Introduction to tensor models April 2023

Invitation to Recursion, Resurgence, Combinatorics
OIST

Exercise session

Exercise 1. Counting melons

The goal of this exercise is to show that melons of the $O(N)^{3}$ model can be represented by unlabeled colored trees. The generating function of leading-order two-point graphs can be written as:

$$
G_{L O}(g, \mu)=\sum_{p, q} C_{p, q} g^{p+q} \mu^{q}
$$

where $C_{p, q}$ counts the number of melonic two-point graphs with p melons based on tetrahedrons (type I) and q melons based on pillows (type $I I$).

We wish to find a representation of these graphs as trees. To do so we will represent the insertion of type I and type $I I$ melons by the following vertices:

(a) Type I

(b) Type $I I$

By convention the root is labeled 0 .

1. Determine the tree corresponding to the following graph.

2. What does $C_{p, q}$ count?
3. Show that $C_{p, q}=\frac{(4 p+2 q)!}{p!q!(3 p+q+1)!}$.

Hint: We recall that the number of labeled trees with n vertices of degree d_{1}, \ldots, d_{n} is $\frac{(n-2)!}{\prod_{i}\left(d_{i}-1\right)!}$.

Exercise 2. Subchromatic models

The prismatic real model is defined by the following action:

$$
S=\frac{1}{2} \phi_{a b c} \phi_{a b c}+\frac{\lambda}{6 N^{\alpha}} \phi_{a_{1} b_{1} c_{1}} \phi_{a_{1} b_{2} c_{2}} \phi_{a_{2} b_{1} c_{2}} \phi_{a_{3} b_{3} c_{1}} \phi_{a_{3} b_{2} c_{3}} \phi_{a_{2} b_{3} c_{3}}
$$

This is a model with $O(N)^{3}$ invariance but an interaction of order 6 .

1. Give the graphical representation of the prismatic interaction as a 3 -colored graph.
2. Show that for a good choice of α, this model admits a large- N expansion.
3. What are the leading order graphs?
