

Holography of the Loewner energy

Yilin Wang (IHES)

Joint with

Martin Bridgeman (Boston College), Kenneth Bromberg (Utah), Franco Vargas-Pallete (Yale)

OIST. July 31, 2023

- Loewner energy (Weil-Petersson Teichmuller space) <--> SLE
- Riemann sphere $\hat{\mathbb{C}}<-->$ hyperbolic 3 -space \mathbb{W}^{3}
- Loewner energy <--> renormalized volume
- Motivation from Liouville action
- Variational formula
- Quasi-Fuchsian manifolds

Schramm Loewner evolution SLE

Schramm Loewner evolution SLE

- Introduced in [Schramm, ‘00];

Schramm Loewner evolution SLE

- Introduced in [Schramm, ‘00];
- Random, non self-crossing, fractal curve in the plane, with conformal symmetry. $->$ SLE $_{\kappa}$ for $\kappa \geq 0$

Schramm Loewner evolution SLE

- Introduced in [Schramm, ‘00];
- Random, non self-crossing, fractal curve in the plane, with conformal symmetry. $->$ SLE $_{\kappa}$ for $\kappa \geq 0$
- Models interfaces in critical lattice models -> another way to describe CFT

Schramm Loewner evolution SLE

- Introduced in [Schramm, ‘00];
- Random, non self-crossing, fractal curve in the plane, with conformal symmetry. $->$ SLE $_{\kappa}$ for $\kappa \geq 0$
- Models interfaces in critical lattice models -> another way to describe CFT

$$
c(\kappa)=1-6\left(\frac{2}{\sqrt{\kappa}}-\frac{\sqrt{\kappa}}{2}\right)^{2}=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}
$$

Schramm Loewner evolution SLE

- Introduced in [Schramm, ‘00];
- Random, non self-crossing, fractal curve in the plane, with conformal symmetry. $->$ SLE $_{\kappa}$ for $\kappa \geq 0$
- Models interfaces in critical lattice models -> another way to describe CFT

$$
c(\kappa)=1-6\left(\frac{2}{\sqrt{\kappa}}-\frac{\sqrt{\kappa}}{2}\right)^{2}=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}
$$

- Example: Critical Ising model $->\mathrm{SLE}_{3}$

Loewner energy of Jordan curve

Loewner energy of Jordan curve

- Introduced in [Rohde, W., IMRN]; $I^{L}(\eta)=\frac{1}{2} \int_{-\infty}^{\infty} \dot{W}^{2}(t) d t$ where W is any Loewner driving function of $\eta ; \operatorname{SLE}_{\kappa}$ has driving function $\sqrt{\kappa} B$

Loewner energy of Jordan curve

- Introduced in [Rohde, W., IMRN]; $I^{L}(\eta)=\frac{1}{2} \int_{-\infty}^{\infty} \dot{W}^{2}(t) d t$ where W is any Loewner driving function of $\eta ; \operatorname{SLE}_{\kappa}$ has driving function $\sqrt{\kappa} B$
- Invariant under the action of $\operatorname{PSL}(2, \mathbb{C})$;

Loewner energy of Jordan curve

- Introduced in [Rohde, W., IMRN]; $I^{L}(\eta)=\frac{1}{2} \int_{-\infty}^{\infty} \dot{W}^{2}(t) d t$ where W is any Loewner driving function of η; $\operatorname{SLE}_{\kappa}$ has driving function $\sqrt{\kappa} B$
- Invariant under the action of $\operatorname{PSL}(2, \mathbb{C})$;
- Is the large deviation rate function of $S L E_{0+}$ loop (proved for chordal SLE [W. JEMS] and multichordal SLE [Peltola, W. JEMS]); $\kappa \rightarrow 0$, $c(\kappa) \rightarrow-\infty$ (semiclassical limit)

Loewner energy of Jordan curve

- Introduced in [Rohde, W., IMRN]; $I^{L}(\eta)=\frac{1}{2} \int_{-\infty}^{\infty} \dot{W}^{2}(t) d t$ where W is any Loewner driving function of η; $\operatorname{SLE}_{\kappa}$ has driving function $\sqrt{\kappa} B$
- Invariant under the action of $\operatorname{PSL}(2, \mathbb{C})$;
- Is the large deviation rate function of $S L E_{0+}$ loop (proved for chordal SLE [W. JEMS] and multichordal SLE [Peltola, W. JEMS]); $\kappa \rightarrow 0$, $c(\kappa) \rightarrow-\infty$ (semiclassical limit)
" $\mathbb{P}\left[S L E_{\kappa}\right.$ loop stays close to $\left.\eta\right] \sim_{\kappa \rightarrow 0} \exp \left(-\frac{I^{L}(\eta)}{\kappa}\right)$ "

Loewner energy of Jordan curve

- Introduced in [Rohde, W., IMRN]; $I^{L}(\eta)=\frac{1}{2} \int_{-\infty}^{\infty} \dot{W}^{2}(t) d t$ where W is any Loewner driving function of η; $\operatorname{SLE}_{\kappa}$ has driving function $\sqrt{\kappa} B$
- Invariant under the action of $\operatorname{PSL}(2, \mathbb{C})$;
- Is the large deviation rate function of $S L E_{0+}$ loop (proved for chordal SLE [W. JEMS] and multichordal SLE [Peltola, W. JEMS]); $\kappa \rightarrow 0$, $c(\kappa) \rightarrow-\infty$ (semiclassical limit)

$$
" \mathbb{P}\left[S L E_{\kappa} \text { loop stays close to } \eta\right] \sim_{\kappa \rightarrow 0} \exp \left(-\frac{I^{L}(\eta)}{\kappa}\right) "
$$

- $I^{L}(\eta) \in[0, \infty]$, and $I^{L}(\eta)=0$ iff η is a circle.

Theorem [w., Invent. Math]

Theorem [W., Invent. Math]

We have

$$
I^{L}(\eta)=\frac{1}{\pi} \int_{\mathbb{D}}\left|\frac{f^{\prime \prime}}{f^{\prime}}\right|^{2}+\frac{1}{\pi} \int_{\mathbb{D}^{*}}\left|\frac{h^{\prime \prime}}{h^{\prime}}\right|^{2}+4 \log \left|\frac{f^{\prime}(0)}{h^{\prime}(\infty)}\right|
$$

$$
\begin{aligned}
& h: \mathbb{D}^{*} \rightarrow \Omega^{*} \\
& h(\infty)=\infty
\end{aligned}
$$

Theorem [W., Invent. Math]

We have

$$
I^{L}(\eta)=\frac{1}{\pi} \int_{\mathbb{D}}\left|\frac{f^{\prime \prime}}{f^{\prime}}\right|^{2}+\frac{1}{\pi} \int_{\mathbb{D}^{*}}\left|\frac{h^{\prime \prime}}{h^{\prime}}\right|^{2}+4 \log \left|\frac{f^{\prime}(0)}{h^{\prime}(\infty)}\right|
$$

- $\mathrm{RHS}=$ Universal Liouville action [Takhtajan-Teo, MAMS].

$$
\begin{aligned}
& h: D^{*} \rightarrow \Omega^{*} \\
& h(\infty)=\infty
\end{aligned}
$$

Theorem [W., Invent. Math]

We have
$I^{L}(\eta)=\frac{1}{\pi} \int_{\mathbb{D}}\left|\frac{f^{\prime \prime}}{f^{\prime}}\right|^{2}+\frac{1}{\pi} \int_{\mathbb{D}^{*}}\left|\frac{h^{\prime \prime}}{h^{\prime}}\right|^{2}+4 \log \left|\frac{f^{\prime}(0)}{h^{\prime}(\infty)}\right|$

- $\mathrm{RHS}=$ Universal Liouville action [Takhtajan-Teo, MAMS].
- Let $\varphi_{\eta}=\left.h^{-1} \circ f\right|_{S^{1}} \in \operatorname{Hom}\left(S^{1}\right)$ be the welding homeomorphism of η. We have $\varphi_{\eta} \in W P\left(S^{1}\right)$ if and only if

$$
h: D^{*} \rightarrow \Omega^{*}
$$ $I^{L}(\eta)<\infty$ (and η is called a Weil-Petersson quasicircle).

Theorem [W., Invent. Math]

We have
$I^{L}(\eta)=\frac{1}{\pi} \int_{\mathbb{D}}\left|\frac{f^{\prime \prime}}{f^{\prime}}\right|^{2}+\frac{1}{\pi} \int_{\mathbb{D}^{*}}\left|\frac{h^{\prime \prime}}{h^{\prime}}\right|^{2}+4 \log \left|\frac{f^{\prime}(0)}{h^{\prime}(\infty)}\right|$

- $\mathrm{RHS}=$ Universal Liouville action [Takhtajan-Teo, MAMS].
- Let $\varphi_{\eta}=\left.h^{-1} \circ f\right|_{S^{1}} \in \operatorname{Hom}\left(S^{1}\right)$ be the welding homeomorphism of η. We have $\varphi_{\eta} \in W P\left(S^{1}\right)$ if and only if

$$
h: D^{*} \rightarrow \Omega^{*}
$$ $I^{L}(\eta)<\infty$ (and η is called a Weil-Petersson quasicircle).

Theorem [W., Invent. Math]

We have
$I^{L}(\eta)=\frac{1}{\pi} \int_{\mathbb{D}}\left|\frac{f^{\prime \prime}}{f^{\prime}}\right|^{2}+\frac{1}{\pi} \int_{\mathbb{D}^{*}}\left|\frac{h^{\prime \prime}}{h^{\prime}}\right|^{2}+4 \log \left|\frac{f^{\prime}(0)}{h^{\prime}(\infty)}\right|$

- $\mathrm{RHS}=$ Universal Liouville action [Takhtajan-Teo, MAMS].
- Let $\varphi_{\eta}=\left.h^{-1} \circ f\right|_{S^{1}} \in \operatorname{Hom}\left(S^{1}\right)$ be the welding homeomorphism of η. We have $\varphi_{\eta} \in W P\left(S^{1}\right)$ if and only if
$h: \mathbb{D}^{*} \rightarrow \Omega^{*}$
$h(\infty)=\infty$ $I^{L}(\eta)<\infty$ (and η is called a Weil-Petersson quasicircle).
[Takhtajan-Teo, MAMS]: $I^{L}: W P\left(S^{1}\right) \rightarrow \mathbb{R}_{>0}$ is the Kahler potential of the unique homogeneous Kahler metric on WeilPetersson universal Teichmuller space $\mathscr{T}_{0}(1)=\operatorname{Mob}\left(S^{1}\right) \backslash W P\left(S^{1}\right)$.

Mobius transformations

Mobius transformations

$$
\text { - } \operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}
$$

Mobius transformations

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
is the group of conformal automorphisms of the Riemann sphere $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ (generated by scaling, translation, inversion).

Mobius transformations

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
is the group of conformal automorphisms of the Riemann sphere $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ (generated by scaling, translation, inversion).
- A Mobius transformation maps circles to circles.

Mobius transformations

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
is the group of conformal automorphisms of the Riemann sphere $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ (generated by scaling, translation, inversion).
- A Mobius transformation maps circles to circles.
- $\operatorname{PSL}(2, \mathbb{R})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{R}, a d-b c=1\right\}$

Mobius transformations

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
is the group of conformal automorphisms of the Riemann sphere $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ (generated by scaling, translation, inversion).
- A Mobius transformation maps circles to circles.
- $\operatorname{PSL}(2, \mathbb{R})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{R}, a d-b c=1\right\}$ preserves \mathbb{H} and \mathbb{H}^{*}.

Hyperbolic 3-space and $\operatorname{PSL}(2, \mathbb{C})$

Hyperbolic 3-space and $\operatorname{PSL}(2, \mathbb{C})$

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$

Hyperbolic 3-space and $\operatorname{PSL}(2, \mathbb{C})$

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
- $\mathbb{H}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}$ with the Riemannian metric $g_{\mathbb{H}^{3}}=\left(d x^{2}+d y^{2}+d z^{2}\right) / z^{2}$.

Hyperbolic 3-space and $\operatorname{PSL}(2, \mathbb{C})$

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
- $\mathbb{H}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}$ with the Riemannian metric $g_{\text {H }^{3}}=\left(d x^{2}+d y^{2}+d z^{2}\right) / z^{2}$.

Also called Euclidean $A d S_{3}$ space (signature $=(3,0)$).

Hyperbolic 3-space and $\operatorname{PSL}(2, \mathbb{C})$

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
- $\mathbb{H}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}$ with the Riemannian metric $g_{H^{3}}=\left(d x^{2}+d y^{2}+d z^{2}\right) / z^{2}$.

Also called Euclidean $A d S_{3}$ space (signature $=(3,0)$).

- The conformal boundary $\partial_{\infty} \mathbb{H}^{3}=\hat{\mathbb{C}}\left(g_{\mathbb{H}^{3}}\right.$ determines the conformal structure on $\left.\hat{\mathbb{C}}\right)$.

Hyperbolic 3-space and $\operatorname{PSL}(2, \mathbb{C})$

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
- $\mathbb{H}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}$ with the Riemannian metric $g_{\text {Нㄱ }}=\left(d x^{2}+d y^{2}+d z^{2}\right) / z^{2}$.

Also called Euclidean $A d S_{3}$ space (signature $=(3,0)$).

- The conformal boundary $\partial_{\infty} \mathbb{H}^{3}=\hat{\mathbb{C}}\left(g_{\mathbb{H}^{3}}\right.$ determines the conformal structure on $\left.\hat{\mathbb{C}}\right)$.
- Isom $_{+}\left(\mathbb{G}^{3}\right)=\operatorname{PSL}(2, \mathbb{C})$. (Circles in $\widehat{\mathbb{C}}$ bounds geodesic planes in \mathbb{H}^{3}, i.e. half spheres)

Hyperbolic 3-space and $\operatorname{PSL}(2, \mathbb{C})$

- $\operatorname{PSL}(2, \mathbb{C})=\left\{w \mapsto \frac{a w+b}{c w+d}: a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
- $\mathbb{H}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}$ with the Riemannian metric $g_{\mathbb{H}^{3}}=\left(d x^{2}+d y^{2}+d z^{2}\right) / z^{2}$.

Also called Euclidean $A d S_{3}$ space (signature $=(3,0)$).

- The conformal boundary $\partial_{\infty} \mathbb{H}^{3}=\hat{\mathbb{C}}\left(g_{\mathbb{H}^{3}}\right.$ determines the conformal structure on $\left.\hat{\mathbb{C}}\right)$.
- Isom $\left(\mathbb{H}^{3}\right)=\operatorname{PSL}(2, \mathbb{C})$. (Circles in $\hat{\mathbb{C}}$ bounds geodesic planes in \mathbb{H}^{3}, i.e. half spheres)

Starting point of AdS/CFT correspondence.

Holography of the Loewner energy in \mathbb{H}^{3} ?

Theorem (Bishop, preprint)

$I^{L}(\eta)<\infty$ iff η bounds a minimal surface Σ in \mathbb{H}^{3} with finite total curvature $k^{2} d A_{h y p}<\infty$ which is also equivalent to finite renormalized area.
$\lim _{\varepsilon \rightarrow 0} A_{\varepsilon}-L_{\varepsilon}$

Theorem (Bishop, preprint)

$I^{L}(\eta)<\infty$ iff η bounds a minimal surface Σ in \mathbb{M}^{3} with finite total curvature $k^{2} d A_{\text {hyp }}<\infty$ which is also equivalent to finite renormalized area.

Notation: On $T \Sigma$

- $B: T \Sigma \rightarrow T \Sigma$ is the shape operator $B u=-\nabla_{u} N$
- Principal curvatures are the eigenvalues $\left\{k_{1}, k_{2}\right\}$ of B.
- $H=\left(k_{1}+k_{2}\right) / 2$ is the mean curvature of Σ.
- Σ is minimal iff $H \equiv 0$, i.e $k:=k_{1}=-k_{2}$.

Theorem (Bishop, preprint)

$I^{L}(\eta)<\infty$ iff η bounds a minimal surface Σ in \mathbb{M}^{3} with finite total curvature $k^{2} d A_{\text {hyp }}<\infty$. which is also equivalent to finite renormalized area.

Theorem (Bishop, preprint)

$I^{L}(\eta)<\infty$ iff η bounds a minimal surface Σ in \mathbb{M}^{3} with finite total curvature $k^{2} d A_{\text {hyp }}<\infty$. which is also equivalent to finite renormalized area.

Comments:

Theorem (Bishop, preprint)

$I^{L}(\eta)<\infty$ iff η bounds a minimal surface Σ in \mathbb{H}^{3} with finite total curvature $k^{2} d A_{\text {hyp }}<\infty$.which is also equivalent to finite renormalized area.

Comments:

- Nice to express in geometric quantities in \mathbb{H}^{3}.

Theorem (Bishop, preprint)

$I^{L}(\eta)<\infty$ iff η bounds a minimal surface Σ in \mathbb{H}^{3} with finite total curvature $k^{2} d A_{\text {hyp }}<\infty$.which is also equivalent to finite renormalized area.

Comments:

- The minimal surface bounded by η is not unique.

Theorem (Bishop, preprint)

$I^{L}(\eta)<\infty$ iff η bounds a minimal surface Σ in \mathbb{H}^{3} with finite total curvature $k^{2} d A_{h y p}<\infty$.which is also equivalent to finite renormalized area.

Comments:

- Nice to express in geometric quantities in $\mathbb{-}^{3}$.
- The minimal surface bounded by η is not unique.
- The total curvature of different surfaces are also different.

The Loewner energy in \mathbb{H}^{3} ? YES!

The Loewner energy in \mathbb{H}^{3} ? YES!

Main Theorem I (Bridgeman, Bromberg, Vargas-Pallete, W., 2022+)

The Loewner energy in \mathbb{H}^{3} ? YES!

Main Theorem I (Bridgeman, Bromberg, Vargas-Pallete, W., 2022+)
When η is smooth, then $I^{L}(\eta)$ is $4 / \pi$ times the renormalized volume $V_{R}\left(N_{\eta}\right)$ of $N_{\eta} \subset \mathbb{H}^{3}$ uniquely associated to η, such that $\partial_{\infty} N_{\eta}=\eta$, and for $A \in \operatorname{PSL}(2, \mathbb{C}), N_{A(\eta)}=A\left(N_{\eta}\right)$.

The Loewner energy in \mathbb{H}^{3} ? YES!

Main Theorem I (Bridgeman, Bromberg, Vargas-Pallete, W., 2022+)
When η is smooth, then $I^{L}(\eta)$ is $4 / \pi$ times the renormalized volume $V_{R}\left(N_{\eta}\right)$ of $N_{\eta} \subset \mathbb{H}^{3}$ uniquely associated to η, such that $\partial_{\infty} N_{\eta}=\eta$, and for $A \in \operatorname{PSL}(2, \mathbb{C}), N_{A(\eta)}=A\left(N_{\eta}\right)$.

The Loewner energy in \mathbb{H}^{3} ? YES!

Main Theorem I (Bridgeman, Bromberg, Vargas-Pallete, W., 2022+)
When η is smooth, then $I^{L}(\eta)$ is $4 / \pi$ times the renormalized volume $V_{R}\left(N_{\eta}\right)$ of $N_{\eta} \subset \mathbb{H}^{3}$ uniquely associated to η, such that $\partial_{\infty} N_{\eta}=\eta$, and for $A \in \operatorname{PSL}(2, \mathbb{C}), N_{A(\eta)}=A\left(N_{\eta}\right)$.

$$
V_{R}\left(N_{\eta}\right)=\operatorname{Vol}\left(N_{\eta}\right)-\frac{1}{2} \int_{\Sigma_{\Omega^{\prime}} \cup \Sigma_{\Omega^{*}}} H d a
$$

The Loewner energy in \mathbb{H}^{3} ? YES!

Main Theorem I (Bridgeman, Bromberg, Vargas-Pallete, W., 2022+)
When η is smooth, then $I^{L}(\eta)$ is $4 / \pi$ times the renormalized volume $V_{R}\left(N_{\eta}\right)$ of $N_{\eta} \subset \mathbb{H}^{3}$ uniquely associated to η, such that $\partial_{\infty} N_{\eta}=\eta$, and for $A \in \operatorname{PSL}(2, \mathbb{C}), N_{A(\eta)}=A\left(N_{\eta}\right)$.

$$
\begin{aligned}
& V_{R}\left(N_{\eta}\right)=\operatorname{Vol}\left(N_{\eta}\right)-\frac{1}{2} \int_{\Sigma_{\Omega} \cup \Sigma_{\Omega^{*}}} H d a \\
& \mathrm{H}=\text { mean curvature }
\end{aligned}
$$

Renormalized volume: Motivation

[Hennigson-Skenderis][Graham-Witten] [Krasnov]
[Krasnov-Schlenker][Takhtajan-Zograf][Takhtajan-Teo]

Liouville theory

Liouville theory

- $\left(X, g_{0}\right)$ a Riemannian surface of genus ≥ 2 (g_{0} determines the conformal structure)

Liouville theory

- $\left(X, g_{0}\right)$ a Riemannian surface of genus ≥ 2 (g_{0} determines the conformal structure)
- Find a metric $e^{\phi} g_{0}$ on X which has constant -1 Gauss curvature (hyperbolic metric)?

Liouville theory

- $\left(X, g_{0}\right)$ a Riemannian surface of genus ≥ 2 (g_{0} determines the conformal structure)
- Find a metric $e^{\phi} g_{0}$ on X which has constant -1 Gauss curvature (hyperbolic metric)?

$$
\text { I.e. } \quad \Delta_{0} \phi-K_{0}=e^{\phi} \quad \text { (Liouville equation) }
$$

Liouville theory

- $\left(X, g_{0}\right)$ a Riemannian surface of genus ≥ 2 (g_{0} determines the conformal structure)
- Find a metric $e^{\phi} g_{0}$ on X which has constant -1 Gauss curvature (hyperbolic metric)?

$$
\text { I.e. } \quad \Delta_{0} \phi-K_{0}=e^{\phi} \quad \text { (Liouville equation) }
$$

- The Liouville action

Liouville theory

- (X, g_{0}) a Riemannian surface of genus ≥ 2 (g_{0} determines the conformal structure)
- Find a metric $e^{\phi} g_{0}$ on X which has constant -1 Gauss curvature (hyperbolic metric)?

$$
\text { I.e. } \quad \Delta_{0} \phi-K_{0}=e^{\phi} \quad \text { (Liouville equation) }
$$

- The Liouville action

$$
S\left[g_{0}, \phi\right]=\int_{X} \frac{1}{2}|\nabla \phi|^{2}+e^{\phi}+\phi K_{0} \mathrm{dvol}_{0}
$$

Liouville theory

- (X, g_{0}) a Riemannian surface of genus ≥ 2 (g_{0} determines the conformal structure)
- Find a metric $e^{\phi} g_{0}$ on X which has constant -1 Gauss curvature (hyperbolic metric)?

$$
\text { I.e. } \quad \Delta_{0} \phi-K_{0}=e^{\phi} \quad \text { (Liouville equation) }
$$

- The Liouville action

$$
S\left[g_{0}, \phi\right]=\int_{X} \frac{1}{2}|\nabla \phi|^{2}+e^{\phi}+\phi K_{0} \mathrm{dvol}_{0}
$$

has the critical point at the solution to the Liouville equation.

Liouville theory

- (X, g_{0}) a Riemannian surface of genus ≥ 2 (g_{0} determines the conformal structure)
- Find a metric $e^{\phi} g_{0}$ on X which has constant -1 Gauss curvature (hyperbolic metric)?

$$
\text { I.e. } \quad \Delta_{0} \phi-K_{0}=e^{\phi} \quad \text { (Liouville equation) }
$$

- The Liouville action

$$
S\left[g_{0}, \phi\right]=\int_{X} \frac{1}{2}|\nabla \phi|^{2}+e^{\phi}+\phi K_{0} \mathrm{dvol}_{0}
$$

has the critical point at the solution to the Liouville equation.
But the classical Liouville action $S\left[g_{\text {hyp }}, 0\right]=\operatorname{Area}(X)=-2 \pi \chi=4 \pi($ genus -1$): S\left[g_{\text {hyp }}, 0\right]$ does not depend on the moduli.

Liouville theory

Liouville theory

We want a functional I which also depends on the Teichmuller space $\mathscr{T}(X)$ (dim =6 genus -6):

Liouville theory

We want a functional I which also depends on the Teichmuller space $\mathscr{T}(X)$ (dim =6 genus - 6):

$$
I: C^{\infty}(X, \mathbb{R}) \times \mathscr{T}(X) \rightarrow \mathbb{R}:(\phi, \tau) \rightarrow I\left(e^{\phi} g_{\text {hyp }, \tau}\right)
$$

Liouville theory

We want a functional I which also depends on the Teichmuller space $\mathscr{T}(X)$ (dim =6 genus -6):

$$
I: C^{\infty}(X, \mathbb{R}) \times \mathscr{T}(X) \rightarrow \mathbb{R}:(\phi, \tau) \rightarrow I\left(e^{\phi} g_{h y p, \tau}\right)
$$

Such that $I(\phi, \tau)-I(\psi, \tau)=S\left[\phi, g_{\text {hyp }, \tau}\right]-S\left[\psi, g_{h y p, \tau}\right] \propto \log \operatorname{det} \Delta_{e \phi_{g h y}}-\log \operatorname{det} \Delta_{e^{\psi} g_{\text {hyp }}}$

Liouville theory

We want a functional I which also depends on the Teichmuller space $\mathscr{T}(X)$ (dim =6 genus - 6):

$$
I: C^{\infty}(X, \mathbb{R}) \times \mathscr{T}(X) \rightarrow \mathbb{R}:(\phi, \tau) \rightarrow I\left(e^{\phi} g_{h y p, \tau}\right)
$$

Such that $I(\phi, \tau)-I(\psi, \tau)=S\left[\phi, g_{\text {hyp }, \tau}\right]-S\left[\psi, g_{h y p, \tau}\right] \propto \log \operatorname{det} \Delta_{e \phi_{\text {gyp }}}-\log \operatorname{det} \Delta_{e^{\psi} g_{\text {hyp }}}$
There are many ways to define such a function (and are different). The classical action (i.e. evaluated at $\phi=0$) all turn out to be a Kahler potential of the Weil-Petersson metric on $\mathscr{T}(X)$.

Liouville theory

We want a functional I which also depends on the Teichmuller space $\mathscr{T}(X)$ (dim =6 genus - 6):

$$
I: C^{\infty}(X, \mathbb{R}) \times \mathscr{T}(X) \rightarrow \mathbb{R}:(\phi, \tau) \rightarrow I\left(e^{\phi} g_{h y p, \tau}\right)
$$

Such that $I(\phi, \tau)-I(\psi, \tau)=S\left[\phi, g_{\text {hyp }, \tau}\right]-S\left[\psi, g_{h y p, \tau}\right] \propto \log \operatorname{det} \Delta_{e \phi_{\text {gyp }}}-\log \operatorname{det} \Delta_{e^{\psi} g_{\text {hyp }}}$
There are many ways to define such a function (and are different). The classical action (i.e. evaluated at $\phi=0$) all turn out to be a Kahler potential of the Weil-Petersson metric on $\mathscr{T}(X)$.

The Liouville actions can all be expressed as the renormalized volume of a hyperbolic 3-manifold.

Liouville theory

We want a functional I which also depends on the Teichmuller space $\mathscr{T}(X)$ (dim =6 genus - 6):

$$
I: C^{\infty}(X, \mathbb{R}) \times \mathscr{T}(X) \rightarrow \mathbb{R}:(\phi, \tau) \rightarrow I\left(e^{\phi} g_{h y p, \tau}\right)
$$

Such that $I(\phi, \tau)-I(\psi, \tau)=S\left[\phi, g_{\text {hyp }, \tau}\right]-S\left[\psi, g_{\text {hyp }, \tau}\right] \propto \log \operatorname{det} \Delta_{e^{\phi} g_{\text {hyp }}}-\log \operatorname{det} \Delta_{e^{\psi} g_{\text {hyp }}}$
There are many ways to define such a function (and are different). The classical action (i.e. evaluated at $\phi=0$) all turn out to be a Kahler potential of the Weil-Petersson metric on $\mathscr{T}(X)$.

The Liouville actions can all be expressed as the renormalized volume of a hyperbolic 3-manifold.
[Takhtajan-Zograf] [Graham-Witten] [Takhtajan-Teo] [Krasnov-Schlenker] [Guillarmou-Moroianu]...

Liouville theory

We want a functional I which also depends on the Teichmuller space $\mathscr{T}(X)$ (dim =6 genus - 6):

$$
I: C^{\infty}(X, \mathbb{R}) \times \mathscr{T}(X) \rightarrow \mathbb{R}:(\phi, \tau) \rightarrow I\left(e^{\phi} g_{h y p, \tau}\right)
$$

Such that $I(\phi, \tau)-I(\psi, \tau)=S\left[\phi, g_{\text {hyp }, \tau}\right]-S\left[\psi, g_{\text {hyp }, \tau}\right] \propto \log \operatorname{det} \Delta_{e^{\phi} g_{\text {hyp }}}-\log \operatorname{det} \Delta_{e^{\psi} g_{\text {hyp }}}$
There are many ways to define such a function (and are different). The classical action (i.e. evaluated at $\phi=0$) all turn out to be a Kahler potential of the Weil-Petersson metric on $\mathscr{T}(X)$.

The Liouville actions can all be expressed as the renormalized volume of a hyperbolic 3-manifold.
[Takhtajan-Zograf] [Graham-Witten] [Takhtajan-Teo] [Krasnov-Schlenker] [Guillarmou-Moroianu]...

Liouville theory

We want a functional I which also depends on the Teichmuller space $\mathscr{T}(X)$ (dim =6 genus - 6):

$$
I: C^{\infty}(X, \mathbb{R}) \times \mathscr{T}(X) \rightarrow \mathbb{R}:(\phi, \tau) \rightarrow I\left(e^{\phi} g_{\text {hyp }, \tau}\right)
$$

Such that $I(\phi, \tau)-I(\psi, \tau)=S\left[\phi, g_{\text {hyp }, \tau}\right]-S\left[\psi, g_{\text {hyp }, \tau}\right] \propto \log \operatorname{det} \Delta_{e \phi_{g_{\text {hy }}}}-\log \operatorname{det} \Delta_{e^{\psi} g_{\text {hyp }}}$
There are many ways to define such a function (and are different). The classical action (i.e. evaluated at $\phi=0$) all turn out to be a Kahler potential of the Weil-Petersson metric on $\mathscr{T}(X)$.

The Liouville actions can all be expressed as the renormalized volume of a hyperbolic 3-manifold.
[Takhtajan-Zograf] [Graham-Witten] [Takhtajan-Teo] [Krasnov-Schlenker] [Guillarmou-Moroianu]...

Our result is the version for the universal Teichmuller space (dim = $=\infty$).

Renormalized volume: Definition

Conformal metric on $\hat{\mathbb{C}}$ vs Equidistant foliation in \mathbb{H}^{3}

Conformal metric on $\hat{\mathbb{C}}$ vs Equidistant foliation in \mathbb{H}^{3}

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.

Conformal metric on $\hat{\mathbb{C}}$ vs Equidistant foliation in \mathbb{H}^{3}

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.
I.e. for all $\rho^{\prime}>\rho, \Sigma_{\rho^{\prime}}$ is between Σ_{ρ} and $\hat{\mathbb{C}}$, and at constant distance $\rho^{\prime}-\rho$ to Σ_{ρ}.

Conformal metric on $\hat{\mathbb{C}}$ vs Equidistant foliation in \mathbb{H}^{3}

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.
I.e. for all $\rho^{\prime}>\rho, \Sigma_{\rho^{\prime}}$ is between Σ_{ρ} and $\hat{\mathbb{C}}$, and at constant distance $\rho^{\prime}-\rho$ to Σ_{ρ}.

Example:

Conformal metric on $\hat{\mathbb{C}}$ vs Equidistant foliation in \mathbb{H}^{3}

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.
I.e. for all $\rho^{\prime}>\rho, \Sigma_{\rho^{\prime}}$ is between Σ_{ρ} and $\hat{\mathbb{C}}$, and at constant distance $\rho^{\prime}-\rho$ to Σ_{ρ}.

Example:
$g=d x^{2}+d y^{2}$. We have $\Sigma_{\rho}=\left\{z=e^{-\rho}\right\}, g_{\rho}=\left(d x^{2}+d y^{2}\right) / z^{2}=e^{2 \rho}\left(d x^{2}+d y^{2}\right)$.

Conformal metric on $\hat{\mathbb{C}}$ vs Equidistant foliation in \mathbb{H}^{3}

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.
I.e. for all $\rho^{\prime}>\rho, \Sigma_{\rho^{\prime}}$ is between Σ_{ρ} and $\hat{\mathbb{C}}$, and at constant distance $\rho^{\prime}-\rho$ to Σ_{ρ}.

Example:

$g=d x^{2}+d y^{2}$. We have $\Sigma_{\rho}=\left\{z=e^{-\rho}\right\}, g_{\rho}=\left(d x^{2}+d y^{2}\right) / z^{2}=e^{2 \rho}\left(d x^{2}+d y^{2}\right)$.

Foliation via Epstein surfaces

Foliation via Epstein surfaces

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.

Foliation via Epstein surfaces

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.
C. Epstein: Σ_{ρ} is the envelop of the horospheres associated to the metric $e^{2 \rho} g$ ('size' of the horosphere at $w \in \widehat{\mathbb{C}}$ is determined by the metric at w).

Foliation via Epstein surfaces

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.
C. Epstein: Σ_{ρ} is the envelop of the horospheres associated to the metric $e^{2 \rho} g$ ('size' of the horosphere at $w \in \widehat{\mathbb{C}}$ is determined by the metric at w).

The map Eps $e_{e^{2 \rho g}}: \hat{\mathbb{C}} \rightarrow \Sigma_{\rho}$ can also be written explicitly and pointwisely defined.

Foliation via Epstein surfaces

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.
C. Epstein: Σ_{ρ} is the envelop of the horospheres associated to the metric $e^{2 \rho} g$ ('size' of the horosphere at $w \in \widehat{\mathbb{C}}$ is determined by the metric at w).

The map Eps $e_{e^{2 \rho g}}: \hat{\mathbb{C}} \rightarrow \Sigma_{\rho}$ can also be written explicitly and pointwisely defined.

Foliation via Epstein surfaces

Let g be a conformal metric on $\hat{\mathbb{C}}$. There is a unique equidistant foliation $\left(\Sigma_{\rho}\right)_{\rho \geq \rho_{0}}$ near $\hat{\mathbb{C}}$ such that $e^{-2 \rho} g_{\rho}$ tends to g as $\rho \rightarrow \infty$.
C. Epstein: Σ_{ρ} is the envelop of the horospheres associated to the metric $e^{2 \rho} g$ ('size' of the horosphere at $w \in \widehat{\mathbb{C}}$ is determined by the metric at w).

The map $E p s_{e^{2 \rho \rho}}: \hat{\mathbb{C}} \rightarrow \Sigma_{\rho}$ can also be written explicitly and pointwisely defined.

Explicit expression of the Epstein map

Explicit expression of the Epstein map

In general, if we have a conformal metric $g=e^{\phi}|d w|^{2}$ on a domain Ω of $\hat{\mathbb{C}}$, the Epstein map $E p s_{g}: \Omega \rightarrow \Vdash^{3}$ is :

Explicit expression of the Epstein map

In general, if we have a conformal metric $g=e^{\phi}|d w|^{2}$ on a domain Ω of $\hat{\mathbb{C}}$, the Epstein map $E p s_{g}: \Omega \rightarrow \mathbb{H}^{3}$ is :

$$
E p s_{g}(w)=\left(w+\phi_{\bar{w}} \frac{e^{-\phi}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}, \frac{\sqrt{2} e^{-\phi / 2}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}\right) \in \mathbb{C} \times \mathbb{R}_{>0}=\mathbb{H}^{3}
$$

Explicit expression of the Epstein map

In general, if we have a conformal metric $g=e^{\phi}|d w|^{2}$ on a domain Ω of $\hat{\mathbb{C}}$, the Epstein map $E p s_{g}: \Omega \rightarrow \mathbb{H}^{3}$ is :

$$
E p s_{g}(w)=\left(w+\phi_{\bar{w}} \frac{e^{-\phi}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}, \frac{\sqrt{2} e^{-\phi / 2}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}\right) \in \mathbb{C} \times \mathbb{R}_{>0}=\mathbb{H}^{3}
$$

Explicit expression of the Epstein map

In general, if we have a conformal metric $g=e^{\phi}|d w|^{2}$ on a domain Ω of $\hat{\mathbb{C}}$, the Epstein map $E p s_{g}: \Omega \rightarrow \Vdash^{3}$ is :

$$
E p s_{g}(w)=\left(w+\phi_{\bar{w}} \frac{e^{-\phi}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}, \frac{\sqrt{2} e^{-\phi / 2}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}\right) \in \mathbb{C} \times \mathbb{R}_{>0}=\mathbb{H}^{3}
$$

Example: $\Omega=\mathbb{D}, g=g_{\mathbb{D}}=\frac{4|d w|^{2}}{\left(1-|w|^{2}\right)^{2}}$, the Epstein

Explicit expression of the Epstein map

In general, if we have a conformal metric $g=e^{\phi}|d w|^{2}$ on a domain Ω of $\hat{\mathbb{C}}$, the Epstein map $E p s_{g}: \Omega \rightarrow \mathbb{H}^{3}$ is :

$$
E p s_{g}(w)=\left(w+\phi_{\bar{w}} \frac{e^{-\phi}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}, \frac{\sqrt{2} e^{-\phi / 2}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}\right) \in \mathbb{C} \times \mathbb{R}_{>0}=\mathbb{H}^{3}
$$

Example: $\Omega=\mathbb{D}, g=g_{\mathbb{D}}=\frac{4|d w|^{2}}{\left(1-|w|^{2}\right)^{2}}$, the Epstein
surface is the totally geodesic plane bounded by $\partial \mathbb{D}$.

Explicit expression of the Epstein map

In general, if we have a conformal metric $g=e^{\phi}|d w|^{2}$ on a domain Ω of $\hat{\mathbb{C}}$, the Epstein map $E p s_{g}: \Omega \rightarrow \Vdash^{3}$ is :

$$
E p s_{g}(w)=\left(w+\phi_{\bar{w}} \frac{e^{-\phi}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}, \frac{\sqrt{2} e^{-\phi / 2}}{1+(1 / 2) e^{-\phi}\left|\phi_{w}\right|^{2}}\right) \in \mathbb{C} \times \mathbb{R}_{>0}=\mathbb{H}^{3}
$$

Example: $\Omega=\mathbb{D}, g=g_{\mathbb{D}}=\frac{4|d w|^{2}}{\left(1-|w|^{2}\right)^{2}}$, the Epstein
surface is the totally geodesic plane bounded by $\partial \mathbb{D}$.
Same for $\Omega=\mathbb{D}^{*}$.

Definition of N_{η} and $V_{R}\left(N_{\eta}\right)$

Definition of N_{η} and $V_{R}\left(N_{\eta}\right)$

η : a Jordan curve; $\quad \Omega$ and $\Omega *$: the c.c. of $\hat{\mathbb{C}} \backslash \eta$;

Definition of N_{η} and $V_{R}\left(N_{\eta}\right)$

η : a Jordan curve; $\quad \Omega$ and Ω^{*} : the c.c. of $\hat{\mathbb{C}}, ~ \eta$;
g_{Ω} and $g_{\Omega^{*}}$: the respective hyperbolic metric

Definition of N_{η} and $V_{R}\left(N_{\eta}\right)$

η : a Jordan curve; $\quad \Omega$ and Ω^{*} : the c.c. of $\hat{\mathbb{C}}, ~ \eta$;
g_{Ω} and $g_{\Omega} *$: the respective hyperbolic metric
Σ_{Ω} and $\Sigma_{\Omega^{*}}$: the associated Epstein surfaces.

Definition of N_{η} and $V_{R}\left(N_{\eta}\right)$

η : a Jordan curve; $\quad \Omega$ and Ω^{*} : the c.c. of $\hat{\mathbb{C}}, ~ \eta$;
g_{Ω} and $g_{\Omega} *$: the respective hyperbolic metric
Σ_{Ω} and $\Sigma_{\Omega^{*}}$: the associated Epstein surfaces.

Definition of N_{η} and $V_{R}\left(N_{\eta}\right)$

η : a Jordan curve; $\quad \Omega$ and Ω^{*} : the c.c. of $\hat{\mathbb{C}}, ~ \eta$;
g_{Ω} and g_{Ω} : the respective hyperbolic metric
Σ_{Ω} and $\Sigma_{\Omega^{*}}$: the associated Epstein surfaces.

Lemma: Σ_{Ω} and $\Sigma_{\Omega^{*}}$ are disjoint except when η is a circle.

Definition of N_{η} and $V_{R}\left(N_{\eta}\right)$

η : a Jordan curve; $\quad \Omega$ and Ω^{*} : the c.c. of $\hat{\mathbb{C}}, ~ \eta$;
g_{Ω} and g_{Ω} : the respective hyperbolic metric
Σ_{Ω} and $\Sigma_{\Omega^{*}}$: the associated Epstein surfaces.

Lemma: Σ_{Ω} and $\Sigma_{\Omega^{*}}$ are disjoint except when η is a circle.

Definition of N_{η} and $V_{R}\left(N_{\eta}\right)$

η : a Jordan curve; $\quad \Omega$ and Ω^{*} : the c.c. of $\hat{\mathbb{C}}, ~ \eta$;
g_{Ω} and g_{Ω} : the respective hyperbolic metric
Σ_{Ω} and $\Sigma_{\Omega^{*}}$: the associated Epstein surfaces.

Lemma: Σ_{Ω} and $\Sigma_{\Omega^{*}}$ are disjoint except when η is a circle.
N_{η} : the set bounded by Σ_{Ω} and $\Sigma_{\Omega^{*}}$

Definition of N_{η} and $V_{R}\left(N_{\eta}\right)$

η : a Jordan curve; $\quad \Omega$ and Ω^{*} : the c.c. of $\hat{\mathbb{C}}, ~ \eta$;
g_{Ω} and g_{Ω} : the respective hyperbolic metric
Σ_{Ω} and $\Sigma_{\Omega^{*}}$: the associated Epstein surfaces.

Lemma: Σ_{Ω} and $\Sigma_{\Omega^{*}}$ are disjoint except when η is a circle.
N_{η} : the set bounded by Σ_{Ω} and $\Sigma_{\Omega^{*}}$
$V_{R}\left(N_{\eta}\right)=\operatorname{Vol}\left(N_{\eta}\right)-\frac{1}{2} \int_{\Sigma_{\Omega} \cup \Sigma_{\Omega^{*}}} H d a$

Theorem (Bridgeman, Bromberg, Vargas-Pallete, W., 2023)

Theorem (Bridgeman, Bromberg, Vargas-Pallete, W., 2023)

When η is smooth, then $I^{L}(\eta)=4 V_{R}\left(N_{\eta}\right) / \pi$.

Theorem (Bridgeman, Bromberg, Vargas-Pallete, W., 2023)

When η is smooth, then $I^{L}(\eta)=4 V_{R}\left(N_{\eta}\right) / \pi$.
Moreover, we have $\int_{\Sigma_{\Omega}} H d a=\int_{\mathbb{D}^{\prime \prime \prime}}|\delta f|^{2}(w) \frac{\left(1-|w|^{2}\right)^{2}}{4}|d w|^{2}$ where f is any conformal map $\mathbb{D} \rightarrow \Omega$ and $\mathcal{S}(f)=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime \prime}}\right)^{2}$ is the Schwarzian derivative of f. Similarly for Ω^{*}.

Theorem (Bridgeman, Bromberg, Vargas-Pallete, W., 2023)

When η is smooth, then $I^{L}(\eta)=4 V_{R}\left(N_{\eta}\right) / \pi$.
Moreover, we have $\int_{\Sigma_{\Omega}} H d a=\int_{\mathbb{D}^{\prime \prime \prime}}|\delta f|^{2}(w) \frac{\left(1-|w|^{2}\right)^{2}}{4}|d w|^{2}$ where f is any conformal map $\mathbb{D} \rightarrow \Omega$ and $\mathcal{S}(f)=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime \prime}}\right)^{2}$ is the Schwarzian derivative of f. Similarly for Ω^{*}.

Theorem (Bridgeman, Bromberg, Vargas-Pallete, W., 2023)

When η is smooth, then $I^{L}(\eta)=4 V_{R}\left(N_{\eta}\right) / \pi$.
Moreover, we have $\int_{\Sigma_{\Omega}} H d a=\int_{\mathbb{D}}|\delta f|^{2}(w) \frac{\left(1-|w|^{2}\right)^{2}}{4}|d w|^{2}$ where f is any conformal
map $\mathbb{D} \rightarrow \Omega$ and $\delta(f)=\frac{f^{\prime \prime \prime}}{f^{\prime \prime}}-\frac{3}{2}\left(\frac{f^{\prime}}{f^{\prime}}\right)^{2}$ is the Schwarzian derivative of f. Similarly for Ω^{*}.

Example: When η is a circle, then $H \equiv 0$ and $\Sigma_{\Omega}=\Sigma_{\Omega^{*}}$.

Theorem (Bridgeman, Bromberg, Vargas-Pallete, W., 2023)

When η is smooth, then $I^{L}(\eta)=4 V_{R}\left(N_{\eta}\right) / \pi$.
Moreover, we have $\int_{\Sigma_{\Omega}} H d a=\int_{\mathbb{D}^{\prime \prime \prime}}|\delta f|^{2}(w) \frac{\left(1-|w|^{2}\right)^{2}}{4}|d w|^{2}$ where f is any conformal map $\mathbb{D} \rightarrow \Omega$ and $\mathcal{S}(f)=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}$ is the Schwarzian derivative of f. Similarly for Ω^{*}.

Example: When η is a circle, then $H \equiv 0$ and $\Sigma_{\Omega}=\Sigma_{\Omega^{*}}$.

$$
\Rightarrow \quad V_{R}\left(N_{S^{1}}\right)=0
$$

Theorem (Bridgeman, Bromberg, Vargas-Pallete, W., 2023)

When η is smooth, then $I^{L}(\eta)=4 V_{R}\left(N_{\eta}\right) / \pi$.
Moreover, we have $\int_{\Sigma_{\Omega}} H d a=\int_{\mathbb{D}^{\prime \prime}}|\mathcal{S f}|^{2}(w) \frac{\left(1-|w|^{2}\right)^{2}}{4}|d w|^{2}$ where f is any conformal map $\mathbb{D} \rightarrow \Omega$ and $\delta(f)=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}$ is the Schwarzian derivative of f. Similarly for Ω^{*}.

Example: When η is a circle, then $H \equiv 0$ and $\Sigma_{\Omega}=\Sigma_{\Omega^{*}}$.

$$
\Rightarrow \quad V_{R}\left(N_{S^{1}}\right)=0 .
$$

Proof: We show that $\operatorname{Vol}\left(N_{\eta}\right)<\infty$, and $I^{L}(\eta)$ and $4 V_{R}\left(N_{\eta}\right) / \pi$ satisfy the same variation formula and vanish when $\eta=S^{1}$.

Variation formula

Variation formula

Modifying the curve (using hyperbolic metric in $\mathbb{C} \backslash \eta$):

Variation formula

Modifying the curve (using hyperbolic metric in $\mathbb{C} \backslash \eta$):

$$
\partial_{\mu} I^{L}(\eta)=-\frac{4}{\pi} \operatorname{Re} \int_{\mathbb{C}_{\eta}} \mu \delta\left(f^{-1}\right)=\frac{4}{\pi} \partial_{\mu} V_{R}\left(N_{\eta}\right)
$$

Variation formula

Modifying the curve (using hyperbolic metric in $\mathbb{C} \backslash \eta$):

$$
\partial_{\mu} I^{L}(\eta)=-\frac{4}{\pi} \operatorname{Re} \int_{\mathbb{C} \eta} \mu \delta\left(f^{-1}\right)=\frac{4}{\pi} \partial_{\mu} V_{R}\left(N_{\eta}\right)
$$

Where $\mathcal{S}(f)=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}$, and μ is a Beltrami differential with integrability assumption ([Takhtajan-Teo] [Sung-W.])

Variation formula

Modifying the curve (using hyperbolic metric in $\mathbb{C} \backslash \eta$):

$$
\partial_{\mu} I^{L}(\eta)=-\frac{4}{\pi} \operatorname{Re} \int_{\mathbb{C}_{\eta}} \mu \delta\left(f^{-1}\right)=\frac{4}{\pi} \partial_{\mu} V_{R}\left(N_{\eta}\right)
$$

Where $\mathcal{S}(f)=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}$, and μ is a Beltrami differential with integrability assumption ([Takhtajan-Teo] [Sung-W.])

Modifying the metric (in $d z, d \bar{z}$ coordinates) $g^{-1} \delta g=\left(\begin{array}{cc}\bar{\mu} & s \\ s & \mu\end{array}\right)$

Variation formula

Modifying the curve (using hyperbolic metric in $\mathbb{C} \backslash \eta$):

$$
\partial_{\mu} I^{L}(\eta)=-\frac{4}{\pi} \operatorname{Re} \int_{\mathbb{C} \eta} \mu \delta\left(f^{-1}\right)=\frac{4}{\pi} \partial_{\mu} V_{R}\left(N_{\eta}\right)
$$

Where $\delta(f)=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}$, and μ is a Beltrami differential with integrability assumption ([Takhtajan-Teo] [Sung-W.])

Modifying the metric (in $d z, d \bar{z}$, coordinates) $g^{-1} \delta g=\left(\begin{array}{cc}\bar{\mu} & s \\ s & \mu\end{array}\right)$
The stress-energy tensor of the Loewner energy $\delta I^{L}=\int<T, g^{-1} \delta g>\Longrightarrow T=\frac{2}{\pi}\left(\begin{array}{cc}\mathcal{S}\left(f^{-1}\right) & 0 \\ 0 & \frac{\mathcal{S}\left(f^{-1}\right)}{}\end{array}\right)$

Analogous Liouville action: Quasi-Fuchsian case

[Takhtajan-Teo, CMP], [Krasnov-Schlenker, CMP]

Teichmuller spaces

Teichmuller spaces

X is a Riemann surface of genus ≥ 2. We have $X=\mathbb{H}^{2} / \Gamma$, where Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

Teichmuller spaces

X is a Riemann surface of genus ≥ 2. We have $X=\mathbb{H}^{2} / \Gamma$, where Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

Teichmuller spaces

X is a Riemann surface of genus ≥ 2. We have $X=\mathbb{H}^{2} / \Gamma$, where Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

$$
\mathscr{T}(X)=\left\{\mu: \mathbb{W}^{2} \rightarrow \mathbb{C},\|\mu\|_{\infty}<1, \gamma^{*} \mu=\mu, \forall \gamma \in \Gamma\right\}_{/ \sim} \text { where } \gamma^{*} \mu=\mu \circ \gamma \frac{\gamma^{\prime}}{\gamma^{\prime}},
$$

and $\mu \sim \nu$ iff the quasiconformal maps $\omega^{\mu}, \omega^{\nu}: \mathbb{\Vdash}^{2} \rightarrow \mathbb{\Vdash}^{2}$

Teichmuller spaces

X is a Riemann surface of genus ≥ 2. We have $X=\mathbb{H}^{2} / \Gamma$, where Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.
$\mathscr{T}(X)=\left\{\mu: \mathbb{H}^{2} \rightarrow \mathbb{C},\|\mu\|_{\infty}<1, \gamma^{*} \mu=\mu, \forall \gamma \in \Gamma\right\}_{/ \sim}$ where $\gamma^{*} \mu=\mu \circ \gamma \frac{\overline{\gamma^{\prime}}}{\gamma^{\prime}}$,
and $\mu \sim \nu$ iff the quasiconformal maps $\omega^{\mu}, \omega^{\nu}: \mathbb{\Vdash}^{2} \rightarrow \mathbb{\Vdash}^{2}$
$\frac{\bar{\partial} \omega^{\mu}}{\partial \omega^{\mu}}=\mu, \quad \omega^{\mu}$ fixing $0,1, \infty$ satisfy $\left.\omega^{\mu}\right|_{\mathbb{R}}=\left.\omega^{\nu}\right|_{\mathbb{R}}$.

Teichmuller spaces

X is a Riemann surface of genus ≥ 2. We have $X=\mathbb{H}^{2} / \Gamma$, where Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.
$\mathscr{T}(X)=\left\{\mu: \mathbb{H}^{2} \rightarrow \mathbb{C},\|\mu\|_{\infty}<1, \gamma^{*} \mu=\mu, \forall \gamma \in \Gamma\right\}_{/ \sim}$ where $\gamma^{*} \mu=\mu \circ \gamma \frac{\overline{\gamma^{\prime}}}{\gamma^{\prime}}$,
and $\mu \sim \nu$ iff the quasiconformal maps $\omega^{\mu}, \omega^{\nu}: \mathbb{\Vdash}^{2} \rightarrow \mathbb{\Vdash}^{2}$
$\frac{\bar{\partial} \omega^{\mu}}{\partial \omega^{\mu}}=\mu, \quad \omega^{\mu}$ fixing $0,1, \infty$ satisfy $\left.\omega^{\mu}\right|_{\mathbb{R}}=\left.\omega^{\nu}\right|_{\mathbb{R}}$.

Quasi-Fuchsian manifold

Quasi-Fuchsian manifold

For any $\mu, \nu \in \mathscr{T}(X)$, there is a unique hyperbolic 3-manifold M homeomorphic to $X \times(0,1)$, such that the two conformal boundary $\partial_{\infty,+} M=X^{\mu}$ and $\partial_{\infty,-} M=X^{\nu}$.

Quasi-Fuchsian manifold

For any $\mu, \nu \in \mathscr{T}(X)$, there is a unique hyperbolic 3-manifold M homeomorphic to $X \times(0,1)$, such that the two conformal boundary $\partial_{\infty,+} M=X^{\mu}$ and $\partial_{\infty,-} M=X^{\nu}$.

Construction: Bers' simultaneous uniformization

Quasi-Fuchsian manifold

For any $\mu, \nu \in \mathscr{T}(X)$, there is a unique hyperbolic 3-manifold M homeomorphic to $X \times(0,1)$, such that the two conformal boundary $\partial_{\infty,+} M=X^{\mu}$ and $\partial_{\infty,-} M=X^{\nu}$.

Construction: Bers' simultaneous uniformization
We solve the Beltrami equation

Quasi-Fuchsian manifold

For any $\mu, \nu \in \mathscr{T}(X)$, there is a unique hyperbolic 3-manifold M homeomorphic to $X \times(0,1)$, such that the two conformal boundary $\partial_{\infty,+} M=X^{\mu}$ and $\partial_{\infty,-} M=X^{\nu}$.

Construction: Bers' simultaneous uniformization

We solve the Beltrami equation

$$
\frac{\bar{\partial} \omega^{\mu, \nu}}{\partial \omega^{\mu, \nu}}(z)= \begin{cases}\mu(z), & z \in \mathbb{H} \\ \overline{\nu(1 / \bar{z})}\left(z^{2} / \bar{z}^{2}\right), & z \in \mathbb{H} *\end{cases}
$$

Quasi-Fuchsian manifold

For any $\mu, \nu \in \mathscr{T}(X)$, there is a unique hyperbolic 3-manifold M homeomorphic to $X \times(0,1)$, such that the two conformal boundary $\partial_{\infty,+} M=X^{\mu}$ and $\partial_{\infty,-} M=X^{\nu}$.

Construction: Bers' simultaneous uniformization
We solve the Beltrami equation

$$
\begin{aligned}
& \frac{\bar{\partial} \omega^{\mu, \nu}}{\partial \omega^{\mu, \nu}}(z)= \begin{cases}\frac{\mu(z),}{\nu(1 / \bar{z})}\left(z^{2} / \bar{z}^{2}\right), & z \in \mathbb{H}^{*}\end{cases} \\
& \Gamma^{\mu, \nu}:=\omega^{\mu, \nu} \circ \Gamma \circ\left(\omega^{\mu, \nu}\right)^{-1} \subset \operatorname{PSL}(2, \mathbb{C})
\end{aligned}
$$

Quasi-Fuchsian manifold

For any $\mu, \nu \in \mathscr{T}(X)$, there is a unique hyperbolic 3-manifold M homeomorphic to $X \times(0,1)$, such that the two conformal boundary $\partial_{\infty,+} M=X^{\mu}$ and $\partial_{\infty,-} M=X^{\nu}$.

Construction: Bers' simultaneous uniformization
We solve the Beltrami equation

$$
\begin{aligned}
& \frac{\bar{\partial} \omega^{\mu, \nu}}{\partial \omega^{\mu, \nu}}(z)= \begin{cases}\frac{\mu(z),}{\nu(1 / \bar{z})}\left(z^{2} / \bar{z}^{2}\right), & z \in \mathbb{H}^{*}\end{cases} \\
& \Gamma^{\mu, \nu}:=\omega^{\mu, \nu} \circ \Gamma \circ\left(\omega^{\mu, \nu}\right)^{-1} \subset \operatorname{PSL}(2, \mathbb{C})
\end{aligned}
$$

is a quasi-Fuchsian group. And $M=\llbracket^{3} / \Gamma^{\mu, \nu}$.

Liouville action: Quasi-Fuchsian case

Liouville action: Quasi-Fuchsian case

Consider $M=\Vdash^{3} / \Gamma^{\mu, \nu}$ where $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ are endowed with the respective hyperbolic metric. (The conformal metrics on $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ define an equidistant foliation given by the $\left(e^{2 \rho} g_{\text {hyp }}\right)_{\rho \geq \rho_{0}}$ Epstein surfaces near the ends.)

Liouville action: Quasi-Fuchsian case

Consider $M=\llbracket \Vdash^{3} / \Gamma^{\mu, \nu}$ where $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ are endowed with the respective hyperbolic metric. (The conformal metrics on $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ define an equidistant foliation given by the $\left(e^{2 \rho} g_{\text {hyp }}\right)_{\rho \geq \rho_{0}}$ Epstein surfaces near the ends.)

Define $V_{R}(\mu, \nu): \mathscr{T}(X) \times \mathscr{T}(X) \rightarrow \mathbb{R}$ by

Liouville action: Quasi-Fuchsian case

Consider $M=\llbracket \Vdash^{3} / \Gamma^{\mu, \nu}$ where $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ are endowed with the respective hyperbolic metric. (The conformal metrics on $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ define an equidistant foliation given by the $\left(e^{2 \rho} g_{\text {hyp }}\right)_{\rho \geq \rho_{0}}$ Epstein surfaces near the ends.)

Define $V_{R}(\mu, \nu): \mathscr{T}(X) \times \mathscr{T}(X) \rightarrow \mathbb{R}$ by
$V_{R}(\mu, \nu)=\operatorname{Vol}\left(N_{\rho}\right)-\frac{1}{2} \int_{\partial N_{\rho}} H d a-4 \pi \rho(\operatorname{genus}(X)-1)$

Liouville action: Quasi-Fuchsian case

Consider $M=\llbracket \Vdash^{3} / \Gamma^{\mu, \nu}$ where $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ are endowed with the respective hyperbolic metric. (The conformal metrics on $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ define an equidistant foliation given by the $\left(e^{2 \rho} g_{\text {hyp }}\right)_{\rho \geq \rho_{0}}$ Epstein surfaces near the ends.)

Define $V_{R}(\mu, \nu): \mathscr{T}(X) \times \mathscr{T}(X) \rightarrow \mathbb{R}$ by
$V_{R}(\mu, \nu)=\operatorname{Vol}\left(N_{\rho}\right)-\frac{1}{2} \int_{\partial N_{\rho}} H d a-4 \pi \rho(\operatorname{genus}(X)-1)$

Liouville action: Quasi-Fuchsian case

Consider $M=\llbracket \Vdash^{3} / \Gamma^{\mu, \nu}$ where $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ are endowed with the respective hyperbolic metric. (The conformal metrics on $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ define an equidistant foliation given by the $\left(e^{2 \rho} g_{\text {hyp }}\right)_{\rho \geq \rho_{0}}$ Epstein surfaces near the ends.)

Define $V_{R}(\mu, \nu): \mathscr{T}(X) \times \mathscr{T}(X) \rightarrow \mathbb{R}$ by
$V_{R}(\mu, \nu)=\operatorname{Vol}\left(N_{\rho}\right)-\frac{1}{2} \int_{\partial N_{\rho}} H d a-4 \pi \rho(\operatorname{genus}(X)-1)$

Theorem [Takhtajan-Teo, ©MP], [Krasnov-Schlenker, CMP]

Liouville action: Quasi-Fuchsian case

Consider $M=\llbracket \Vdash^{3} / \Gamma^{\mu, \nu}$ where $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ are endowed with the respective hyperbolic metric. (The conformal metrics on $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ define an equidistant foliation given by the $\left(e^{2 \rho} g_{h y p}\right)_{\rho \geq \rho_{0}}$ Epstein surfaces near the ends.)

Define $V_{R}(\mu, \nu): \mathscr{T}(X) \times \mathscr{T}(X) \rightarrow \mathbb{R}$ by
$V_{R}(\mu, \nu)=\operatorname{Vol}\left(N_{\rho}\right)-\frac{1}{2} \int_{\partial N_{\rho}} H d a-4 \pi \rho(\operatorname{genus}(X)-1)$

Theorem [Takhtajan-Teo, CMP], [Krasnov-Schlenker, CMP]
For any $\nu \in \mathscr{T}(X), V_{R}(\cdot, \nu)$ is a Kahler potential of the Weil-Petersson metric on $\mathscr{T}(X)$.

Liouville action: Quasi-Fuchsian case

Consider $M=\llbracket \Vdash^{3} / \Gamma^{\mu, \nu}$ where $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ are endowed with the respective hyperbolic metric. (The conformal metrics on $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ define an equidistant foliation given by the $\left(e^{2 \rho} g_{h y p}\right)_{\rho \geq \rho_{0}}$ Epstein surfaces near the ends.)

Define $V_{R}(\mu, \nu): \mathscr{T}(X) \times \mathscr{T}(X) \rightarrow \mathbb{R}$ by
$V_{R}(\mu, \nu)=\operatorname{Vol}\left(N_{\rho}\right)-\frac{1}{2} \int_{\partial N_{\rho}} H d a-4 \pi \rho(\operatorname{genus}(X)-1)$

Theorem [Takhtajan-Teo, CMP], [Krasnov-Schlenker, CMP]
For any $\nu \in \mathscr{T}(X), V_{R}(\cdot, \nu)$ is a Kahler potential of the Weil-Petersson metric on $\mathscr{T}(X)$.

Liouville action: Quasi-Fuchsian case

Consider $M=\llbracket \Vdash^{3} / \Gamma^{\mu, \nu}$ where $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ are endowed with the respective hyperbolic metric. (The conformal metrics on $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$ define an equidistant foliation given by the $\left(e^{2 \rho} g_{h y p}\right)_{\rho \geq \rho_{0}}$ Epstein surfaces near the ends.)

Define $V_{R}(\mu, \nu): \mathscr{T}(X) \times \mathscr{T}(X) \rightarrow \mathbb{R}$ by
$V_{R}(\mu, \nu)=\operatorname{Vol}\left(N_{\rho}\right)-\frac{1}{2} \int_{\partial N_{\rho}} H d a-4 \pi \rho(\operatorname{genus}(X)-1)$

Theorem [Takhtajan-Teo, CMP], [Krasnov-Schlenker, CMP]
For any $\nu \in \mathscr{T}(X), V_{R}(\cdot, \nu)$ is a Kahler potential of the Weil-Petersson metric on $\mathscr{T}(X)$.
(If we also use other conformal metrics on $\partial_{\infty,+} M$ and $\partial_{\infty,-} M$, we obtain the Liouville action, such that $V_{R}(\cdot, \nu)$ is a classical Liouville action.)

Conclusion

Conclusion

- The Loewner energy is the large deviation rate function of $S L E_{0+}$ and also the Kahler potential for the Weil-Petersson metric on universal Teichmuller space.

Conclusion

- The Loewner energy is the large deviation rate function of $S L E_{0+}$ and also the Kahler potential for the Weil-Petersson metric on universal Teichmuller space.
- The Loewner energy I^{L} is $\operatorname{PSL}(2, \mathbb{C})$-invariant. We show that it can be expressed as a renormalized volume in \mathbb{H}^{3} (which is \mathbb{H}^{3} isometry-invariant).

Conclusion

- The Loewner energy is the large deviation rate function of $S L E_{0+}$ and also the Kahler potential for the Weil-Petersson metric on universal Teichmuller space.
- The Loewner energy I^{L} is $\operatorname{PSL}(2, \mathbb{C})$-invariant. We show that it can be expressed as a renormalized volume in $\mathbb{-}^{3}$ (which is $\mathbb{\Vdash}^{3}$ isometry-invariant).
- This is similar to the holographic expression of Liouville actions for compact surfaces. We obtain a unified description of Kahler potentials for the Weil-Petersson metric on Teichmuller spaces and for Universal Teichmuller space.

Conclusion

- The Loewner energy is the large deviation rate function of $S L E_{0+}$ and also the Kahler potential for the Weil-Petersson metric on universal Teichmuller space.
- The Loewner energy I^{L} is $\operatorname{PSL}(2, \mathbb{C})$-invariant. We show that it can be expressed as a renormalized volume in $\mathbb{\Perp}^{3}$ (which is $\mathbb{\Vdash}^{3}$ isometry-invariant).
- This is similar to the holographic expression of Liouville actions for compact surfaces. We obtain a unified description of Kahler potentials for the Weil-Petersson metric on Teichmuller spaces and for Universal Teichmuller space.
- Proof relies on the variational formula of the Loewner energy and the renormalized volume.

Conclusion

- The Loewner energy is the large deviation rate function of $S L E_{0+}$ and also the Kahler potential for the Weil-Petersson metric on universal Teichmuller space.
- The Loewner energy I^{L} is $\operatorname{PSL}(2, \mathbb{C})$-invariant. We show that it can be expressed as a renormalized volume in $\mathbb{-}^{3}$ (which is $\mathbb{\Vdash}^{3}$ isometry-invariant).
- This is similar to the holographic expression of Liouville actions for compact surfaces. We obtain a unified description of Kahler potentials for the Weil-Petersson metric on Teichmuller spaces and for Universal Teichmuller space.
- Proof relies on the variational formula of the Loewner energy and the renormalized volume.

Thanks!

