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Olver’s differential equation theory

Figure 1: Frank W. J. Olver Figure 2: Olver’s book

FRANK W. J. OLVER developed a general and rigorous theory for
asymptotic expansions of solutions of linear second-order differential
equations, summarized in his famous 1974 monograph Asymptotics
and Special Functions. Olver’s theory provides sharp error bounds for
the expansions, as well as recurrences for their coefficients.

On the other hand, establishing error bounds for asymptotic expansions
arising from integrals has been a long-standing problem. In this talk, we
shall discuss recent progress in this subject.
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Dingle’s interpretative theory

Figure 3: Robert B. Dingle Figure 4: Dingle’s book

In a series of papers and in a research monograph, Asymptotic
Expansions: Their Derivation and Interpretation, published in
1973, the theoretical physicist ROBERT B. DINGLE incorporated
earlier and new, original ideas into a comprehensive theory which
had a substantial impact on later developments in modern
asymptotics. Dingle’s intuition was that asymptotic expansions
are exact coded representations of functions, and the main task of
asymptotics is to decode them.
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Dingle’s basic terminants

The building blocks of Dingle’s theory are the so-called basic
terminants. The first basic terminant of order p and argument w is
defined by

Λp(w)
def
= wpewΓ(1 − p, w) =

1
Γ(p)

∫ +∞

0

tp−1e−t

1 + t/w
dt,

for Re(p) > 0 and | arg w| < π, and by analytic continuation in w
to the whole Riemann surface Ĉ of the logarithm.

Similarly, the second basic terminant of order p and argument w is
defined by

Πp(w)
def
= 1

2 (Λp(we
π
2 i) + Λp(we−

π
2 i)) =

1
Γ(p)

∫ +∞

0

tp−1e−t

1 + (t/w)2 dt,

for Re(p) > 0 and | arg w| < π
2 , and by analytic continuation in w

to the whole of Ĉ.
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The asymptotic expansion of the modified Bessel function
We shall briefly demonstrate Dingle’s method through the example
of the modified Bessel function of the second kind of order 0. It
was shown by ERNST E. KUMMER in 1837 that the modified Bessel
function of the second kind of order 0 has an asymptotic expansion
of the form

K0(z) ∼
√

π

2z
e−z

∞

∑
n=0

an

zn ,

as z → ∞ in the sector | arg z| ≤ 3π
2 − δ (< 3π

2 ), with

an
def
= (−1)n (2n)!2

32nn!3
.

Dingle first noted that

an ∼ (−1)n

π

Γ(n)
2n

(
a0 +

2a1

n − 1
+

22a2

(n − 1)(n − 2)
+ . . .

)
as n → +∞. The re-appearance of the early coefficients in this
asymptotic expansion is a manifestation of resurgence.
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Dingle’s interpretation
Then the divergent tail of the series is asymptotically given by

∞

∑
n=N

an

zn ∼
∞

∑
n=N

1
zn

(−1)n

π

Γ(n)
2n

(
a0 +

2a1

n − 1
+

22a2

(n − 1)(n − 2)
+ . . .

)
=

1
π

∞

∑
n=N

(−1)n

zn

(
a0

Γ(n)
2n + a1

Γ(n − 1)
2n−1 + a2

Γ(n − 2)
2n−2 + . . .

)
for large values of N. Introducing the Euler integral representation for
the gamma function, changing the order of summation and integration
and employing the summation formula for the geometric series yields

∞

∑
n=N

an

zn ∼ (−1)N

π

Γ(N)

(2z)N

(
a0ΛN(2z) +

2a1ΛN−1(2z)
N − 1

+
22a2ΛN−2(2z)
(N − 1)(N − 2)

+ . . .
)

for large N. This is Dingle’s interpretation (or termination) of the
divergent tail of Kummer’s expansion, the first step towards the theory
of hyperasymptotics.

We will show how resurgence and Dingle’s terminants can be used to
derive sharp bounds for the remainder terms of asymptotic expansions
arising from integral representations, instead of approximating them.
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Cauchy–Heine representation

Suppose that | arg z| < π. By Cauchy’s integral formula, we have

z−
1
2 ezK0(z) =

1
2πi

∮
Γ

s−
1
2 esK0(s)
s − z

ds.

Figure 5: The “keyhole” contour.

Here Γ is a “keyhole” contour omitting the non-positive real axis. If
|arg s| ≤ π, the integrand is O(s−2) as s → ∞ and is O(s−1/2 log s)
as s → 0. Therefore, the integrals along the small and large circles
vanish as their radii tend to zero and infinity, respectively.

Consequently, we deduce

z−
1
2 ezK0(z) =

1
2πi

∫ 0

∞eπi

s−
1
2 esK0(s)
s − z

ds +
1

2πi

∫ ∞e−πi

0

s−
1
2 esK0(s)
s − z

ds.
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Cauchy–Heine representation

Using a simple change of variables, we derive

z−
1
2 ezK0(z) =

1
2π

∫ +∞

0

t−
1
2 e−tK0(teπi)

t + z
dt

+
1

2π

∫ +∞

0

t−
1
2 e−tK0(te−πi)

t + z
dt.

This can be further simplified by an application of the connection
formula 2K0(t) = K0(teπi) + K0(te−πi):

z−
1
2 ezK0(z) =

1
π

∫ +∞

0

t−
1
2 e−tK0(t)

t + z
dt,

provided | arg z| < π. Equivalently,

K0(z) =
√

π

2z
e−z
(

1
π

√
2
π

∫ +∞

0

t−
1
2 e−tK0(t)
1 + t/z

dt
)

,

provided | arg z| < π.
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Exact remainder
For any non-negative integer N, t > 0 and | arg z| < π, it holds
that

1
1 + t/z

=
N−1

∑
n=0

(−1)n 1
zn tn + (−1)N 1

zN
tN

1 + t/z
.

Substitution into the above integral formula yields

K0(z) =
√

π

2z
e−z
( N−1

∑
n=0

an

zn + RN(z)
)

,

with

an = (−1)n 1
π

√
2
π

∫ +∞

0
tn− 1

2 e−tK0(t)dt

and

RN(z) = (−1)N 1
zN

1
π

√
2
π

∫ +∞

0

tN− 1
2 e−tK0(t)

1 + t/z
dt.

A simple estimation of RN(z) shows that these identifications are
indeed correct. This is the Cauchy–Heine representation of the
remainder term RN(z) in Kummer’s expansion.
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Error bounds: Boyd’s approach

In 1990, WILLIAM G. C. BOYD constructed error bounds for the
asymptotic expansion of K0(z) (and more generally, for Kν(z) with
|ν| < 1

2 ) using the Cauchy–Heine representation of the remainder
term. He found

|RN(z)| ≤
|aN |
|z|N

×
{

1 if |arg z| ≤ π
2 ,

|csc(arg z)| if π
2 < |arg z| < π.

For the range π
2 < |arg z| ≤ π, he also gave

|RN(z)| ≤ 2
√

N
1
π

Γ(N)

2N
1

|z|N

(
∼ 2

√
N
|aN |
|z|N

)
.

With an extra trick, we can do better than this!
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Exact remainder: Dingle kernel

We substitute the Laplace transform

K0(t) = e−t
∫ +∞

0
e−ts ds√

s(2 + s)

into the explicit formula for the remainder and change the order of
integration. In this way we obtain

RN(z) =(−1)N 1
zN

1
π

√
2
π

∫ +∞

0

tN− 1
2 e−tK0(t)

1 + t/z
dt

=(−1)N 1
zN

1
π

√
2
π

Γ
(

N + 1
2
) ∫ +∞

0
ΛN+ 1

2
(z(2 + s))

ds√
s(2 + s)N+1 .

By an appeal to analytic continuation, this formula is valid in the
wider range | arg z| < 3π

2 . In a similar manner

an = (−1)n 1
π

√
2
π

Γ
(
n + 1

2

) ∫ +∞

0

ds√
s(2 + s)n+1 .

To estimate RN(z), we require estimates for the basic terminant.
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Bounds for the basic terminants
Proposition (G. N., 2017)

If p > 0 and χ(p) def
=

√
πΓ
( p

2 + 1
)
/Γ
( p

2 + 1
2
)
, then

|Λp(w)| ≤


1 if |arg w| ≤ π

2 ,
min(|csc(arg w)| , χ(p) + 1) if π

2 < |arg w| ≤ π,√
2πp

|cos(arg w)|p
+ χ(p) + 1 if π < |arg w| < 3π

2 ,

and

|Πp(w)| ≤


1 if |arg w| ≤ π

4 ,

min
(
|csc(2 arg w)| , 1

2 χ(p) + 1
)

if π
4 < |arg w| ≤ π

2 ,√
2πp

2 |sin(arg w)|p
+ 1

2 χ(p) + 1 if π
2 < |arg w| < π.

As p → +∞, χ(p) ∼
√

π
2
(

p + 1
2
)
.
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Improved error bounds
For any non-negative integer N and for | arg z| < 3π

2 , we have

K0(z) =
√

π

2z
e−z
( N−1

∑
n=0

an

zn + RN(z)
)

,

where the remainder RN(z) satisfies the estimates

|RN(z)| ≤
|aN |
|z|N

×



1 if | arg z| ≤ π
2 ,

min
(
| csc(arg z)|, χ

(
N + 1

2
)
+ 1
)

if π
2 < | arg z| ≤ π,√

2π
(

N + 1
2
)

|cos(arg z)|N+ 1
2
+ χ

(
N + 1

2
)
+ 1 if π < | arg z| < 3π

2 .

We may compare this result with that of Olver (N ≥ 1):

|RN(z)| ≤
|aN |
|z|N

×



2 exp
( 1

4|z|
)

if | arg z| ≤ π
2 ,

2χ(N) exp
(

π
8|z|
)

if π
2 < | arg z| ≤ π,

4χ(N)

|cos(arg z)|N
exp

(
π

4|z cos(arg z)|
)

if π < | arg z| < 3π
2 .
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A numerical example

scaled remainder term

Olver’s bound

our bound

10

5

0 π
2

π
arg z

Figure 6: Numerical comparison of different bounds for the scaled remainder
term |RN(z)|/ |aN |

|z|N with N = 20, |z| = 10 and 0 ≤ arg z ≤ π.
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Another example: the logarithm of the gamma function

For any positive integer N and for | arg z| < π, we have

log Γ(z) =
(
z − 1

2
)

log z − z + 1
2 log(2π) +

N−1

∑
n=1

B2n

2n(2n − 1)z2n−1 + RN(z),

where B2n stands for the Bernoulli numbers and the remainder RN(z)
satisfies

|RN(z)| ≤
|B2N |

2N(2N − 1) |z|2N−1 sup
r≥1

|Π2N−1(2πzr)|

≤ |B2N |
2N(2N − 1) |z|2N−1

×


1 if |arg z| ≤ π

4 ,

min
(
|csc(2 arg z)| , 1

2 χ(2N − 1) + 1
)

if π
4 < |arg z| ≤ π

2 ,√
2π(2N − 1)

2 |sin(arg z)|2N−1 +
1
2 χ(2N − 1) + 1 if π

2 < |arg z| < π.
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A numerical example

scaled remainder term

our bound

6

4

2

0 π
4

π
2

arg z

Figure 7: Numerical comparison of our bound with the scaled remainder
term |RN(z)|/ |B2N |

2N(2N−1)|z|2N−1 with N = 31, |z| = 10 and 0 ≤ arg z ≤ π
2 .
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Integrals with simple saddles

Consider the integral

I(k)(z) def
=
∫

C (k)(θ)
e−z f (t)g(t)dt,

where z = |z|eiθ and C (k)(θ) is the doubly-infinite path of steepest
descent passing through the simple saddle point t(k) of f (t) along
the two valleys of Re

[
− e−iθ( f (t)− f (t(k)))

]
. The functions f and

g are assumed to be analytic in a neighbourhood of the contour
C (k)(θ).

It is convenient to consider instead of the integral I(k), its slowly
varying part, defined by

T(k)(z) def
= z

1
2 ez f (t(k)) I(k)(z) = z

1
2

∫
C (k)(θ)

e−z( f (t)− f (t(k)))g(t)dt.
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Asymptotics of the slowly varying part

The asymptotic expansion of the slowly varying part can be
deduced by an application of the method of steepest descents:

T(k)(z) ∼
∞

∑
n=0

a(k)n

zn ,

as z → ∞ in a suitable sectoral region of Ĉ.
The coefficients a(k)n can be described via the local properties of f
and g at the simple saddle point t(k) using Perron’s formula:

a(k)n =
Γ
(
n + 1

2

)
2πi

∮
(t(k)+)

g(t)

( f (t)− f (t(k)))n+ 1
2

dt

=

√
π

4nn!

[
d2n

dt2n

(
g(t)

(
(t − t(k))2

f (t)− f (t(k))

)n+ 1
2
)]

t=t(k)
.
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Exact remainder: the theory of Berry and Howls

Figure 8: Sir Michael V. Berry Figure 9: Christopher J. Howls

For any non-negative integer N, we introduce the remainder term
R(k)

N (z) via

T(k)(z) =
N−1

∑
n=0

a(k)n

zn + R(k)
N (z).

A theory for obtaining an exact formula for this remainder was
developed by SIR MICHAEL V. BERRY and CHRISTOPHER J. HOWLS

in 1991.
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Adjacent saddles

Definition
A saddle point t(m) ̸= t(k) of f is said to be adjacent to t(k) iff it lies
on a path of steepest descent issuing from the saddle point t(k).

Definition
The singulant Fkm corresponding to the saddle t(k) and its adjacent
saddle t(m) is defined by

Fkm
def
= f (t(m))− f (t(k)), σkm

def
= argFkm.

We assume that C (k)(θ) does not encounter any of the saddle points
of f different from t(k), and that θ = arg z is restricted to an interval

−σkm1 < θ < −σkm2 ,

where t(m1) and t(m2) are adjacent to t(k).
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Assumptions

Assumptions

(i) The functions f (t) and g(t) are analytic in a domain ∆(k),
whose closure is the set of all the points that can be reached
by a path of steepest descent which emanates from t(k).

(ii) We require that | f (t)| → +∞ as t → ∞ in ∆(k), and f (t)
has several other simple saddle points in the complex t-plane
situated at t = t(p) and indexed by p ∈ N.

(iii) As t → ∞ in the closure of ∆(k),
∣∣ f−N−1/2(t)g(t)

∣∣ = o(|t|−1).
(iv) There are only finitely many saddle points that are adjacent to

t(k), and the path of steepest descent C (m)(−σkm) through the
adjacent saddle t(m) does not contain any of the saddle points
of f other than t(m).

21 / 32



The domain ∆(k) appearing in the theory of Berry and Howls

t(k)
t(m1)

t(m2)

t(m3)

C (m1)

C (m3)

C (m2)

∆(k)

Figure 10: Three saddle points t(m) adjacent to t(k) together with the
corresponding adjacent contours C (m), forming the boundary of the domain
∆(k).
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The resurgence formula of Berry and Howls
With the above assumptions,

T(k)(z) =
N−1

∑
n=0

a(k)n

zn + R(k)
N (z)

with

R(k)
N (z) =

1
2πi

1
zN ∑

m

1
FN

km

∫ +∞

0

tN−1e−t

1 − t/(Fkmz)
T(m)

( t
Fkm

)
dt,

provided that −σkm1 < arg z < −σkm2 . Here the sum runs over
all the saddle points of f that are adjacent to t(k), and the T(m)

is the slowly varying integral over the steepest descent contour
C (m)(−σkm) through the adjacent saddle t(m).

The appearance of the related integrals T(m) in the remainder term
is called the resurgence property.
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Alternative representation for the remainder
If we denote C (m) = C (m)(−σkm), then

R(k)
N (z) =

1
2πi

1
zN ∑

m

∫ +∞

0
sN− 1

2 e−s
∫

C (m)

g(t)

( f (t)− f (t(k)))N+ 1
2

1
1 − s/(( f (t)− f (t(k)))z)

dtds

=
1

2πi
1

zN ∑
m

∫
C (m)

g(t)

( f (t)− f (t(k)))N+ 1
2

∫ +∞

0

sN− 1
2 e−s

1 − s/(( f (t)− f (t(k)))z)
dsdt

provided that −σkm1
< arg z < −σkm2 .

Proposition (G. N., 2018)

With the above assumptions, the remainder term R(k)
N (z) has the integral

representation

R(k)
N (z) =

Γ
(

N + 1
2
)

2πi
1

zN ∑
m

∫
C (m)

g(t)

( f (t)− f (t(k)))N+ 1
2

ΛN+ 1
2
(e∓πi( f (t)− f (t(k)))z)dt,

for −σkm1
− π

2 < arg z < −σkm2 +
π
2 and with ± = sgn(arg z + σkm).
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2

∫ +∞

0

sN− 1
2 e−s

1 − s/(( f (t)− f (t(k)))z)
dsdt
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N + 1
2
)

2πi
1

zN ∑
m

∫
C (m)

g(t)

( f (t)− f (t(k)))N+ 1
2

ΛN+ 1
2
(e∓πi( f (t)− f (t(k)))z)dt,

for −σkm1
− π

2 < arg z < −σkm2 +
π
2 and with ± = sgn(arg z + σkm).
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Error bound

Proposition (G. N., 2018)

With the above assumptions, the remainder term R(k)
N (z) can be

bounded as

∣∣R(k)
N (z)

∣∣ ≤ Γ
(

N + 1
2
)

2π

1
|z|N ∑

m

∫
C (m)

∣∣∣∣ g(t)

( f (t)− f (t(k)))N+ 1
2

dt
∣∣∣∣ sup

r≥1

∣∣ΛN+ 1
2
(e∓πiFkmzr)

∣∣,
for −σkm1 −

π
2 < arg z < −σkm2 +

π
2 and with ± = sgn(arg z+ σkm).

The absolute value of the first omitted term can be written∣∣a(k)N

∣∣
|z|N =

Γ
(

N + 1
2

)
2π

1
|z|N

∣∣∣∣ ∮
(t(k)+)

g(t)

( f (t)− f (t(k)))N+ 1
2

dt
∣∣∣∣

=
Γ
(

N + 1
2

)
2π

1
|z|N

∣∣∣∣∑
m

∫
C (m)

g(t)

( f (t)− f (t(k)))N+ 1
2

dt
∣∣∣∣.
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Example: parabolic cylinder function with large arguments
NICO M. TEMME showed that the parabolic cylinder function admits the
asymptotic expansion

U(−µ, 2µ
1
2 cosh α) ∼ µ

µ
2 −

1
4 e−

µ
2 (sinh(2α)−2α+1)

√
2 sinh α

∞

∑
n=0

An(coth α)

µn ,

as µ → +∞, with α > 0.

The coefficients An(coth α) are polynomials in coth α of degree 3n and can
be computed using the recurrence relation

An+1(x) = − (x2 − 1)2

4
A′

n(x)− 1
16

∫ x

1
(5t2 − 2)An(t)dt,

for n ≥ 0 with A0(x) = 1.

One can derive this expansion with an exact remainder by applying the
Berry–Howls method to the integral representation

U(a, z) =
e

1
4 z2

i
√

2π

∫ c+i∞

c−i∞
e−zt+ 1

2 t2
t−a− 1

2 dt, c > 0.
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Example: parabolic cylinder function with large arguments

For any non-negative integer N and for |arg µ| < 3π
2 , we have

U(−µ, 2µ
1
2 cosh α) =

µ
µ
2 −

1
4 e−

µ
2 (sinh(2α)−2α+1)

√
2 sinh α

( N−1

∑
n=0

An(coth α)

µn +RN(µ, α)

)
,

where the remainder RN(µ, α) satisfies

|RN(µ, α)| ≤ |AN(coth α)|
|µ|N

sup
r≥1

∣∣ΛN+ 1
2
((sinh(2α)− 2α)µr)

∣∣

≤ |AN(coth α)|
|µ|N

×



1 if |arg µ| ≤ π
2 ,

min
(
|csc(arg µ)| , χ

(
N + 1

2
)
+ 1
)

if π
2 < |arg µ| ≤ π,√

2π
(

N + 1
2
)

|cos(arg µ)|N+ 1
2
+ χ

(
N + 1

2
)
+ 1 if π < |arg µ| < 3π

2 .

This result may be applied to the Hermite polynomials outside the
oscillatory regime, since

Hn(
√

2n + 1 cosh α) = 2
2µ−1

4 eµ cosh2 αU(−µ, 2µ
1
2 cosh α), µ = n+ 1

2 .
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Olver’s conjecture

It is well known that the Airy function Ai(z) has an infinite number
of negative zeros. We denote them by ak, arranged in ascending
order of absolute value with k a positive integer. The large negative
zeros of Ai(z) are known to posses the divergent asymptotic
expansion

ak ∼ −γ2/3
k

(
1 +

5
48γ2

k
− 5

36γ4
k
+

77125
82944γ6

k
− 108056875

6967296γ8
k
+ . . .

)
,

where γk =
3
8 π(4k − 1) (JEFFREY C. P. MILLER, 1946).

Conjecture (Frank W. J. Olver, 1999)
In the expansion of ak, the Nth error term is bounded by the first
neglected term and has the same sign for all values of N ≥ 1. In
addition, starting from the second term, the terms alternate in sign.
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A function that returns the zeros

Theorem (G. N., 2021)
There exists a function T(w), which is analytic in the closed sector
| arg w| ≤ π

2 and has the following properties.

(i) For each k ≥ 1, T(γk) = −ak.

(ii) T(w) remains bounded as w → 0 in the sector | arg w| ≤ π
2 .

(iii) For any s > 0, Im
(
e−

π
3 iT(is)

)
< 0.

(iv) w−2/3T(w) = 1+O(w−2) as w → ∞ in the sector | arg w| ≤ π
2 .

(v) Im
(
e−

π
3 iT(is)

)
= o(s−r) as s → +∞, with any fixed r > 0.
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Confirming Olver’s conjecture
The above theorem combined with a Cauchy–Heine-type argument, shows
that for any k ≥ 1 and N ≥ 1,

ak = −T(γk) = −γ2/3
k

(
1 +

N−1

∑
n=1

Tn

γ2n
k

+ RN(γk)

)
with

Tn = (−1)n 2
π

∫ +∞

0
s2n− 5

3 Im
(
e−

π
3 iT(is)

)
ds

and

RN(γk) =
1

γ2N
k

(−1)N 2
π

∫ +∞

0

s2N− 5
3 Im

(
e−

π
3 iT(is)

)
1 + (s/γk)2 ds.

By our theorem and the mean value theorem for improper integrals,

RN(γk) = θk,N
1

γ2N
k

(−1)N 2
π

∫ +∞

0
s2N− 5

3 Im
(
e−

π
3 iT(is)

)
ds = θk,N

TN

γ2N
k

with a suitable 0< θk,N <1, answering Olver’s conjecture in the affirmative.
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Problems for future research

• Studying the analogous problem for multidimensional integrals
of the form

I(k)(z) =
∫

· · ·
∫

Sk

e−z f (t1,...,td)g(t1, . . . , td)dt1 · · ·dtd

over a d dimensional surface Sk which is doubly infinite in
extent in all complex variables and runs between specified
valleys at infinity associated with an isolated critical point t(k)

of f . The resurgence properties were studied by Howls (1997).

• Constructing error bounds for uniform asymptotic expansions
arising from integrals (e.g., coalescing saddle points, saddle point
near a pole, saddle point near and endpoint). The resurgence
properties for integrals with coalescing saddles were studied by
ADRI B. OLDE DAALHUIS in 2000.
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Thank you for your attention!
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