1.4 Saddle point approximation

The *saddle-point approximation* also know as the *method of steepest descent* is the approximate method to evaluate partition type of integrals

$$Z = \int_{I_x} dx \ f(x) \ e^{-\frac{1}{\hbar}S(x)}$$
(1.47)

Under the assumptions

- f(z) and S(z) being holomorphic functions on open, bounded, simply-connected set $\Omega_x \subset \mathbb{C}^n$, such that $I_x = \Omega_x \cap \mathbb{R}^n$ is connected
- S(z) has finitely-many isolated critical points, i.e the only solutions to

$$\partial_i S(x_0) = 0, \quad x_0 \in I_x \tag{1.48}$$

are points x_0 and there are finitely-many of them.

• The critical points of S are non-degenerate i.e

$$\det \partial_i \partial_j S(x_0) \neq 0, \quad \forall x_0 \tag{1.49}$$

We can approximate the integral

$$Z = (2\pi\hbar)^{\frac{n}{2}} \sum_{x_0:\partial_i S(x_0)=0} \frac{1}{\sqrt{\det \partial_i \partial_j S(x_0)}} e^{-\frac{1}{\hbar}S(x_0)} (f(x_0) + \mathcal{O}(\hbar))$$
(1.50)

Remark: The higher order terms can be organized into the sum over graphs.

Example: Let us rescale W by σ so we can apply the saddle point approximation

$$Z = \frac{1}{\sqrt{\pi\sigma^2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{\sigma^2}W^2} W' dx$$
(1.51)

An extrema of the exponent are at points x_0 such that

$$S' = \partial_x(W^2) = 2W(x_0)W'(x_0) = 0$$
(1.52)

The second derivative

$$S'' = 2W'(x_0)W'(x_0) + 2W(x_0)W''(x_0)$$
(1.53)

Due to the W' factor in front the contribution from $\{x_0|W'(x_0)=0\}$ is trivial so saddle point formula

$$Z = \frac{1}{\sqrt{\pi\sigma^2}} (2\pi\sigma^2)^{\frac{1}{2}} \sum_{x_0: W(x_0)=0} \frac{1}{\sqrt{2W'(x_0)W'(x_0)}} e^{-\frac{1}{\sigma^2}W^2(x_0)} \left(W'(x_0) + \mathcal{O}(\sigma)\right)$$
(1.54)

which after simplifications takes the form

$$Z = \sum_{x_0: W(x_0)=0} \operatorname{sign}(W'(x_0)) (1 + \mathcal{O}(\sigma))$$
(1.55)

Let us observe that the leading two orders of saddle point approximation match with the localization formula, so we expect the subleading terms $\mathcal{O}(\sigma)$ to vanish. The cancellation of the higher order terms on the language of Feynmann diagrams is due to the -1 factors for fermionic loops.

1.5 Subleading terms^{*}

$$Z = \frac{1}{\sqrt{\pi\sigma^2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{\sigma^2}W^2} W' dX = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} dX d\psi d\bar{\psi} e^{-\frac{1}{\sigma^2}W^2 + \frac{1}{\sigma}W'\psi\bar{\psi}}$$
(1.56)

Let us further assume that he potential is of the form

$$W = X + X^2 \tag{1.57}$$

so the saddle point approximation for the integral is the sum of two contributions

$$Z = Z^{(0)} + Z^{(-1)}, \quad Z^{(X_0)} = \operatorname{sign}(W'(X_0)) \left(1 + \mathcal{O}(\sigma)\right)$$
(1.58)

Let us focus on the first contribution. Near the $X_0 = 0$ saddle point we can represent

$$X = X_0 + \xi \tag{1.59}$$

so the action becomes

$$S = W^{2}(X) - \sigma W'(X)\psi\bar{\psi} = \xi^{2} + 2\xi^{3} + \xi^{4} - \sigma(1+2\xi)\psi\bar{\psi}$$
(1.60)

Let us do the change of variables

$$\xi = \sigma x \tag{1.61}$$

so the integral

$$Z^{(0)} = \frac{1}{\sqrt{\pi}} \int_{-\epsilon}^{\epsilon} d\xi d\psi d\bar{\psi} \ e^{-\frac{1}{\sigma^2} S(\xi,\psi,\bar{\psi})} = \frac{1}{\sqrt{\pi}} \int_{-\frac{\epsilon}{\sigma}}^{\frac{\epsilon}{\sigma}} \sigma dx d\psi d\bar{\psi} \ e^{-\frac{1}{\sigma^2} S(\sigma x,\psi,\bar{\psi})}$$
(1.62)

In the limit $\sigma \ll 1$ we can replace the integration region $\left[-\frac{\epsilon}{\sigma}, \frac{\epsilon}{\sigma}\right]$ by the whole real line \mathbb{R} so

that

$$Z^{(0)} = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}^{1|2}} dx d\psi d\bar{\psi} \ e^{-(x^2 + 2\sigma x^3 + \sigma^2 x^4 - (1 + 2x\sigma)\psi\bar{\psi})} = \langle e^{-2\sigma x^3 - \sigma^2 x^4 + 2x\sigma\psi\bar{\psi}} \rangle \tag{1.63}$$

where we introduced notation

$$\langle F(x,\psi,\bar{\psi})\rangle = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}^{1|2}} dx d\psi d\bar{\psi} \ e^{-x^2 + \psi\bar{\psi}} F(x,\psi,\bar{\psi})$$
(1.64)

with normalization chosen so that

$$1 = \langle 1 \rangle = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}^{1|2}} dx d\psi d\bar{\psi} \ e^{-x^2 + \psi\bar{\psi}}$$
(1.65)

Let us expand the exponent

$$Z^{(0)} = \langle e^{-2\sigma x^3 - \sigma^2 x^4 + 2x\sigma\psi\bar{\psi}} \rangle$$

$$= \langle 1 - 2\sigma x^3 - \sigma^2 x^4 + 2x\sigma\psi\bar{\psi} + \frac{1}{2}(-2\sigma x^3 - \sigma^2 x^4 + 2x\sigma\psi\bar{\psi})^2 + ... \rangle$$

$$= \langle 1 - 2\sigma x^3 + 2x\sigma\psi\bar{\psi} - \sigma^2 x^4 + 2\sigma^2 x^6 - 4\sigma^2 x^4\psi\bar{\psi} \rangle + \mathcal{O}(\sigma^3)$$

$$= 1 - 2\sigma\langle x^3 \rangle + 2\sigma\langle x\psi\bar{\psi} \rangle - \sigma^2\langle x^4 \rangle + 2\sigma^2\langle x^6 \rangle - 4\sigma^2\langle x^4\psi\bar{\psi} \rangle + \mathcal{O}(\sigma^3)$$
(1.66)

The Gaussian integrals are even so

$$\langle x^{2n+1} \rangle = \langle x^{2n+1} \psi \bar{\psi} \rangle = 0 \tag{1.67}$$

while the even powers can be evaluated using

$$\langle x^{2k} (\psi \bar{\psi})^m \rangle = \left(\frac{\partial}{\partial b} \right)^m \left(-\frac{\partial}{\partial a} \right)^k \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}^{1/2}} dx d\psi d\bar{\psi} \left| e^{-ax^2 + b\psi \bar{\psi}} \right|_{a=b=1}$$

$$= \left(\frac{\partial}{\partial b} \right)^m \left(-\frac{\partial}{\partial a} \right)^k \frac{b}{\sqrt{a}} \Big|_{a=b=1}$$

$$(1.68)$$

The leading order correction becomes

$$Z^{(0)} = 1 - \sigma^2 \langle x^4 \rangle + 2\sigma^2 \langle x^6 \rangle - 4\sigma^2 \langle x^4 \psi \bar{\psi} \rangle + \mathcal{O}(\sigma^3)$$

= $1 - \sigma^2 \frac{3}{4} + 2\sigma^2 \frac{15}{8} - 4\sigma^2 \frac{3}{4} + \mathcal{O}(\sigma^3)$
= $1 + \mathcal{O}(\sigma^3).$ (1.69)

1.6 Deformation of distribution

We can use the integral representation for δ -function

$$\delta(x) = \frac{1}{2\pi} \int dp \ e^{ipx} \tag{1.70}$$

to rewrite

$$\Gamma_W \cdot \Gamma_0 = \int_{\mathbb{R}} W'(x) \delta(W(x)) dx = \frac{1}{2\pi} \int dx dp d\psi d\bar{\psi} \ e^{ipW(x) + \psi\bar{\psi}W'(x)}.$$
(1.71)

The action is invariant under the supersymmetry transformations

$$\delta_{\epsilon}x = \bar{\epsilon}\psi + \epsilon\bar{\psi},$$

$$\delta_{\epsilon}\psi = -ip\epsilon,$$

$$\delta_{\epsilon}\bar{\psi} = ip\bar{\epsilon}$$

$$\delta_{\epsilon}p = 0.$$

(1.72)

It is useful to introduce generators of supersymmetries in the form of vector fields Q and \bar{Q} such that

$$\delta_{\epsilon}F(x,\psi,\bar{\psi},p) = \epsilon Q(F) + \bar{\epsilon}\bar{Q}(F)$$
(1.73)

for arbitrary function F. The generators take the form

$$Q = \bar{\psi}\frac{\partial}{\partial x} - ip\frac{\partial}{\partial \psi}, \quad \bar{Q} = \psi\frac{\partial}{\partial x} + ip\frac{\partial}{\partial \bar{\psi}}$$
(1.74)

We can represent the smeared version of δ -function in the integral form

$$\delta(x) = \frac{1}{\sqrt{\pi}} \lim_{\sigma \to 0} \frac{1}{\sigma} e^{-\frac{W(x)^2}{\sigma^2}} = \frac{1}{2\pi} \lim_{\sigma \to 0} \int dp \ e^{ipW(x) - \frac{1}{4}\sigma^2 p^2}$$
(1.75)

The two integral representations differ by Q-exact term

$$-\frac{1}{4}\sigma^2 p^2 = Q\left(-\frac{i}{4}\sigma^2\psi p\right) \tag{1.76}$$

Different values of σ describe three different situations

• Gaussian integral, being toy model of quantum system

$$Z_W^{\sigma=1} = Z_W = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-W^2} W' dx = \Theta(W(+\infty)) - \Theta(W(-\infty))$$
(1.77)

• Geometric description

$$Z_W^{\sigma=0} = \Gamma_W \cdot \Gamma_0 = \int_{\mathbb{R}} W'(x) \delta(W(x)) dx = \sum_{x_0: W(x_0)=0} \operatorname{sign}(W'(x_0))$$
(1.78)

• Classical limit, saddle point approximation to integral

$$Z_W^{\sigma \ll 1} = \frac{1}{\sqrt{\pi\sigma^2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{\sigma^2}W^2} W' dx = \sum_{x_0: W(x_0)=0} \operatorname{sign}(W'(x_0)) \left(1 + \mathcal{O}(\sigma)\right)$$
(1.79)

1.7 Deformation of potential

The partition function SUSY is invariant under continuous deformations. Let us consider f(x) with finite support on \mathbb{R} . The geometric interpretation is that such f describes the homological deformation of the graph Γ_W i.e.

$$\Gamma_W \to \Gamma_{\tilde{W}} = \Gamma_W + \partial \Sigma_f \tag{1.80}$$

with Σ_f being surface

$$\Sigma_f = \{ (x, y) \in \mathbb{R}^2 | W(x) \le y \le W(x) + f(x) \}$$
(1.81)

The partition function for deformed potential

$$Z_{\tilde{W}} = \frac{1}{2\pi} \int dx dp d\psi d\bar{\psi} \ e^{ip\tilde{W}(x) + \psi\bar{\psi}\tilde{W}'(x)}$$
(1.82)

We can observe that the deformed action can be expressed via

$$\tilde{S} = ip\tilde{W}(x) + \psi\bar{\psi}\tilde{W}'(x) = ipW(x) + \psi\bar{\psi}W'(x) - \bar{\psi}\psi f'(x) + ipf(x)$$

= $S + Q(-f\psi)$ (1.83)

while the difference between partition functions

$$Z_{\tilde{W}} - Z_W = \frac{1}{2\pi} \int dx dp d\psi d\bar{\psi} \quad \left(e^{S+Q(-f\psi)} - e^S\right) = \frac{1}{2\pi} \int dx dp d\psi d\bar{\psi} \quad e^S \left(e^{Q(-f\psi)} - 1\right)$$

$$= \frac{1}{2\pi} \int dx dp d\psi d\bar{\psi} \quad e^S \left(-Q(f\psi) + \frac{1}{2}[Q(f\psi)]^2 + ...\right)$$

$$= \frac{1}{2\pi} \int dx dp d\psi d\bar{\psi} \quad e^S Q \left(-f\psi + \frac{1}{2}f\psi \quad Q(f\psi) + ...\right)$$

$$= -\frac{1}{2\pi} \int dx dp d\psi d\bar{\psi} \quad Q \left[f\psi e^S \left(1 - \frac{1}{2}Q(f\psi) + ...\right)\right]$$

$$= -\frac{1}{2\pi} \int_{\mathbb{R}^{2|2}} dx dp d\psi d\bar{\psi} \left(\bar{\psi}\frac{\partial}{\partial x} - ip\frac{\partial}{\partial \psi}\right) \left[f\psi e^S \left(1 - \frac{1}{2}Q(f\psi) + ...\right)\right]$$

$$= -\frac{1}{2\pi} \int_{\mathbb{R}^{2|2}} dx dp d\psi d\bar{\psi} \quad \bar{\psi}\frac{\partial}{\partial x} \left[f\psi e^S \left(1 - \frac{1}{2}Q(f\psi) + ...\right)\right] = 0$$
(1.84)

The last integral is purely boundary term in x-direction. Earlier, we assumed that f(x) has compact support so the boundary contribution vanishes.

1.8 Localization via deformation

Let us formulate general localization construction for supersymmetric theories. We want to evaluate the supersymmetric partition function

$$Z = \int_{M} d\mu \ e^{-S(x,\psi)}.$$
 (1.85)

Supersymmetric partition function imply

• Existence of Grassmann-odd symmetry, generated by vector field Q so that

$$\delta_{\epsilon}F(x,\psi) = \epsilon Q(F), \quad \forall F \in C^{\infty}(M)$$
(1.86)

• The symmetry is nilpotent i.e.

$$Q^2 = \frac{1}{2} \{Q, Q\}$$
(1.87)

• The action $S(x, \psi)$ is invariant under the symmetry

$$\delta_e S = \epsilon Q(S) = 0 \tag{1.88}$$

• The integration measure $d\mu$ is such that the integral of Q-exact terms is trivial

$$\int_{M} d\mu \ Q(V) = 0. \tag{1.89}$$

Let us define the deformed partition function

$$Z(t) = \int_{M} d\mu \ e^{-S(x,\psi) - tQ(V)}$$
(1.90)

for some Grassmann-odd function V.

Proposition: The deformed partition Z(t) is independent on t.

Proof: Let us consider *t*-derivative

$$\partial_t Z(t) = \partial_t \int d\mu \ e^{-S(x,\psi) - tQ(V)} = -\int d\mu \ Q(V) e^{-S(x,\psi) - tQ(V)}$$

= $-\int d\mu \ Q(V e^{-S(x,\psi) - tQ(V)}) = 0$ (1.91)

Corollary: The deformed partition function for t = 0 matches with the partition function Z. We can take $t \to \infty$ limit so the integral is dominated by the critical points of tQ(V)

$$Z = Z(0) = Z(t) = \lim_{t \to \infty} Z(t)$$
 (1.92)

1.9 Supersymmetry algebra

In our discussion of supersymmetric examples let us point out an important feature about the supersymmetry transformations. The action

$$S(p, x, \psi, \bar{\psi}) = ipW(x) + \psi\bar{\psi}W'(x)$$
(1.93)

is invariant under the supersymmetry generated by

$$Q = \bar{\psi}\frac{\partial}{\partial x} - ip\frac{\partial}{\partial \psi}, \quad \bar{Q} = \psi\frac{\partial}{\partial x} + ip\frac{\partial}{\partial \bar{\psi}}$$
(1.94)

with algebra

$$\{Q, \bar{Q}\} = \{Q, Q\} = \{\bar{Q}, \bar{Q}\} = 0.$$
(1.95)

The algebra above in physics terminology is denoted as off-shell d = 0 N = 2 SUSY algebra. Let us explain the terminology

- d = 0 refers to the dimension of world-sheet Σ , which is zero dimensional in our case. In quantum field theory we often study maps $\Sigma \to M$ and supersymmetry acts on the space of maps. The simplest case is when world-sheet is the single point $\Sigma = pt$ then the space of maps $Map(\Sigma, M) = M$ is the same as the target manifold M.
- N = 2 refers to the number of supersymmetry generators, equivalently to the dimension of supersymmetry algebra. In our case we have two generators Q and \bar{Q} , equivalently we have 2-dimensional algebra of supersymmetries $\mathbb{R}^{0|2}$.
- off-shell refers to the fact that the supersymmetry algebra is independent of the action S. The other possibility on-shell supersymmetry algebra we will consider below.

We can deform action by the Q-exact term and perform Gaussian integral over p

$$e^{-S_e(x,\psi,\bar{\psi})} = \int dp \ e^{S+Q\left(-\frac{i}{4}\psi p\right)}$$
(1.96)

to obtain another, referred as *effective* in physics literature, action

$$S_e(x,\psi,\bar{\psi}) = W^2(x) - W'(x)\psi\bar{\psi}$$
 (1.97)

The action S_e is invariant under the supersymmetry transformations

$$Q_e = \bar{\psi}\frac{\partial}{\partial x} + 2W(x)\frac{\partial}{\partial \psi}, \quad \bar{Q}_e = \psi\frac{\partial}{\partial x} - 2W(x)\frac{\partial}{\partial \bar{\psi}}$$
(1.98)

which obey algebra

$$\{Q_e, Q_e\} = 4W'(x)\bar{\psi}\frac{\partial}{\partial\psi},$$

$$\{\bar{Q}_e, \bar{Q}_e\} = -4W'(x)\psi\frac{\partial}{\partial\bar{\psi}},$$

$$\{\bar{Q}_e, Q_e\} = 2W'(x)\left(\psi\frac{\partial}{\partial\psi} - \bar{\psi}\frac{\partial}{\partial\bar{\psi}}\right)$$
(1.99)

The supersymmetry algebra above in the physics notations is on-shell d = 0 N = 2 supersymmetry algebra. The term on-shell indicates that the nontrivial commutators of supercharges

are proportional to the equations of motions for effective action S_e

$$\frac{\partial S_e}{\partial \psi} = -W'(x)\bar{\psi}, \quad \frac{\partial S_e}{\partial \bar{\psi}} = W'(x)\psi \tag{1.100}$$

Therefore, as long as equations of motions are satisfied, the on-shell supersymmetry algebra is the same as the off-shell one. In previous section we observed that the saddle point approximation for partition function is a sum over critical points of S, which are identical to the solutions to the equations of motion. So we can use the localization methods for on-shell supersymmetry in the vicinity of critical point to show that the higher order terms in \hbar vanish and the partition function is 1-loop exact.

In our simple example we can turn on-shell d = 0 N = 2 supersymmetry into the off-shell one by adding additional variable p. Unfortunately such method is not always possible, especially in higher dimensions. Fortunately there is a way to construct manifestly off-shell supersymmetric actions, known as the *Superspace formalism*.

1.10 Superspace formalism

Let us consider 2d Grassmann space $\mathbb{R}^{0|2}$ with coordinates θ and $\overline{\theta}$. Let us consider maps

$$\mathbb{R}^{0|2} \to \mathbb{R} : (\theta, \bar{\theta}) \mapsto x(\theta, \bar{\theta})$$
(1.101)

Each map is identical to the function $\hat{x}(\theta, \bar{\theta})$, which is finite polynomial so

$$Map(\mathbb{R}^{0|2}, \mathbb{R}) = \mathbb{R}^{2|2} \tag{1.102}$$

Let us the notation x, F for even coordinates and $\psi, \overline{\psi}$ for odd coordinates on $\mathbb{R}^{2|2}$, then we can write the function

$$\hat{x}(\theta,\bar{\theta}) = x + \theta\bar{\psi} + \bar{\theta}\psi + F\theta\bar{\theta}$$
(1.103)

The function $\hat{x}(\theta, \bar{\theta})$ in physics literature is known as the *superfield* $x(\theta, \bar{\theta})$. In our discussion of differential forms we observed that the diffeomorphisms on M act on the functions $C^{\infty}(M)$ in the form of pullback map.

$$\phi^*: C^{\infty}(M) \to C^{\infty}(M): f \mapsto \phi^*(f) = f \circ \phi, \ \forall \phi \in Diff(M)$$
(1.104)

Among diffeomorphisms of $\mathbb{R}^{0|2}$ we have translations

$$\theta \to \theta + \epsilon, \quad \bar{\theta} \to \bar{\theta} + \bar{\epsilon}$$
 (1.105)

generated by the vector fields

$$\mathfrak{Q} = \frac{\partial}{\partial \theta}, \quad \bar{\mathfrak{Q}} = \frac{\partial}{\partial \bar{\theta}}.$$
(1.106)

i.e the infinitesimal translation

$$\delta_{\epsilon} F(\theta, \bar{\theta}) = (\epsilon \mathfrak{Q} + \bar{\epsilon} \bar{\mathfrak{Q}}) F(\theta, \bar{\theta})$$
(1.107)

The group of translations on $\mathbb{R}^{0|2}$ is abelian so corresponding the algebra has trivial brackets

$$\{\mathfrak{Q}, \bar{\mathfrak{Q}}\} = \{\mathfrak{Q}, \mathfrak{Q}\} = \{\bar{\mathfrak{Q}}, \bar{\mathfrak{Q}}\} = 0.$$
(1.108)

which we can recognize as the off-shell d = 0 N = 2 supersymmetry algebra. The (pullback) action of the SUSY algebra on the space of maps

$$\delta_{\epsilon}\hat{x}(\theta,\bar{\theta}) = \hat{x}(\theta+\epsilon,\bar{\theta}+\bar{\epsilon}) - \hat{x}(\theta,\bar{\theta})$$

= $(\epsilon \mathfrak{Q} + \bar{\epsilon}\bar{\mathfrak{Q}})\hat{x}(\theta,\bar{\theta}) = \epsilon\bar{\psi} + \bar{\epsilon}\psi + \theta\bar{\epsilon}F - \bar{\theta}\epsilon F$ (1.109)
= $(\epsilon Q + \bar{\epsilon}Q)\hat{x}(\theta,\bar{\theta}) = \delta_{\epsilon}x + \theta\delta_{\epsilon}\bar{\psi} + \bar{\theta}\delta_{\epsilon}\psi + \theta\bar{\theta}\delta_{\epsilon}F$

The action in components

$$\delta_{\epsilon}x = (\epsilon Q + \bar{\epsilon}Q)x = \epsilon \bar{\psi} + \bar{\epsilon}\psi$$

$$\delta_{\epsilon}\psi = (\epsilon Q + \bar{\epsilon}Q)\psi = -\epsilon F$$

$$\delta_{\epsilon}\bar{\psi} = (\epsilon Q + \bar{\epsilon}Q)\bar{\psi} = \bar{\epsilon}F$$

$$\delta_{\epsilon}F = (\epsilon Q + \bar{\epsilon}Q)F = 0$$

(1.110)

is the familiar d = 0 N = 2 SUSY algebra action on $\mathbb{R}^{2|2}$. There are additional types of superfields in our model

$$\hat{\psi}(\theta,\bar{\theta}) = D\hat{x} = \partial_{\theta}\hat{x} = \psi + \bar{\theta}F \tag{1.111}$$

$$\hat{\bar{\psi}}(\theta,\bar{\theta}) = \bar{D}\hat{x} = \partial_{\bar{\theta}}\hat{x} = \bar{\psi} - \theta F \tag{1.112}$$

which often reffed as *derivative superfields* or *fermionic fuperfields*. The term "fermionic" is due to the θ -independents component of superfields being Grassmann-odd, in contrast with superfield $\hat{x}(\theta, \bar{\theta})$ with constant component being Grassmann-even. The superfields $\hat{\psi}$ and $\hat{\psi}$ also form a representations of d = 0 N = 2 SUSY algebra

$$(\epsilon Q + \bar{\epsilon}Q)\hat{\psi}(\theta,\bar{\theta}) = D(\epsilon Q + \bar{\epsilon}Q)\hat{x} = D(\epsilon \mathfrak{Q} + \bar{\epsilon}\bar{\mathfrak{Q}})\hat{x}(\theta,\bar{\theta})$$

$$= (\epsilon \mathfrak{Q} + \bar{\epsilon}\bar{\mathfrak{Q}})D\hat{x}(\theta,\bar{\theta}) = (\epsilon \mathfrak{Q} + \bar{\epsilon}\bar{\mathfrak{Q}})\hat{\psi}(\theta,\bar{\theta})$$
(1.113)

We can construct SUSY invariant functions on $\mathbb{R}^{2|2}$ using integrals over $\mathbb{R}^{0|2}$ of the arbitrary functions of superfields

$$S(x, F, \psi, \bar{\psi}) = \int d\theta d\bar{\theta} \ \mathcal{F}(\hat{x}(\theta, \bar{\theta}), \hat{\psi}(\theta, \bar{\theta}), \hat{\bar{\psi}}(\theta, \bar{\theta}))$$
(1.114)

The SUSY variation

$$\begin{split} \delta_{\epsilon}S &= (\epsilon Q + \bar{\epsilon}\bar{Q})S = (\epsilon Q + \bar{\epsilon}\bar{Q})\int d\theta d\bar{\theta} \ \mathcal{F}(\hat{x}(\theta,\bar{\theta}),\hat{\psi}(\theta,\bar{\theta}),\hat{\bar{\psi}}(\theta,\bar{\theta})) \\ &= \int d\theta d\bar{\theta} \ (\epsilon Q + \bar{\epsilon}\bar{Q})\mathcal{F}(\hat{x}(\theta,\bar{\theta}),\partial_{\theta}\hat{x},\partial_{\bar{\theta}}\hat{x}) \\ &= \int d\theta d\bar{\theta} \ (\epsilon \mathfrak{Q} + \bar{\epsilon}\bar{\mathfrak{Q}})\mathcal{F}(\hat{x}(\theta,\bar{\theta}),\partial_{\theta}\hat{x},\partial_{\bar{\theta}}\hat{x}) \\ &= \int d\theta d\bar{\theta} \ (\epsilon \partial_{\theta} + \bar{\epsilon}\partial_{\bar{\theta}})\mathcal{F}(\hat{x}(\theta,\bar{\theta}),\partial_{\theta}\hat{x},\partial_{\bar{\theta}}\hat{x}) = 0 \end{split}$$
(1.115)

Example: The superspace integral

$$S = \int d\theta d\bar{\theta} \left[H(\hat{x}(\theta,\bar{\theta})) + \frac{1}{4}\sigma^2 D\hat{x}\bar{D}\hat{x} \right]$$

= $FH'(x) + \psi\bar{\psi}H''(x) + \frac{1}{4}\sigma^2 F^2$ (1.116)

after redefinition

$$H'(x) = W(x), \quad F = ip$$
 (1.117)

matches with the action for supersymmetric theory we discussed before.