Melonic large N limit of 5-index irreducible random tensors

Sabine Harribey

Joint work with Sylvain Carrozza - Commun.Math.Phys. 390 (2022) 1219

OIST - April $10^{\text {th }} 2023$

NORDITA

The Nordic Institute for Theoretical Physics

History of random tensors

- First introduced in zero dimension: random geometry and quantum gravity [Ambjorn Durhuus Jonsson '90, Boulatov '92, Ooguri '92, ...]
- Strongly coupled QFTs and holography $(d=1)$: SYK model without disorder [Witten, Klebanov, Tarnopolsky, ...]
- Tensor models in higher dimension: new class of conformal field theories \rightarrow melonic CFTs

Different types of melonic limit

- Multiple fields: 4 tensor fields, $O(N)^{6}$ symmetry

$$
T_{a b c}^{i}
$$

Different types of melonic limit

- Multiple fields: 4 tensor fields, $O(N)^{6}$ symmetry

$$
T_{a b c}^{i}
$$

- Colored tensor models: 1 tensor field, $O(N)^{3}$ symmetry

$$
T_{a b c}
$$

Different types of melonic limit

- Multiple fields: 4 tensor fields, $O(N)^{6}$ symmetry

$$
T_{a b c}^{i}
$$

- Colored tensor models: 1 tensor field, $O(N)^{3}$ symmetry

$$
T_{a b c}
$$

- SYK model

$$
J_{i_{1} i_{2} i_{3} i_{4}} \psi_{i_{1}} \psi_{i_{2}} \psi_{i_{3}} \psi_{i_{4}}
$$

Different types of melonic limit

- Multiple fields: 4 tensor fields, $O(N)^{6}$ symmetry

$$
T_{a b c}^{i}
$$

- Colored tensor models: 1 tensor field, $O(N)^{3}$ symmetry

$$
T_{a b c}
$$

- SYK model

$$
J_{i_{1} i_{2} i_{3} i_{4}} \psi_{i_{1}} \psi_{i_{2}} \psi_{i_{3}} \psi_{i_{4}}
$$

- Multi matrix models with a large number of matrices [Ferrari, Schaposnik Massolo, Valette ...], different symmetry groups

Colored $O(N)$ models

$T_{a_{1} a_{2} \ldots a_{r}}$ in fundamental representation of $O(N) \times O(N) \times \cdots \times O(N)$

- Propagator: $P_{a_{1} a_{2} \ldots a_{r}, b_{1} b_{2} \ldots b_{r}}=\delta_{a_{1} b_{1}} \delta_{a_{2} b_{2}} \ldots \delta_{a_{r} b_{r}}$
- Interaction: complete graph K_{r+1}

K_{4}

K_{6}

A melonic large N limit exists for prime r. Ferrarri, Rivasseau, Valette '17

Irreducible tensor models

- What about other tensor representations?
- Completely symmetric tensors: no melonic large N limit
- Irreducible tensors:
- Propagator: orthogonal projector on an irreducible representation of $O(N)$
- Interaction: Complete graph invariant
- Do these models admit a large N expansion?
- Is it melonic?

Irreducible tensor models

Conjecture:

For $r=3$, there exists a melonic large N limit for $O(N)$ symmetric traceless tensors. [Klebanov, Tarnopolsky '17]

- Evidence: Explicit numerical check for all diagrams up to order λ^{8}
- Proof and generalizations:
- $O(N)$ irreducible, $r=3$ [Benedetti, Carrozza, Gurau, Kolanowski]
- $\operatorname{Sp}(N)$ irreducible, $r=3$ [Carrozza, Pozsgay]
- Generalization for $r>3$?
\Rightarrow Here for 5 indices

Outline

(1) The model
(2) Perturbative expansion

3 Sketch of the proof

The model

Free energy:

$$
F_{P}(\lambda)=\frac{6}{N^{5}} \lambda \partial_{\lambda} \ln \left\{\left[e^{\frac{1}{2} \partial_{T} \boldsymbol{P} \partial_{T}} e^{\frac{\lambda}{6 N^{5}} \delta_{a b c d e f}^{h} T_{a} T_{b} T_{c} T_{d} T_{e} T_{f}}\right]_{T=0}\right\}
$$

- \boldsymbol{P} one of seven orthogonal projectors on irreducible representations
- Interaction vertex

$$
T_{a_{1} a_{2} a_{3} a_{4} a_{5}} T_{a_{5} b_{2} b_{3} b_{4} b_{5}} T_{b_{5} a_{4} c_{3} c_{4} c_{5}} T_{c_{5} b_{4} a_{3} d_{4} d_{5}} T_{d_{5} c_{4} b_{3} a_{2} e_{5}} T_{e_{5} d_{4} c_{3} b_{2} a_{1}}
$$

Propagator

\boldsymbol{P} : orthogonal projector on one of the irreducible tensor spaces

For traceless symmetric tensors:

$$
\begin{aligned}
& \boldsymbol{S}_{\mathbf{a}, \boldsymbol{b}}=\frac{1}{5!}\left[\sum_{\sigma \in \mathcal{S}_{\mathbf{5}}} \prod_{i=1}^{5} \delta_{a_{i} b_{\sigma(j)}}-\frac{2}{N+6} \sum_{\substack{\left\{i_{\mathbf{1}}, i_{\mathbf{2}}, i_{3}\right\} \cup\left\{i_{\mathbf{i}}, i_{\mathbf{5}}\right\} \\
=\llbracket 1,5 \rrbracket}} \sum_{\substack{\left\{j_{\mathbf{1}}, j_{2}, j_{3}\right\} \cup\left\{j_{\mathbf{3}}, j_{\mathbf{j}}\right\} \\
=\llbracket 1,5 \rrbracket}} \delta_{a_{i_{\mathbf{4}}} a_{i_{\mathbf{i}}}} \delta_{b_{j_{\mathbf{4}}} b_{j_{\mathbf{5}}}} \sum_{\sigma \in \mathcal{S}_{\mathbf{3}}} \prod_{k=1}^{3} \delta_{a_{i_{k}} b_{j(k)}}\right. \\
& \left.+\frac{2}{(N+4)(N+6)} \sum_{\substack{\left\{i_{\mathbf{1}}\right\} \cup\left\{\begin{array}{c}
\left\{i_{\mathbf{2}}, i_{3}\right\} \cup\left\{i_{\mathbf{i}}, i_{5}\right\} \\
=\llbracket 1,5 \rrbracket
\end{array}\right.}} \sum_{\substack{\left\{j_{\mathbf{1}}\right\} \cup\left\{j_{2}, j_{j}\right\} \cup\left\{j_{\mathbf{4}}, j_{5}\right\} \\
=\llbracket 1,5 \rrbracket}} \delta_{a_{i_{1}} b_{j_{1}}} \delta_{a_{i_{2}} a_{i_{3}}} \delta_{a_{i_{4}} a_{i_{5}}} \delta_{b_{j_{2}} b_{j_{3}}} \delta_{b_{j_{4}} b_{j_{5}}}\right]
\end{aligned}
$$

Types of edges

- Unbroken: all strands traverse

- Broken: a pair of corners is connected by a strand at each end of the edge. Rescaled by $1 / \mathrm{N}$

- Doubly broken: two pairs of corners are connected by a strand at each end of the edge. Rescaled by $1 / N^{2}$

Perturbative expansion

- $F_{P}(\lambda)$: sum over rooted connected combinatorial maps \mathcal{G}

- Half-edge: represented with five strands
- 945 ways to connect two half-edges
- Projector: combination of those terms with different weights and signs
- Stranded map G: combinatorial map with a choice of one term per edge

$$
F_{P}(\lambda)=\sum_{G \text { connected, rooted }} \lambda^{V(G)} \mathcal{A}(G)
$$

$1 / \mathrm{N}$ expansion

Amplitude of a stranded map:

$$
\mathcal{A}(G)=K(G) N^{-\omega(G)}(1+\mathcal{O}(1 / N))
$$

- $K(G)$ non-vanishing rational number independent of N
- One free sum $=$ One factor of N per face
- Degree of a stranded map:

$$
\omega(G)=5+5 V(G)+B(G)+2 B_{2}(G)-F(G)
$$

$1 / \mathrm{N}$ expansion

Amplitude of a stranded map:

$$
\mathcal{A}(G)=K(G) N^{-\omega(G)}(1+\mathcal{O}(1 / N))
$$

- $K(G)$ non-vanishing rational number independent of N
- One free sum $=$ One factor of N per face
- Degree of a stranded map:

$$
\omega(G)=5+5 V(G)+B(G)+2 B_{2}(G)-F(G)
$$

Goals:
\rightarrow Non-negative degree
\rightarrow Maps of zero degree are melonic

Problematic cases

- Simplify the degree by considering number of faces of length p

$$
\omega(G)=5+B(G)+2 B_{2}(G)+\sum_{p} F_{p}\left(\frac{p}{3}-1\right)
$$

Problematic cases

- Simplify the degree by considering number of faces of length p

$$
\omega(G)=5+B(G)+2 B_{2}(G)+\sum_{p} F_{p}\left(\frac{p}{3}-1\right)
$$

\rightarrow Can be negative iff faces of length $p=1$ or $p=2$ (short-faces):

- $p=1$: Tadpoles, double-tadpoles
- $p=2$: Melons, dipoles
- Graphs with only long faces: positive degree

Bad double tadpoles

Chain of p double tadpoles:

- 4 faces per vertex
- Factor N^{-5} per vertex
- 2 faces when we glue two double-tadpoles

$$
\left(\frac{1}{N}\right)^{p} N^{2 p-1}=N^{p-1}
$$

Unbounded from above
\rightarrow non-trivial cancellations

Bounds on combinatorial maps

- Stranded maps with negative degree
- Use irreducibility of the representation to bound the amplitude of the full combinatorial maps
- Double-tadpoles combinatorial maps well-behaved
- Melons: contribute to leading-order

Bounds on combinatorial maps

- Stranded maps with negative degree
- Use irreducibility of the representation to bound the amplitude of the full combinatorial maps
- Double-tadpoles combinatorial maps well-behaved
- Melons: contribute to leading-order
- Problem: generalized double-tadpoles \rightarrow arbitrarily negative degree
- Need to subtract both melons and double-tadpoles

Main theorem

Theorem

We have (in the sense of perturbation series):

$$
F_{\boldsymbol{P}}(\lambda)=\sum_{\omega \in \mathbb{N}} N^{-\omega} F_{\boldsymbol{P}}^{(\omega)}(\lambda)
$$

- Subtract double-tadpoles and melons
- Restrict to unbroken edges
- Induction: remaining graphs have positive degree

Step 1: Subtraction of double-tadpoles and melons

At the combinatorial map level:

- Rewrite out theory with modified covariance and subtracted interaction
- New perturbative expansion in terms of maps \mathcal{G} with no double-tadpoles or melons

Step 2: Restriction to unbroken edges

- Cut and glue: changes the number of faces by $-1,0$ or +1
- From doubly broken to unbroken propagator:

Step 2: Restriction to unbroken edges

- Cut and glue: changes the number of faces by $-1,0$ or +1
- From doubly broken to unbroken propagator:

Remove broken edge:

- decrease the number of faces by at most one
- decrease the number of broken edges by one
- the degree can only decrease

Step 3: Remaining graphs

Let G be a stranded graph. If G has no double-tadpole and no melon, then $\omega(G) \geq 0$.
\rightarrow proof by induction

Step 3: Remaining graphs

Let G be a stranded graph. If G has no double-tadpole and no melon, then $\omega(G) \geq 0$.
\rightarrow proof by induction

- Look for a strict subgraph that can be deleted without increasing the degree and preserving the constraints
- Exhaustive graph-theoretic distinction of cases
- High number of particular two-point subgraphs to consider

Examples of combinatorial moves

$$
\left.\begin{array}{l}
1 \\
2 D \\
3 \\
4
\end{array}\right) \quad \begin{aligned}
& 5 \\
& 6
\end{aligned} \quad \begin{aligned}
& 7 \\
& 8
\end{aligned}
$$

$$
\left.\begin{array}{l}
1 \\
2 \\
4 \\
\hline
\end{array}\right)=\begin{aligned}
& 5 \\
& 6 \\
& 8
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& 2 \\
& 4 \\
& 6 \\
& 7 \\
& 8
\end{aligned}
$$

Examples of combinatorial moves

Boundary graphs

Boundary graphs

- Recursive bounds on $\omega \leftrightarrow$ bounds on flip distance between boundary graphs

$$
\xrightarrow[\text { glue }]{ }
$$

End graphs

- Ring graphs $(V=0)$
- G with no short faces

End graphs

- Ring graphs $(V=0)$
- G with no short faces
- Special cases that need to be treated separately

8

\gtrless

Leading order

Stranded graphs with no melon can have vanishing degree
\rightarrow Non-trivial cancellations

Leading order

Stranded graphs with no melon can have vanishing degree
\rightarrow Non-trivial cancellations

- Bounds on combinatorial maps through Cauchy-Schwarz inequalities

- Maps with no melons are subleading
- Conclusion: A Feynman map is leading order iff it is melonic

Schwinger-Dyson equation

The two-point function verifies a closed SDE

$F_{\boldsymbol{P}}^{(0)}(\lambda)$ is a solution of the polynomial equation:

$$
1-X+m_{P} \lambda^{2} X^{6}=0
$$

Conclusion and outlook

- Irreducible tensor models with 5-simplex interactions: melonic large- N expansion
- Recursive bounds from a detailed combinatorial analysis of the Feynman graphs.
- Estimated scaling of four and eight-point functions: could include other effective interactions

Conclusion and outlook

- Irreducible tensor models with 5-simplex interactions: melonic large- N expansion
- Recursive bounds from a detailed combinatorial analysis of the Feynman graphs.
- Estimated scaling of four and eight-point functions: could include other effective interactions
- Application to large N QFT
- Fermionic fields with $S p(N)$ symmetry
- Generalization for arbitrary number of indices $r \geq 6$?

Conclusion and outlook

- Irreducible tensor models with 5-simplex interactions: melonic large- N expansion
- Recursive bounds from a detailed combinatorial analysis of the Feynman graphs.
- Estimated scaling of four and eight-point functions: could include other effective interactions
- Application to large N QFT
- Fermionic fields with $\operatorname{Sp}(N)$ symmetry
- Generalization for arbitrary number of indices $r \geq 6$?
Thank you!

