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1 d = 0 Supersymmetry

Let us consider an integral

ZW =
1√
π

∫ +∞

−∞
e−W

2

W ′dx (1.1)

for W (x) being polynomial of degree n i.e.

W (x) = xn + an−1x
n−1 + ...+ a0. (1.2)

In physics literature integrals similar to (1.1) appear in many different models. The ZW is

often referred as the partition function while the argument of exponent - as action of theory.

We can perform a change of variables

y = W (x), dy = W ′(x)dx (1.3)

to turn the integral (1.1) into the Gaussian inegral

ZW =
1√
π

∫ W (+∞)

W (−∞)

dy e−y
2

. (1.4)
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The integration result depends on the limits of integration, which are determined by degree

of polynomial n and the sign of the top coefficient an

ZW =


0 n mod 2 = 0, W (±∞) = +∞,
1 n mod 2 = 1, an > 0 W (±∞) = ±∞,
−1 n mod 2 = 1, an < 0 W (±∞) = ∓∞.

(1.5)

1.1 Grassmann-odd symmetry

Let us use the pair of Grassmann-odd variables ψ and ψ̄ to lift the W ′ into the action

W ′(x) =

∫
R0|2

dψdψ̄ eW
′ψψ̄, (1.6)

while the partition function becomes

ZW =
1√
π

∫
R1|2

dxdψdψ̄ e−W
2+W ′ψψ̄ =

1√
π

∫
R1|2

dxdψdψ̄ e−S(x,ψ,ψ̄). (1.7)

The new action

S(x, ψ, ψ̄) = W 2 −W ′ψψ̄ (1.8)

depends on both even and odd variables and usually denoted as supersymmetric action in

physics literature. The supersymmetric action is invariant under transformations

δεx = ε̄ψ + εψ̄,

δεψ = 2Wε,

δεψ̄ = −2Wε̄.

(1.9)

The parameters ε and ε̄ are Grassmann-odd variables i.e they obey

εε̄ = −ε̄ε, ε2 = ε̄2 = 0,

{ε, ψ} = {ε, ψ̄} ={ε̄, ψ} = {ε̄, ψ̄} = 0.
(1.10)

The symmetry transfromation mixes parity even (bosonic) and parity odd (fermionic) vari-

ables and is denoted by supersymmetry transformation in physics literature. The change in

action S

δεS = 2WW ′δεx−W ′′δεx · ψψ̄ −W ′δεψ · ψ̄ −W ′ψ · δεψ̄

= 2WW ′(ε̄ψ + εψ̄)−W ′(2Wε)ψ̄ −W ′ψ(−2ε̄W ) = 0.
(1.11)
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Under the change of variables the integration measure dxdψdψ̄ transforms by super-determinant

dx′dψ′dψ̄′ = sdet(J) · dxdψdψ̄ (1.12)

with J being Jacobian for the change of variables

x′ = x+ εψ̄ + ε̄ψ,

ψ′ = ψ + 2Wε,

ψ̄′ = ψ̄ − 2Wε̄.

(1.13)

In matrix form the Jacobian

J =


∂x′

∂x
∂x′

∂ψ
∂x′

∂ψ̄
∂ψ′

∂x
∂ψ′

∂ψ
∂ψ′

∂ψ̄
∂ψ̄′

∂x
∂ψ̄′

∂ψ
∂ψ̄′

∂ψ̄

 =


1 −ε̄ −ε

2W ′ε 1 0

−2W ′ε̄ 0 1

 , (1.14)

while the superdeterminant

sdet(J) = Ber(J) = 1 + 4W ′ε̄ε = 1 +O(ε, ε̄) (1.15)

The superdeterminant is identity when ε = 0 or ε̄ = 0, while being corrected by the second

order terms in ε in general case.

1.2 Localization in simple model

The supersymmetry transformations act as linear shift of ψ

ψ → ψ + 2εW (x), (1.16)

so in case W (x) is non-vanishing we can use the symmetry to set ψ to zero in the action.

The Grassmann integration of ψ-independent action makes the partition function vanish. In

particular we can perform a change of variables

y = x− ψψ̄

2W (x)
,

χ =
√
W (x)ψ,

χ̄ = ψ̄,

(1.17)
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to make the action in action χ-independent

S = W 2(y) = W 2(x)−W ′(x)ψψ̄. (1.18)

The Jacobian matrix of coordinate transformation (1.17)

J =


1 +W ′ ψψ̄

2W 2 − ψ̄
2W (x)

ψ
2W (x)

1
2
W ′
√
W
ψ

√
W 0

0 0 1

 , (1.19)

while its super-determinant

sdet(J) =
1√
W

[
1 +W ′ ψψ̄

2W 2
−
(
− ψ̄

2W

)
1√
W

1

2

W ′
√
W
ψ

]
=

1√
W

[
1 +W ′ ψψ̄

4W 2

]
=

1√
W
[
1−W ′ ψψ̄

2W 2

]
=

1√
W (x)−W ′(x) ψψ̄

2W (x)

=
1√

W
(
x− ψψ̄

2W (x)

)
=

1√
W (y)

.

(1.20)

The integration measures are related via

dydχdχ̄ = sdet(J) dxdψdψ̄, dxdψdψ̄ =
√
W (y) dydχdχ̄, (1.21)

while the integral

ZW =
1√
π

∫
R1|2

dxdψdψ̄ e−W
2+W ′ψψ̄ =

1√
π

∫
R1|2

dydχdχ̄
√
W (y) e−W

2(y) = 0 (1.22)

vanishes because of the Grassmann integral over χ of the χ-independent expression.

In case of W (x), which has zeroes we can split the integration over x into two regions: the

one that does not contain zeros of W and the small regions around zeroes. The integral over
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former region vanishes while the integral over latter can be written using Taylor exapansion

ZW =
∑

x0:W (x0)=0

1√
π

∫
dxdψdψ̄ e−[W ′(x0)]2(x−x0)2+W ′(x0)ψψ̄+...

=
∑

x0:W (x0)=0

1√
π

√
π

[W ′(x0)]2
·W ′(x0) =

∑
x0:W (x0)=0

W ′(x0)

|W ′(x0)|

=
∑

x0:W (x0)=0

sign(W ′(x0)).

(1.23)

1.3 Intersection theory

The answer to the integral ZW is an integer number, so it very reasonable to assume that it

counts something (with a sign). As we will see later in this section ZW counts the number

of intersection points between graph of W (x) and x-axis with multiplicities defined from

relative orientation. In order to prove this statement we need to introduce some notations

from intersection theory.

Definition: Let C1 and C2 being two sub-manifolds inside n-dimensional smooth mani-

fold M . Let us assume that dimC1 + dimC2 = dimM and transversality of intersection

i.e.

TC1 + TC2 = TM (1.24)

We can define the intersection number between C1 and C2 denoted as C1 · C2 via

C1 · C2 =
∑

p∈C1∩C2

ε(p) (1.25)

with ε(p) being the orientation of the point p, induced by the relative orientation of C1, C2

to M .

Example: Let W : R → R be a (polynomial) function. We can consider graph ΓW for

W defined as

ΓW : R→ R2 : x 7→ (x,W (x)) (1.26)

The dimensions

dim(ΓW ) + dim(Γ0) = 2 = dim(R) (1.27)
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The intersection of graph ΓW and x-axis Γ0 is transverse while the orientation εx0 of the

individual intersection points is

ε(x0) = sign(W ′(x0)). (1.28)

The intersection number

ΓW · Γ0 =
∑

x0∈ΓW∩Γ0

sign(W ′(x0)) ∈ Z (1.29)

matches with the localization formula from previous section.

We can express intersection number as an integral using the Poincare duality. For closed

p-dimensional submanifold C inside a compact n-dimensional manifold M we can integrate

the ω ∈ Hk(M) over it, what gives us a linear map

Hk(M)→ R : ω 7→
∫
C

ω (1.30)

while the Poincare duality tells us that we can represent this map as∫
C

ω =

∫
M

ηC ∧ ω, ηC ∈ Hn−k(M) (1.31)

We denote ηC as the Poincare dual class to the submanifold C. The intersection number in

terms of Poincare-dual forms is

C1 · C2 =

∫
M

ηC1 ∧ ηC2 (1.32)

Example: The Poincare dual form for the graph ΓW ⊂ R2
xy is

ηΓW = δ(y −W (x))(dy −W ′(x)dx) ∈ Ω1(R2
xy) (1.33)

Indeed let us consider an arbitrary 1-form on R2

ω = ωx(x, y)dx+ ωy(x, y)dy. (1.34)
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The integral of ω over graph ΓW : R→ R2 : t 7→ (t,W (t)) is∫
ΓW

ω =

∫
R

Γ∗Wω =

∫ +∞

−∞
dt[ωx(t,W (t)) + ωy(t,W (t))W ′(t)] (1.35)

while the R2 integral is∫
R2

ω ∧ ηΓW =

∫
R2

[ωx(x, y)dx+ ωy(x, y)dy] ∧ δ(y −W (x))[dy −W ′(x)dx]

=

∫
R2

δ(y −W (x))[ωx(x, y)dx ∧ dy +W ′(x)ωy(x, y)dx ∧ dy]

=

∫
R2

dx [ωx(x,W (x)) +W ′(x)ωy(x,W (x))].

(1.36)

Let us describe some useful properties of Poincare dual forms.

• Linearity

η(αC1 + βC2) = αηC1 + βηC2 (1.37)

follows from∫
αC1+βC2

ω = α

∫
C1

ω + β

∫
C2

ω = α

∫
M

ω ∧ ηC1 + β

∫
M

ω ∧ ηC2

=

∫
M

ω ∧ (αηC1 + βηC2)

(1.38)

• Boundary

η∂S = dηS (1.39)

follows from ∫
M

ω ∧ η∂S =

∫
∂S

ω =

∫
S

dω =

∫
M

dω ∧ ηS = ±
∫
M

ω ∧ dηS (1.40)

• Intersection

ηC1∩C2 = ηC1 ∧ ηC2 (1.41)

Proposition: The intersection number is the topological invariant, i.e that it is invariant

under the continuous deformations.
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Proof: We can express continuous deformation of C1 in the form

C1 → C ′1 = C1 + ∂S (1.42)

The corresponding intersection number in integral form

C ′1 · C2 =

∫
M

ηC′
1
∧ ηC2 =

∫
M

(ηC1 + η∂S) ∧ ηC2

= C1 · C2 ±
∫
M

dηS ∧ ηC2 = C1 · C2 ±
∫
M

d(ηS ∧ ηC2)

= C1 · C2

(1.43)

Example: The intersection number between graph of Γ and x-axis in integral represen-

ation

ΓW · Γ0 =

∫
R2

δ(y −W (x))(dy −W ′(x)dx) ∧ δ(y)dy

= −
∫
R2

W ′(x)δ(y)δ(y −W (x))dx ∧ dy = −
∫
R
W ′(x)δ(−W (x))dx

=

∫
R
W ′(x)δ(W (x))dx = Θ(W (x))

∣∣∣+∞
−∞

= Θ(W (+∞))−Θ(W (−∞))

(1.44)

matches with the result of Gaussian integral. We can use one of the properties of δ-function

δ(W (x)) =
∑

x0:W (x0)=0

δ(x− x0)

|W ′(x0)|
(1.45)

to rewrite the intersection number

ΓW · Γ0 =

∫
R

∑
x0:W (x0)=0

W ′(x0)

|W ′(x0)|
δ(x− x0) =

∑
x0:W (x0)=0

W ′(x0)

|W ′(x0)|
(1.46)

so it matches with the localization formula.

1.4 Saddle point approximation

The saddle-point approximation also know as the method of steepest descent is the approxi-

mate method to evaluate partition type of integrals

Z =

∫
Ix

dx f(x) e−
1
~S(x) (1.47)
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Under the assumptions

• f(z) and S(z) being holomorphic functions on open, bounded, simply-connected set

Ωx ⊂ Cn, such that Ix = Ωx ∩ Rn is connected

• S(z) has finitely-many isolated critical points, i.e the only solutions to

∂iS(x0) = 0, x0 ∈ Ix (1.48)

are points x0 and there are finitely-many of them.

• The critical points of S are non-degenerate i.e

det ∂i∂jS(x0) 6= 0, ∀x0 (1.49)

We can approximate the integral

Z = (2π~)
n
2

∑
x0:∂iS(x0)=0

1√
det ∂i∂jS(x0)

e−
1
~S(x0)(f(x0) +O(~)) (1.50)

Remark: The higher order terms can be organized into the sum over graphs.

Example: Let us rescale W by σ so we can apply the saddle point approximation

Z =
1√
πσ2

∫ +∞

−∞
e−

1
σ2
W 2

W ′dx (1.51)

An extrema of the exponent are at points x0 such that

S ′ = ∂x(W
2) = 2W (x0)W ′(x0) = 0 (1.52)

The second derivative

S ′′ = 2W ′(x0)W ′(x0) + 2W (x0)W ′′(x0) (1.53)

Due to the W ′ factor in front the contribution from {x0|W ′(x0) = 0} is trivial so saddle

point formula

Z =
1√
πσ2

(2πσ2)
1
2

∑
x0:W (x0)=0

1√
2W ′(x0)W ′(x0)

e−
1
σ2
W 2(x0) (W ′(x0) +O(σ)) (1.54)
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which after simplifications takes the form

Z =
∑

x0:W (x0)=0

sign(W ′(x0)) (1 +O(σ)) (1.55)

Let us observe that the leading two orders of saddle point approximation match with the

localization formula, so we expect the subleading terms O(σ) to vanish. The cancellation of

the higher order terms on the language of Feynmann diagrams is due to the −1 factors for

fermionic loops.

1.5 Subleading terms∗

Z =
1√
πσ2

∫ +∞

−∞
e−

1
σ2
W 2

W ′dX =
1√
π

∫ +∞

−∞
dXdψdψ̄e−

1
σ2
W 2+ 1

σ
W ′ψψ̄ (1.56)

Let us further assume that he potential is of the form

W = X +X2 (1.57)

so the saddle point approximation for the integral is the sum of two contributions

Z = Z(0) + Z(−1), Z(X0) = sign(W ′(X0)) (1 +O(σ)) (1.58)

Let us focus on the first contribution. Near the X0 = 0 saddle point we can represent

X = X0 + ξ (1.59)

so the action becomes

S = W 2(X)− σW ′(X)ψψ̄ = ξ2 + 2ξ3 + ξ4 − σ(1 + 2ξ)ψψ̄ (1.60)

Let us do the change of variables

ξ = σx (1.61)

so the integral

Z(0) =
1√
π

∫ ε

−ε
dξdψdψ̄ e−

1
σ2
S(ξ,ψ,ψ̄) =

1√
π

∫ ε
σ

− ε
σ

σdxdψdψ̄ e−
1
σ2
S(σx,ψ,ψ̄) (1.62)

In the limit σ � 1 we can replace the integration region [− ε
σ
, ε
σ
] by the whole real line R so
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that

Z(0) =
1√
π

∫
R1|2

dxdψdψ̄ e−(x2+2σx3+σ2x4−(1+2xσ)ψψ̄) = 〈e−2σx3−σ2x4+2xσψψ̄〉 (1.63)

where we introduced notation

〈F (x, ψ, ψ̄)〉 =
1√
π

∫
R1|2

dxdψdψ̄ e−x
2+ψψ̄F (x, ψ, ψ̄) (1.64)

with normalization chosen so that

1 = 〈1〉 =
1√
π

∫
R1|2

dxdψdψ̄ e−x
2+ψψ̄ (1.65)

Let us expand the exponent

Z(0) = 〈e−2σx3−σ2x4+2xσψψ̄〉

= 〈1− 2σx3 − σ2x4 + 2xσψψ̄ +
1

2
(−2σx3 − σ2x4 + 2xσψψ̄)2 + ...〉

= 〈1− 2σx3 + 2xσψψ̄ − σ2x4 + 2σ2x6 − 4σ2x4ψψ̄〉+O(σ3)

= 1− 2σ〈x3〉+ 2σ〈xψψ̄〉 − σ2〈x4〉+ 2σ2〈x6〉 − 4σ2〈x4ψψ̄〉+O(σ3)

(1.66)

The Gaussian integrals are even so

〈x2n+1〉 = 〈x2n+1ψψ̄〉 = 0 (1.67)

while the even powers can be evaluated using

〈x2k(ψψ̄)m〉 =

(
∂

∂b

)m(
− ∂

∂a

)k
1√
π

∫
R1|2

dxdψdψ̄ e−ax
2+bψψ̄

∣∣∣
a=b=1

=

(
∂

∂b

)m(
− ∂

∂a

)k
b√
a

∣∣∣
a=b=1

(1.68)

The leading order correction becomes

Z(0) = 1− σ2〈x4〉+ 2σ2〈x6〉 − 4σ2〈x4ψψ̄〉+O(σ3)

= 1− σ2 3

4
+ 2σ2 15

8
− 4σ2 3

4
+O(σ3)

= 1 +O(σ3).

(1.69)
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1.6 Deformation of distribution

We can use the integral representation for δ-function

δ(x) =
1

2π

∫
dp eipx (1.70)

to rewrite

ΓW · Γ0 =

∫
R
W ′(x)δ(W (x))dx =

1

2π

∫
dxdpdψdψ̄ eipW (x)+ψψ̄W ′(x). (1.71)

The action is invariant under the supersymmetry transformations

δεx = ε̄ψ + εψ̄,

δεψ = −ipε,

δεψ̄ = ipε̄

δεp = 0.

(1.72)

It is useful to introduce generators of supersymmetries in the form of vector fields Q and Q̄

such that

δεF (x, ψ, ψ̄, p) = εQ(F ) + ε̄Q̄(F ) (1.73)

for arbitrary function F . The generators take the form

Q = ψ̄
∂

∂x
− ip ∂

∂ψ
, Q̄ = ψ

∂

∂x
+ ip

∂

∂ψ̄
(1.74)

We can represent the smeared version of δ-function in the integral form

δ(x) =
1√
π

lim
σ→0

1

σ
e−

W (x)2

σ2 =
1

2π
lim
σ→0

∫
dp eipW (x)− 1

4
σ2p2 (1.75)

The two integral representations differ by Q-exact term

− 1

4
σ2p2 = Q

(
− i

4
σ2ψp

)
(1.76)

Different values of σ describe three different situations
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• Gaussian integral, being toy model of quantum system

Zσ=1
W = ZW =

1√
π

∫ +∞

−∞
e−W

2

W ′dx = Θ(W (+∞))−Θ(W (−∞)) (1.77)

• Geometric description

Zσ=0
W = ΓW · Γ0 =

∫
R
W ′(x)δ(W (x))dx =

∑
x0:W (x0)=0

sign(W ′(x0)) (1.78)

• Classical limit, saddle point approximation to integral

Zσ�1
W =

1√
πσ2

∫ +∞

−∞
e−

1
σ2
W 2

W ′dx =
∑

x0:W (x0)=0

sign(W ′(x0)) (1 +O(σ)) (1.79)

1.7 Deformation of potential

The partition function SUSY is invariant under continuous deformations. Let us consider

f(x) with finite support on R. The geometric interpretation is that such f describes the

homological deformation of the graph ΓW i.e.

ΓW → ΓW̃ = ΓW + ∂Σf (1.80)

with Σf being surface

Σf = {(x, y) ∈ R2|W (x) ≤ y ≤ W (x) + f(x)} (1.81)

The partition function for deformed potential

ZW̃ =
1

2π

∫
dxdpdψdψ̄ eipW̃ (x)+ψψ̄W̃ ′(x) (1.82)

We can observe that the deformed action can be expressed via

S̃ = ipW̃ (x) + ψψ̄W̃ ′(x) = ipW (x) + ψψ̄W ′(x)− ψ̄ψf ′(x) + ipf(x)

= S +Q(−fψ)
(1.83)
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while the difference between partition functions

ZW̃ − ZW =
1

2π

∫
dxdpdψdψ̄

(
eS+Q(−fψ) − eS

)
=

1

2π

∫
dxdpdψdψ̄ eS

(
eQ(−fψ) − 1

)
=

1

2π

∫
dxdpdψdψ̄ eS

(
−Q(fψ) +

1

2
[Q(fψ)]2 + ...

)
=

1

2π

∫
dxdpdψdψ̄ eSQ

(
−fψ +

1

2
fψ Q(fψ) + ...

)
= − 1

2π

∫
dxdpdψdψ̄ Q

[
fψeS

(
1− 1

2
Q(fψ) + ...

)]
= − 1

2π

∫
R2|2

dxdpdψdψ̄

(
ψ̄
∂

∂x
− ip ∂

∂ψ

)[
fψeS

(
1− 1

2
Q(fψ) + ...

)]
= − 1

2π

∫
R2|2

dxdpdψdψ̄ ψ̄
∂

∂x

[
fψeS

(
1− 1

2
Q(fψ) + ...

)]
= 0

(1.84)

The last integral is purely boundary term in x-direction. Earlier, we assumed that f(x) has

compact support so the boundary contribution vanishes.

1.8 Localization via deformation

Let us formulate general localization construction for supersymmetric theories. We want to

evaluate the supersymmetric partition function

Z =

∫
M

dµ e−S(x,ψ). (1.85)

Supersymmetric partition function imply

• Existence of Grassmann-odd symmetry, generated by vector field Q so that

δεF (x, ψ) = εQ(F ), ∀F ∈ C∞(M) (1.86)

• The symmetry is nilpotent i.e.

Q2 =
1

2
{Q,Q} (1.87)

• The action S(x, ψ) is invariant under the symmetry

δeS = εQ(S) = 0 (1.88)
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• The integration measure dµ is such that the integral of Q-exact terms is trivial∫
M

dµ Q(V ) = 0. (1.89)

Let us define the deformed partition function

Z(t) =

∫
M

dµ e−S(x,ψ)−tQ(V ) (1.90)

for some Grassmann-odd function V .

Proposition: The deformed partition Z(t) is independent on t.

Proof: Let us consider t-derivative

∂tZ(t) = ∂t

∫
dµ e−S(x,ψ)−tQ(V ) = −

∫
dµ Q(V )e−S(x,ψ)−tQ(V )

= −
∫
dµ Q(V e−S(x,ψ)−tQ(V )) = 0

(1.91)

Corollary: The deformed partition function for t = 0 matches with the partition function

Z. We can take t→∞ limit so the integral is dominated by the critical points of tQ(V )

Z = Z(0) = Z(t) = lim
t→∞

Z(t) (1.92)

1.9 Supersymmetry algebra

In our discussion of supersymmetric examples let us point out an important feature about

the supersymmetry transformations. The action

S(p, x, ψ, ψ̄) = ipW (x) + ψψ̄W ′(x) (1.93)

is invariant under the supersymmetry generated by

Q = ψ̄
∂

∂x
− ip ∂

∂ψ
, Q̄ = ψ

∂

∂x
+ ip

∂

∂ψ̄
(1.94)

with algebra

{Q, Q̄} = {Q,Q} = {Q̄, Q̄} = 0. (1.95)
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The algebra above in physics terminology is denoted as off-shell d = 0 N = 2 SUSY algebra.

Let us explain the terminology

• d = 0 refers to the dimension of world-sheet Σ, which is zero dimensional in our case.

In quantum field theory we often study maps Σ→M and supersymmetry acts on the

space of maps. The simplest case is when world-sheet is the single point Σ = pt then

the space of maps Map(Σ,M) = M is the same as the target manifold M .

• N = 2 refers to the number of supersymmetry generators, equivalently to the dimension

of supersymmetry algebra. In our case we have two generators Q and Q̄, equivalently

we have 2-dimensional algebra of supersymmetries R0|2.

• off-shell refers to the fact that the supersymmetry algebra is independent of the action

S. The other possibility - on-shell supersymmetry algebra we will consider below.

We can deform action by the Q-exact term and perform Gaussian integral over p

e−Se(x,ψ,ψ̄) =

∫
dp eS+Q(− i

4
ψp) (1.96)

to obtain another, referred as effective in physics literature, action

Se(x, ψ, ψ̄) = W 2(x)−W ′(x)ψψ̄ (1.97)

The action Se is invariant under the supersymmetry transformations

Qe = ψ̄
∂

∂x
+ 2W (x)

∂

∂ψ
, Q̄e = ψ

∂

∂x
− 2W (x)

∂

∂ψ̄
(1.98)

which obey algebra

{Qe, Qe} = 4W ′(x)ψ̄
∂

∂ψ
,

{Q̄e, Q̄ε} = −4W ′(x)ψ
∂

∂ψ̄
,

{Q̄e, Qe} = 2W ′(x)

(
ψ
∂

∂ψ
− ψ̄ ∂

∂ψ̄

) (1.99)

The supersymmetry algebra above in the physics notations is on-shell d = 0 N = 2 supersym-

metry algebra. The term on-shell indicates that the nontrivial commutators of supercharges
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are proportional to the equations of motions for effective action Se

∂Se
∂ψ

= −W ′(x)ψ̄,
∂Se
∂ψ̄

= W ′(x)ψ (1.100)

Therefore, as long as equations of motions are satisfied, the on-shell supersymmetry algebra

is the same as the off-shell one. In previous section we observed that the saddle point

approximation for partition function is a sum over critical points of S, which are identical

to the solutions to the equations of motion. So we can use the localization methods for

on-shell supersymmetry in the vicinity of critical point to show that the higher order terms

in ~ vanish and the partition function is 1-loop exact.

In our simple example we can turn on-shell d = 0 N = 2 supersymmetry into the off-shell

one by adding additional variable p. Unfortunately such method is not always possible,

especially in higher dimensions. Fortunately there is a way to construct manifestly off-shell

supersymmetric actions, known as the Superspace formalism.

1.10 Superspace formalism

Let us consider 2d Grassmann space R0|2 with coordinates θ and θ̄. Let us consider maps

R0|2 → R : (θ, θ̄) 7→ x(θ, θ̄) (1.101)

Each map is identical to the function x̂(θ, θ̄), which is finite polynomial so

Map(R0|2,R) = R2|2 (1.102)

Let us the notation x, F for even coordinates and ψ, ψ̄ for odd coordinates on R2|2, then we

can write the function

x̂(θ, θ̄) = x+ θψ̄ + θ̄ψ + Fθθ̄ (1.103)

The function x̂(θ, θ̄) in physics literature is known as the superfield x(θ, θ̄). In our discussion

of differential forms we observed that the diffepmorphisms on M act on the functions C∞(M)

in the form of pullback map.

φ∗ : C∞(M)→ C∞(M) : f 7→ φ∗(f) = f ◦ φ, ∀φ ∈ Diff(M) (1.104)
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Among diffeomorphisms of R0|2 we have translations

θ → θ + ε, θ̄ → θ̄ + ε̄ (1.105)

generated by the vector fields

Q =
∂

∂θ
, Q̄ =

∂

∂θ̄
. (1.106)

i.e the infinitesimal translation

δεF (θ, θ̄) = (εQ + ε̄Q̄)F (θ, θ̄) (1.107)

The group of translations on R0|2 is abelian so corresponding the algebra has trivial brackets

{Q, Q̄} = {Q,Q} = {Q̄, Q̄} = 0. (1.108)

which we can recognize as the off-shell d = 0 N = 2 supersymmetry algebra. The (pullback)

action of the SUSY algebra on the the space of maps

δεx̂(θ, θ̄) = x̂(θ + ε, θ̄ + ε̄)− x̂(θ, θ̄)

= (εQ + ε̄Q̄)x̂(θ, θ̄) = εψ̄ + ε̄ψ + θε̄F − θ̄εF

= (εQ+ ε̄Q)x̂(θ, θ̄) = δεx+ θδεψ̄ + θ̄δεψ + θθ̄δεF

(1.109)

The action in components

δεx = (εQ+ ε̄Q)x = εψ̄ + ε̄ψ

δεψ = (εQ+ ε̄Q)ψ = −εF

δεψ̄ = (εQ+ ε̄Q)ψ̄ = ε̄F

δεF = (εQ+ ε̄Q)F = 0

(1.110)

is the familiar d = 0 N = 2 SUSY algebra action on R2|2. There are additional types of

superfields in our model

ψ̂(θ, θ̄) = Dx̂ = ∂θx̂ = ψ + θ̄F (1.111)

ˆ̄ψ(θ, θ̄) = D̄x̂ = ∂θ̄x̂ = ψ̄ − θF (1.112)

which often reffed as derivative superfields or fermionic fuperfields. The term ”fermionic” is

due to the θ-independents component of superfields being Grassmann-odd, in contrast with

superfield x̂(θ, θ̄) with constant component being Grassmann-even. The superfields ψ̂ and ˆ̄ψ
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also form a representations of d = 0 N = 2 SUSY algebra

(εQ+ ε̄Q)ψ̂(θ, θ̄) = D(εQ+ ε̄Q)x̂ = D(εQ + ε̄Q̄)x̂(θ, θ̄)

= (εQ + ε̄Q̄)Dx̂(θ, θ̄) = (εQ + ε̄Q̄)ψ̂(θ, θ̄)
(1.113)

We can construct SUSY invariant functions on R2|2 using integrals over R0|2 of the arbitrary

functions of superfields

S(x, F, ψ, ψ̄) =

∫
dθdθ̄ F(x̂(θ, θ̄), ψ̂(θ, θ̄), ˆ̄ψ(θ, θ̄)) (1.114)

The SUSY variation

δεS = (εQ+ ε̄Q̄)S = (εQ+ ε̄Q̄)

∫
dθdθ̄ F(x̂(θ, θ̄), ψ̂(θ, θ̄), ˆ̄ψ(θ, θ̄))

=

∫
dθdθ̄ (εQ+ ε̄Q̄)F(x̂(θ, θ̄), ∂θx̂, ∂θ̄x̂)

=

∫
dθdθ̄ (εQ + ε̄Q̄)F(x̂(θ, θ̄), ∂θx̂, ∂θ̄x̂)

=

∫
dθdθ̄ (ε∂θ + ε̄∂θ̄)F(x̂(θ, θ̄), ∂θx̂, ∂θ̄x̂) = 0

(1.115)

Example: The superspace integral

S =

∫
dθdθ̄ [H(x̂(θ, θ̄)) +

1

4
σ2Dx̂D̄x̂]

= FH ′(x) + ψψ̄H ′′(x) +
1

4
σ2F 2

(1.116)

after redefinition

H ′(x) = W (x), F = ip (1.117)

matches with the action for supersymmetric theory we discussed before.
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