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• Loewner energy (Weil-Petersson Teichmuller space) <——> SLE


• Riemann sphere  <——> hyperbolic 3-space 


• Loewner energy <——> renormalized volume 

• Motivation from Liouville action


• Variational formula


• Quasi-Fuchsian manifolds 

ℂ̂ ℍ3
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• Example: Critical Ising model —> SLE3
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• , and  iff  is a circle.IL(η) ∈ [0,∞] IL(η) = 0 η
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 (and  is called a Weil-Petersson quasicircle).

φη = h−1 ∘ f |S1 ∈ Hom(S1)
η φη ∈ WP(S1)

IL(η) < ∞ η

[Takhtajan-Teo, MAMS]:   is the Kahler 
potential of the unique homogeneous Kahler metric on Weil-
Petersson universal Teichmuller space . 

IL : WP(S1) → ℝ≥0

𝒯0(1) = Mob(S1)\WP(S1)



Mobius transformations 



Mobius transformations 

•  PSL(2,ℂ) = {w ↦
aw + b
cw + d

: a, b, c, d ∈ ℂ, ad − bc = 1}



Mobius transformations 

•  PSL(2,ℂ) = {w ↦
aw + b
cw + d

: a, b, c, d ∈ ℂ, ad − bc = 1}

is the group of conformal automorphisms of the Riemann sphere 
 (generated by scaling, translation, inversion).ℂ̂ = ℂ ∪ {∞}



Mobius transformations 

•  PSL(2,ℂ) = {w ↦
aw + b
cw + d

: a, b, c, d ∈ ℂ, ad − bc = 1}

is the group of conformal automorphisms of the Riemann sphere 
 (generated by scaling, translation, inversion).ℂ̂ = ℂ ∪ {∞}

• A Mobius transformation maps circles to circles.



Mobius transformations 

•  PSL(2,ℂ) = {w ↦
aw + b
cw + d

: a, b, c, d ∈ ℂ, ad − bc = 1}

is the group of conformal automorphisms of the Riemann sphere 
 (generated by scaling, translation, inversion).ℂ̂ = ℂ ∪ {∞}

• A Mobius transformation maps circles to circles.

• PSL(2,ℝ) = {w ↦
aw + b
cw + d

: a, b, c, d ∈ ℝ, ad − bc = 1}



Mobius transformations 

•  PSL(2,ℂ) = {w ↦
aw + b
cw + d

: a, b, c, d ∈ ℂ, ad − bc = 1}

is the group of conformal automorphisms of the Riemann sphere 
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• PSL(2,ℝ) = {w ↦
aw + b
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: a, b, c, d ∈ ℝ, ad − bc = 1}

preserves .ℍ and ℍ*
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Isom+(ℍ3) = PSL(2,ℂ) ℂ̂ ℍ3

Starting point of AdS/CFT correspondence. 



Holography of the Loewner energy in ?ℍ3



Theorem (Bishop, preprint)

 iff  bounds a minimal surface  in  with finite total curvature 

 which is also equivalent to finite renormalized area.

IL(η) < ∞ η Σ ℍ3

∫Σ
k2dAhyp < ∞



Theorem (Bishop, preprint)

 iff  bounds a minimal surface  in  with finite total curvature 

 which is also equivalent to finite renormalized area.

IL(η) < ∞ η Σ ℍ3

∫Σ
k2dAhyp < ∞

Notation:  On  

•  is the shape operator  


• Principal curvatures are the eigenvalues  of .


•  is the mean curvature of .


•  is minimal iff , i.e .

TΣ

B : TΣ → TΣ Bu = − ∇uN

{k1, k2} B

H = (k1 + k2)/2 Σ

Σ H ≡ 0 k := k1 = − k2
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.

IL(η) < ∞ η Σ ℍ3

∫Σ
k2dAhyp < ∞

Comments:

• Nice to express in geometric quantities in .ℍ3

• The minimal surface bounded by  is not unique.η

• The total curvature of different surfaces are also 
different. 
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Main Theorem I (Bridgeman, Bromberg, Vargas-Pallete, W., 2022+)

When  is smooth, then  is  times the renormalized volume 
 of  uniquely associated to , such that , and 

for , .

η IL(η) 4/π
VR(Nη) Nη ⊂ ℍ3 η ∂∞Nη = η

A ∈ PSL(2,ℂ) NA(η) = A(Nη)

VR(Nη) = Vol(Nη) −
1
2 ∫ΣΩ∪ΣΩ*

H da

H = mean curvature



Renormalized volume: Motivation 
[Hennigson-Skenderis][Graham-Witten] [Krasnov] 


[Krasnov-Schlenker][Takhtajan-Zograf][Takhtajan-Teo]
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• Find a metric  on  which has constant  Gauss curvature (hyperbolic metric)?eϕg0 X −1

I.e.                       (Liouville equation)  Δ0ϕ − K0 = eϕ

• The Liouville action 

S[g0, ϕ] = ∫X

1
2

|∇ϕ |2 + eϕ + ϕK0 dvol0

has the critical point at the solution to the Liouville equation. 

But the classical Liouville action  = :  
does not depend on the moduli. 

S[ghyp,0] = Area(X) −2πχ = 4π(genus − 1) S[ghyp,0]
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There are many ways to define such a function (and are different). The classical action (i.e. evaluated at 
) all turn out to be a Kahler potential of the Weil-Petersson metric on .ϕ = 0 𝒯(X)

The Liouville actions can all be expressed as the renormalized volume of a hyperbolic 3-manifold.

[Takhtajan-Zograf] [Graham-Witten] [Takhtajan-Teo] [Krasnov-Schlenker] [Guillarmou-Moroianu]…

Our result is the version for the universal Teichmuller space (dim = ).∞
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map  is : 

g = eϕ |dw |2 Ω ℂ̂
Epsg : Ω → ℍ3

Epsg(w) = (w + ϕw
e−ϕ

1 + (1/2)e−ϕ |ϕw |2 ,
2e−ϕ/2

1 + (1/2)e−ϕ |ϕw |2 ) ∈ ℂ × ℝ>0 = ℍ3

Example: , the Epstein Ω = 𝔻, g = g𝔻 = 4 |dw |2

(1 − |w |2 )2

surface is the totally geodesic plane bounded by . ∂𝔻

Same for .Ω = 𝔻*
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: the respective hyperbolic metricgΩ and gΩ*

: the associated Epstein surfaces.ΣΩ and ΣΩ*

Lemma:    are disjoint except when  is a circle.ΣΩ and ΣΩ* η

 : the set bounded by Nη ΣΩ and ΣΩ*

VR(Nη) = Vol(Nη) −
1
2 ∫ΣΩ∪ΣΩ*

H da
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When  is smooth, then  = 4 . η IL(η) VR(Nη)/π

Moreover, we have    where    is any conformal 

map  and  is the Schwarzian derivative of . Similarly for .

∫ΣΩ

Hda = ∫𝔻
|𝒮f |2 (w)

(1 − |w |2 )2

4
|dw |2 f

𝔻 → Ω 𝒮( f ) =
f′ ′ ′ 

f′ 

−
3
2 ( f′ ′ 

f′ 
)

2
f Ω*

Example: When  is a circle, then  and . η H ≡ 0 ΣΩ = ΣΩ*

   .⇒ VR(NS1) = 0

Proof: We show that , and  and  satisfy the same variation 
formula and vanish when .

Vol(Nη) < ∞ IL(η) 4VR(Nη)/π
η = S1
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Where ,  and  is a Beltrami differential with integrability assumption 

([Takhtajan-Teo] [Sung-W.]) 

𝒮( f ) =
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f′ 

−
3
2 ( f′ ′ 

f′ 
)

2
μ

Modifying the metric (in  coordinates)  dz, dz̄ g−1δg = (μ̄ s
s μ)

The stress-energy tensor of the Loewner energy   δIL = ∫ < T, g−1δg > ⟹ T =
2
π (

𝒮( f −1) 0

0 𝒮( f −1))



Analogous Liouville action: Quasi-Fuchsian case 

[Takhtajan-Teo, CMP], [Krasnov-Schlenker, CMP]
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VR(μ, ν) = Vol(Nρ) −
1
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Theorem [Takhtajan-Teo, CMP], [Krasnov-Schlenker, CMP]

For any ,  is a Kahler potential of the Weil-Petersson metric on .  ν ∈ 𝒯(X) VR( ⋅ , ν) 𝒯(X)

(If we also use other conformal metrics on  and , we obtain the Liouville action, such that 
 is a classical Liouville action.)

∂∞,+M ∂∞,−M
VR( ⋅ , ν)
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Thanks!


