Ciliated maps, minimal models coupled to gravity and topological gravity

Okinawa Institute of Science and Technology CFT, Probability, Gravity Séverin Charbonnier – Université de Genève

August 2nd 2023

590

Discretisation

590

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

590

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

590

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

590

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

Continuous limit: large maps.

DQC

Э

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

Continuous limit: large maps.

DQC

Э

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

Continuous limit: large maps. ↔ KdV hierarchy; (3,2) minimal model coupled to gravity

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

Continuous limit: large maps. \leftrightarrow KdV hierarchy; (3,2) minimal model coupled to gravity

Topological gravity

 $\overline{\mathcal{M}}_{g,n}$: {stable Riemann surfaces, genus g, n marked points}/ \sim .

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

Continuous limit: large maps. ↔ KdV hierarchy; (3,2) minimal model coupled to gravity

Topological gravity

 $\overline{\mathcal{M}}_{g,n}$: {stable Riemann surfaces, genus g, n marked points}/ \sim . Observables $\psi_i \in H^2(\overline{\mathcal{M}}_{g,n}, \mathbb{Q})$: Chern classes. Intersection numbers:

 $\langle \tau_{d_1} \dots \tau_{d_n} \rangle_g := \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1} \dots \psi_n^{d_n}$

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

Continuous limit: large maps. \leftrightarrow KdV hierarchy; (3,2) minimal model coupled to gravity

Topological gravity

 $\overline{\mathcal{M}}_{g,n}$: {stable Riemann surfaces, genus g, n marked points}/ \sim . Observables $\psi_i \in H^2(\overline{\mathcal{M}}_{g,n}, \mathbb{Q})$: Chern classes.

Intersection numbers:

$$\langle \tau_{d_1} \dots \tau_{d_n} \rangle_g := \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1} \dots \psi_n^{d_n}$$

Partition function

$$Z^{\psi} = \exp\Big(\sum_{g \ge 0} \hbar^{g-1} \big\langle e^{\sum t_d \tau_d} \big\rangle_g\Big)$$

Discretisation

 \rightarrow Count maps. Generating functions F_g . Partition function

$$Z = \exp\left(\sum_{g \ge 0} \hbar^{g-1} F_g\right)$$

Continuous limit: large maps. \leftrightarrow KdV hierarchy; (3,2) minimal model coupled to gravity

Topological gravity

 $\overline{\mathcal{M}}_{g,n}$: {stable Riemann surfaces, genus g, n marked points}/ \sim . Observables $\psi_i \in H^2(\overline{\mathcal{M}}_{g,n}, \mathbb{Q})$: Chern classes. Intersection numbers:

ntersection numbers:

$$\langle \tau_{d_1} \dots \tau_{d_n} \rangle_g := \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1} \dots \psi_n^{d_n}$$

Partition function

$$Z^{\psi} = \exp\Big(\sum_{g\geq 0} \hbar^{g-1} \big\langle e^{\sum t_d \tau_d} \big\rangle_g\Big)$$

[Witten '90] conjecture; [Konsevich '91] theorem. Both approaches are consistent: $Z = Z^{\psi} \Rightarrow Z^{\psi}$ solution of KdV integrable hierarchy.

Plan

- 1) Ciliated maps: definitions and enumeration results
 - Ciliated maps
 - Topological Recursion
 - Enumeration results
- 2 Large maps from ciliated maps and minimal models
 - Asymptotics of large maps
 - Singular spectral curve and minimal models
 - KPZ exponents
- 3 Topological gravity associated to ciliated maps
 - Topological gravity and intersection theory
 - Ciliated maps and Witten's class
- 4 Ciliated maps and free probabilities

[BCEG '21]: jw R. Belliard, B. Eynard, E. Garcia-Failde
[BCG '21]: jw G. Borot, E. Garcia-Failde
[BCGLS '21]: jw G. Borot, E. Garcia-Failde, F. Leid, S. Shadrin
[CCGG '22]: jw N. Chidambaram, E. Garcia-Failde, A. Giacchetto

nac

1 Ciliated maps: definitions and enumeration results

- Ciliated maps
- Topological Recursion
- Enumeration results

2 Large maps from ciliated maps and minimal models

- Asymptotics of large maps
- Singular spectral curve and minimal models
- KPZ exponents
- 3 Topological gravity associated to ciliated maps
 Topological gravity and intersection theory
 Ciliated maps and Witten's class

4 Ciliated maps and free probabilities

Definition (Map)

A map is a graph G where each vertex is endowed with a cyclic ordering of the incident half-edges.

590

Definition (Map)

A map is a graph G where each vertex is endowed with a cyclic ordering of the incident half-edges.

э

臣

590

Genus g of a connected map (Euler's formula): #vertices - #edges + #faces = 2 - 2g

Genus g of a connected map (Euler's formula): #vertices - #edges + #faces = 2 - 2gModel of maps: specify constraints

Genus g of a connected map (Euler's formula): #vertices - #edges + #faces = 2 - 2gModel of maps: specify constraints, decorations

Ciliated maps CFT, gravity, free proba

Genus g of a connected map (Euler's formula): #vertices - #edges + #faces = 2 - 2gModel of maps: specify constraints, decorations, way of counting.

Let $r \ge 2$. A ciliated map is a map with 2 kinds of vertices:

э

臣

590

Let $r \ge 2$. A ciliated map is a map with 2 kinds of vertices:

• Black vertices, of degree in {3,..., r + 1};

э

臣

590

Let $r \ge 2$. A ciliated map is a map with 2 kinds of vertices:

- Black vertices, of degree in {3,..., r + 1};
- White vertices of degree 1, such that each face is adjacent to at most one white vertex.

Э

Let $r \ge 2$. A ciliated map is a map with 2 kinds of vertices:

- Black vertices, of degree in {3,..., r + 1};
- White vertices of degree 1, such that each face is adjacent to at most one white vertex.

Ciliated maps of type (g, n)

Let $g \ge 0$, $n \ge 0$. *M* is a ciliated map of type (g, n) $(M \in \mathfrak{C}_{g,n})$ if it is connected, of genus *g*, and has *n* labelled white vertices.

Let $r \ge 2$. A ciliated map is a map with 2 kinds of vertices:

- Black vertices, of degree in {3,..., r + 1};
- White vertices of degree 1, such that each face is adjacent to at most one white vertex.

Ciliated maps of type (g, n)

Let $g \ge 0$, $n \ge 0$. M is a ciliated map of type (g, n) $(M \in \mathfrak{C}_{g,n})$ if it is connected, of genus g, and has n labelled white vertices. Faces adjacent to white vertices: marked faces. Other faces: internal.

Decorations

Let $M \in \mathfrak{C}_{g,n}$, decorate the faces fof M with parameters a_f :

590

Decorations

Let $M \in \mathfrak{C}_{g,n}$, decorate the faces fof M with parameters a_f :

 f internal: a_f ∈ {λ₁,...,λ_N} (λ_i ∈ C are parameters of the model);

590

Э

Decorations

Let $M \in \mathfrak{C}_{g,n}$, decorate the faces fof M with parameters a_f :

- f internal: a_f ∈ {λ₁,...,λ_N} (λ_i ∈ C are parameters of the model);
- f is the ith marked face: $a_f = z_i$.

590

Э

Decorations

Let $M \in \mathfrak{C}_{g,n}$, decorate the faces fof M with parameters a_f :

- f internal: a_f ∈ {λ₁,...,λ_N} (λ_i ∈ C are parameters of the model);
- f is the ith marked face: $a_f = z_i$.

√ へ (~
7 / 22

Potential:
$$V(u) = \sum_{j=1}^{r+1} \frac{v_j}{j} u^j$$
.

$$\boxed{\begin{array}{c|c} Object & Picture & Weight \\ \hline Edge & \hline a_2 & \mathcal{P}(a_1, a_2) = \frac{a_1 - a_2}{V'(a_1) - V'(a_2)} \\ \hline White vertex & - \circ z_i & 1 \\ \hline Black vertex & a_2 \mid a_1 & V_k(a_1, \dots, a_k) = \underset{u=\infty}{\operatorname{Res}} \frac{V'(u)du}{\prod_{j=1}^k (u-a_j)} \\ \hline Steerin Chapterpier (Unice) & Gliated maps (EL gravity, free grave$$

Decorations

Let $M \in \mathfrak{C}_{g,n}$, decorate the faces fof M with parameters a_f :

 f internal: a_f ∈ {λ₁,...,λ_N} (λ_i ∈ C are parameters of the model);

 $r \pm 1$

• f is the ith marked face: $a_f = z_i$.

Potential:
$$V(u) = \sum_{j=1}^{L} \frac{v_j}{j} u^j$$
.WeightWeight of a ciliated map:ObjectPictureWeight I I I Edge a_1 $P(a_1, a_2) = \frac{a_1 - a_2}{V'(a_1) - V'(a_2)}$ I I I White vertex $-o Z_i$ I I I I Black vertex $a_2 \mid a_1$ $V_k(a_1, \dots, a_k) = \operatorname{Res} \frac{V'(u)du}{\prod_{j=1}^k (u-a_j)}$ I I Black vertex $a_2 \mid a_k$ $V_k(a_1, \dots, a_k) = \operatorname{Res} \frac{V'(u)du}{\prod_{j=1}^k (u-a_j)}$ I $V_k(a_1, \dots, a_k)$ Séverir Charbonnier (Unige)Ciliated maps CFT, gravity, free probaOIST: CFTPRGR 02/08/20237/22

Correlation functions

Generating functions

Weighted enumeration of decorated ciliated maps of type (g, n):

$$C_{g,n}(z_1,\ldots,z_n;\underline{\lambda};\underline{\nu}) = \sum_{M \in \mathfrak{C}_{g,n}} \frac{\operatorname{weight}(M)}{\#\operatorname{Aut}(M)}$$

weight(*M*): rational function in z_i , λ_i , v_k .

590

Ξ

Correlation functions

Generating functions

Weighted enumeration of decorated ciliated maps of type (g, n):

$$C_{g,n}(z_1,\ldots,z_n;\underline{\lambda};\underline{\nu}) = \sum_{M \in \mathfrak{C}_{g,n}} \frac{\operatorname{weight}(M)}{\#\operatorname{Aut}(M)}$$

weight(*M*): rational function in z_i , λ_j , v_k .

Partition function Z (free energy F):

$$Z(\underline{\lambda},\underline{\nu};\hbar) = e^{F(\underline{\lambda},\underline{\nu};\hbar)} = \exp\left(\sum_{g\geq 0} \hbar^{g-1}C_{g,0}\right), \qquad \hbar = \frac{t^2}{N^2}$$

ciliated, topology (g, n)

 $M \in$

Correlation functions

Generating functions

Weighted enumeration of decorated ciliated maps of type (g, n):

$$C_{g,n}(z_1,\ldots,z_n;\underline{\lambda};\underline{\nu}) = \sum_{M\in\mathfrak{C}_{g,n}} \frac{\operatorname{weight}(M)}{\#\operatorname{Aut}(M)}$$

weight(
$$M$$
): rational function in z_i , λ_j , v_k .

Partition function Z (free energy F):

$$Z(\underline{\lambda},\underline{v};\hbar) = e^{F(\underline{\lambda},\underline{v};\hbar)} = \exp\left(\sum_{g\geq 0} \hbar^{g-1} C_{g,0}\right), \qquad \hbar = \frac{t^2}{N^2}$$

Goals:

- Compute the $C_{g,n}$'s or the partition function.
- Specialise the parameters $\underline{\lambda},\,\underline{\textit{v}}$ to get CFT/Gravity.

ciliated, topology (g, n)

M∈

Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin ('07) Input Output Spectral Curve Differentials $(\omega_{g,n})_{g\geq 0,n\geq 0}$ $S = (\Sigma, x, y, \omega_{0,2})$ recursion on 2g - 2 + n

590

3

Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin ('07)

Input Spectral Curve $\mathcal{S} = (\Sigma, x, y, \omega_{0,2})$ **Output** Differentials $(\omega_{g,n})_{g \ge 0, n \ge 0}$ recursion on 2g - 2 + n

Spectral Curve

$$\begin{split} &\Sigma: \text{ Riemann surface;} \\ & x: \Sigma \to \mathbb{P}^1 \text{ branched covering;} \\ & y: \Sigma \to \mathbb{P}^1 \text{ ; } \omega_{0,2} \in H^0(\Sigma, K^{\boxtimes 2}). \end{split}$$

Topological Recursion

Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin ('07)

$$\begin{array}{cccc} \mathbf{Input} & & & & & \\ \mathbf{Spectral Curve} & & & & \\ \mathcal{S} = (\Sigma, x, y, \omega_{0,2}) & & & \\ \mathbf{Spectral Curve} & & & \\ \Sigma : \text{Riemann surface;} & & & \\ \mathbf{x} : \Sigma \to \mathbb{P}^1 \text{ branched covering;} & & & \\ \mathbf{y} : \Sigma \to \mathbb{P}^1 ; \omega_{0,2} \in H^0(\Sigma, K^{\boxtimes 2}). & & \\ & & & \\ \omega_{g,n}(z_1, l) = \sum_{a \in \Sigma, dx(a)=0} \operatorname{Res}_{z=a}^{\frac{1}{2} \int_{\sigma_a(z)}^{z} \omega_{0,2}(z_1, \cdot)} \left(\omega_{g-1,n+1}(z, \sigma_a(z), l) \right) \\ & &$$

 $I = \{z_2, \ldots, z_n\}; \sigma_a : \Sigma \to \Sigma$ local involution around a.

э

Э
Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin ('07)

Various applications :

- Matrix models (hermitian, Kontsevich), map enumeration
- Enumerative geometry (Hurwitz numbers)
- Weil-Petersson volumes, intersection numbers (Witten-Kontsevich)
- Integrable hierarchies (KdV, KP)
- ...

Topological Recursion (TR): procedure developed by Chekhov–Eynard–Orantin ('07)

Various applications :

- Matrix models (hermitian, Kontsevich), map enumeration
- Enumerative geometry (Hurwitz numbers)
- Weil-Petersson volumes, intersection numbers (Witten-Kontsevich)
- Integrable hierarchies (KdV, KP)
- ...

Goal: prove that ciliated maps satisfy TR.

590

臣

Theorem [BCEG '21]

- Computation of $C_{0,1}$ and $C_{0,2} \Rightarrow$ spectral curve.
- The $C_{g,n}$'s satisfy topological recursion.

Theorem [BCEG '21]

- Computation of $C_{0,1}$ and $C_{0,2} \Rightarrow$ spectral curve.
- The $C_{g,n}$'s satisfy topological recursion.

$$x(\zeta)=Q(\zeta), \qquad y(\zeta)=\zeta+t\sum_{j=1}^Nrac{1}{Q'(\xi_j)(\zeta-\xi_j)}$$

where Q is a degree r polynomial determined by: $Q(\zeta) = V'(y(\zeta)) + O(1/\zeta)$, and $\xi_j \in \mathbb{P}^1$ s.t. $Q(\xi_j) = V'(\lambda_j)$.

Theorem [BCEG '21]

- Computation of $C_{0,1}$ and $C_{0,2} \Rightarrow$ spectral curve.
- The $C_{g,n}$'s satisfy topological recursion.

$$x(\zeta)=Q(\zeta), \qquad y(\zeta)=\zeta+t\sum_{j=1}^Nrac{1}{Q'(\xi_j)(\zeta-\xi_j)}$$

where Q is a degree r polynomial determined by: $Q(\zeta) = V'(y(\zeta)) + O(1/\zeta)$, and $\xi_j \in \mathbb{P}^1$ s.t. $Q(\xi_j) = V'(\lambda_j)$.

Theorem [Belliard–C–Eynard–Garcia-Failde '21]

Let ζ_1, \ldots, ζ_n , determined from z_1, \ldots, z_n by $x(\zeta_i) = V'(z_i)$ and $\zeta_i = z_i + O(t)$.

the differentials (C_{g,n}(z₁,..., z_n)dx(ζ₁)...dx(ζ_n))_{g,n} can be analytically continued to meromorphic *n*-forms on P¹ ω_{g,n}(ζ₁,..., ζ_n);

Theorem [BCEG '21]

- Computation of $C_{0,1}$ and $C_{0,2} \Rightarrow$ spectral curve.
- The $C_{g,n}$'s satisfy topological recursion.

$$x(\zeta)=Q(\zeta), \qquad y(\zeta)=\zeta+t\sum_{j=1}^Nrac{1}{Q'(\xi_j)(\zeta-\xi_j)}$$

where Q is a degree r polynomial determined by: $Q(\zeta) = V'(y(\zeta)) + O(1/\zeta)$, and $\xi_j \in \mathbb{P}^1$ s.t. $Q(\xi_j) = V'(\lambda_j)$.

Theorem [Belliard–C–Eynard–Garcia-Failde '21]

Let ζ_1, \ldots, ζ_n , determined from z_1, \ldots, z_n by $x(\zeta_i) = V'(z_i)$ and $\zeta_i = z_i + O(t)$.

- the differentials (C_{g,n}(z₁,..., z_n)dx(ζ₁)...dx(ζ_n))_{g,n} can be analytically continued to meromorphic *n*-forms on P¹ ω_{g,n}(ζ₁,..., ζ_n);
- for 2g 2 + n > 0, they satisfy topological recursion for the spectral curve $S = (\mathbb{P}^1, x(\zeta), y(\zeta), \frac{d\zeta_1 d\zeta_2}{(\zeta_1 \zeta_2)^2}).$

1 Ciliated maps: definitions and enumeration results

- Ciliated maps
- Topological Recursion
- Enumeration results

2 Large maps from ciliated maps and minimal models

- Asymptotics of large maps
- Singular spectral curve and minimal models
- KPZ exponents

Topological gravity associated to ciliated maps
 Topological gravity and intersection theory

• Ciliated maps and Witten's class

4 Ciliated maps and free probabilities

Specialise the parameters

•
$$\lambda_1 = \lambda_2 = \cdots = \lambda_N = 0.$$

•
$$v_1 = 0$$
, $v_2 = 1$ and $v_j = -t_j$ for $3 \le j \le r + 1$:

$$V(u) = \frac{u^2}{2} - \sum_{j=3}^{r+1} \frac{t_j}{j} u^j$$

→ Ξ → < Ξ

- 17

900

臣

Specialise the parameters • $\lambda_1 = \lambda_2 = \dots = \lambda_N = 0.$ • $v_1 = 0, v_2 = 1$ and $v_j = -t_j$ for $3 \le j \le r+1$: $V(u) = \frac{u^2}{2} - \sum_{j=3}^{r+1} \frac{t_j}{j} u^j.$ $\mathcal{P}(0,0) = 1$ and $\mathcal{V}_k(0,\dots,0) = t_k$ $\mathcal{C}_{g,0}(t, t_3, \dots, t_{r+1}) = \sum_{M \in \mathfrak{C}_{g,0}} \frac{1}{\# \operatorname{Aut} M} \prod_{\text{faces}} t \prod_{v \in \operatorname{vertices}(M)} t_{\deg v} \in \mathbb{Q}[t_3, \dots, t_{r+1}][[t]]$

 \Rightarrow C_{g,0}: Generating function of maps without marked faces.

Specialise the parameters • $\lambda_1 = \lambda_2 = \dots = \lambda_N = 0.$ • $v_1 = 0, v_2 = 1 \text{ and } v_j = -t_j \text{ for } 3 \le j \le r+1:$ $V(u) = \frac{u^2}{2} - \sum_{j=3}^{r+1} \frac{t_j}{j} u^j.$ $\mathcal{P}(0,0) = 1 \quad \text{and} \quad \mathcal{V}_k(0,\dots,0) = t_k$ $\mathcal{C}_{g,0}(t, t_3, \dots, t_{r+1}) = \sum_{M \in \mathfrak{C}_{g,0}} \frac{1}{\# \operatorname{Aut} M} \prod_{\text{faces}} t \prod_{v \in \operatorname{vertices}(M)} t_{\deg v} \in \mathbb{Q}[t_3, \dots, t_{r+1}][[t]]$

 $\Rightarrow C_{g,0}$: Generating function of maps without marked faces. **Remark:** $C_{g,n}$ are related to fully simple maps

Specialise the parameters • $\lambda_1 = \lambda_2 = \dots = \lambda_N = 0.$ • $v_1 = 0, v_2 = 1$ and $v_j = -t_j$ for $3 \le j \le r+1$: $V(u) = \frac{u^2}{2} - \sum_{j=3}^{r+1} \frac{t_j}{j} u^j.$ $\mathcal{P}(0,0) = 1$ and $\mathcal{V}_k(0,\dots,0) = t_k$ $C_{g,0}(t, t_3, \dots, t_{r+1}) = \sum_{M \in \mathfrak{C}_{g,0}} \frac{1}{\# \operatorname{Aut} M} \prod_{\text{faces}} t \prod_{v \in \operatorname{vertices}(M)} t_{\deg v} \in \mathbb{Q}[t_3, \dots, t_{r+1}][[t]]$

 $\Rightarrow C_{g,0}$: Generating function of maps without marked faces. **Remark:** $C_{g,n}$ are related to fully simple maps

Spectral curve

$$x(z) = Q(a + cz) = [V'(a + c(z + z^{-1}))]_{\geq 0}$$

 $y(z) = a + c(z + z^{-1})$
 $\omega_{0,2}(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

Specialise the parameters • $\lambda_1 = \lambda_2 = \dots = \lambda_N = 0.$ • $v_1 = 0, v_2 = 1$ and $v_j = -t_j$ for $3 \le j \le r+1$: $V(u) = \frac{u^2}{2} - \sum_{j=3}^{r+1} \frac{t_j}{j} u^j.$ $\mathcal{P}(0,0) = 1$ and $\mathcal{V}_k(0,\dots,0) = t_k$ $C_{g,0}(t, t_3, \dots, t_{r+1}) = \sum_{M \in \mathfrak{C}_{g,0}} \frac{1}{\# \operatorname{Aut} M} \prod_{\text{faces}} t \prod_{v \in \operatorname{vertices}(M)} t_{\deg v} \in \mathbb{Q}[t_3, \dots, t_{r+1}][[t]]$

 $\Rightarrow C_{g,0}$: Generating function of maps without marked faces. **Remark:** $C_{g,n}$ are related to fully simple maps

> Spectral curve $x(z) = Q(a + cz) = [V'(a + c(z + z^{-1}))]_{\geq 0}$ $y(z) = a + c(z + z^{-1})$ $\omega_{0,2}(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

Goal: study large maps \leftrightarrow count maps with a large number of faces.

Séverin Charbonnier (Unige)

Specialise the parameters • $\lambda_1 = \lambda_2 = \dots = \lambda_N = 0.$ • $v_1 = 0, v_2 = 1$ and $v_j = -t_j$ for $3 \le j \le r+1$: $V(u) = \frac{u^2}{2} - \sum_{j=3}^{r+1} \frac{t_j}{j} u^j.$ $\mathcal{P}(0,0) = 1$ and $\mathcal{V}_k(0,\dots,0) = t_k$ $C_{g,0}(t, t_3, \dots, t_{r+1}) = \sum_{M \in \mathfrak{C}_{g,0}} \frac{1}{\# \operatorname{Aut} M} \prod_{\text{faces}} t \prod_{v \in \operatorname{vertices}(M)} t_{\deg v} \in \mathbb{Q}[t_3, \dots, t_{r+1}][[t]]$

 $\Rightarrow C_{g,0}$: Generating function of maps without marked faces. **Remark:** $C_{g,n}$ are related to fully simple maps

> Spectral curve $x(z) = Q(a + cz) = [V'(a + c(z + z^{-1}))]_{\geq 0}$ $y(z) = a + c(z + z^{-1})$ $\omega_{0,2}(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

Goal: study large maps \leftrightarrow count maps with a large number of faces. **Question:** how to access the large order behaviours?

Séverin Charbonnier (Unige)

[Eynard 2016: Counting surfaces, chap. 5] Generating function $A(t) = \sum_{k \ge 0} A_k t^k \in \mathbb{Q}[[t]].$

Э

[Eynard 2016: Counting surfaces, chap. 5] Generating function $A(t) = \sum_{k\geq 0} A_k t^k \in \mathbb{Q}[[t]]$. Large k behaviour of $A_k \leftrightarrow$ singularities of A(t). Example: critical point at $t = t_c$ of the form

$$A(t)\sim rac{C}{(t_c-t)^lpha} \qquad \Rightarrow \qquad A_k \mathop{\sim}\limits_{k
ightarrow \infty} rac{C}{\Gamma(lpha)t_c^lpha} rac{k^{lpha-1}}{t_c^k}$$

 $\langle = = \rangle$

[Eynard 2016: Counting surfaces, chap. 5] Generating function $A(t) = \sum_{k\geq 0} A_k t^k \in \mathbb{Q}[[t]]$. Large k behaviour of $A_k \leftrightarrow$ singularities of A(t). Example: critical point at $t = t_c$ of the form

$$A(t) \sim rac{C}{(t_c - t)^{lpha}} \qquad \Rightarrow \qquad A_k \underset{k o \infty}{\sim} rac{C}{\Gamma(lpha) t_c^{lpha}} rac{k^{lpha - 1}}{t_c^k}$$

Singular spectral curve

At critical values $t = t_c$, $t_3 = t_{3c}$, ..., $t_{r+1} = t_{r+1c}$: the spectral curve has a cusp:

 $x \sim (y-a)^{rac{q}{p}} \qquad \leftrightarrow \qquad ext{Spectral curve of (p,q) minimal model}$

[Eynard 2016: Counting surfaces, chap. 5] Generating function $A(t) = \sum_{k\geq 0} A_k t^k \in \mathbb{Q}[[t]]$. Large k behaviour of $A_k \leftrightarrow$ singularities of A(t). Example: critical point at $t = t_c$ of the form

$$A(t)\sim rac{C}{(t_c-t)^lpha} \qquad \Rightarrow \qquad A_k \sim rac{C}{\Gamma(lpha)t_c^lpha} rac{k^{lpha-1}}{t_c^k}$$

Singular spectral curve

At critical values $t = t_c$, $t_3 = t_{3c}$, ..., $t_{r+1} = t_{r+1c}$: the spectral curve has a cusp:

 $x \sim (y-a)^{rac{q}{p}} \qquad \leftrightarrow \qquad ext{Spectral curve of (p,q) minimal model}$

[Eynard 2016: Counting surfaces, chap. 5] Generating function $A(t) = \sum_{k\geq 0} A_k t^k \in \mathbb{Q}[[t]]$. Large k behaviour of $A_k \leftrightarrow$ singularities of A(t). Example: critical point at $t = t_c$ of the form

$$A(t) \sim rac{C}{(t_c - t)^{lpha}} \qquad \Rightarrow \qquad A_k \sim rac{C}{\Gamma(lpha) t_c^{lpha}} rac{k^{lpha - 1}}{t_c^k}$$

Singular spectral curve

At critical values $t = t_c$, $t_3 = t_{3c}$, ..., $t_{r+1} = t_{r+1c}$: the spectral curve has a cusp:

 $x \sim (y-a)^{\frac{q}{p}} \qquad \leftrightarrow \qquad \text{Spectral curve of (p,q) minimal model}$

Large maps and (2,2m+1) minimal model

For maps, critical spectral curves of the form

$$\begin{cases} x(\zeta) = A_c \epsilon^{m+\frac{1}{2}} \left[(\zeta^2 - 2u)^{m+\frac{1}{2}} \right]_{\geq 0} + O(\epsilon^{m+\frac{3}{2}}) \\ y(\zeta) = a_c + c_c \epsilon(\zeta^2 - 2u) + O(\epsilon^2) \end{cases} \longleftrightarrow (2, 2m+1) - \text{minimal model} \end{cases}$$

where $\epsilon^2 = t_c - t$ and ζ special parametrisation of the spectral curve.

< ∃ >

DQC

Large maps and (2,2m+1) minimal model

For maps, critical spectral curves of the form

$$\begin{cases} x(\zeta) = A_c \epsilon^{m+\frac{1}{2}} \left[(\zeta^2 - 2u)^{m+\frac{1}{2}} \right]_{\geq 0} + O(\epsilon^{m+\frac{3}{2}}) \\ y(\zeta) = a_c + c_c \epsilon(\zeta^2 - 2u) + O(\epsilon^2) \end{cases} \longleftrightarrow (2, 2m+1) - \text{minimal model} \end{cases}$$

where $\epsilon^2 = t_c - t$ and ζ special parametrisation of the spectral curve.

Pure gravity
$V(u) = \frac{u^2}{2} - t_3 \frac{u^3}{3}$ Critical point: $tt_3^2 = \frac{1}{12\sqrt{3}}$ Near criticality: $tt_3^2 = \frac{1}{12\sqrt{3}}(1 - \frac{3}{4}\epsilon^2)^2$
$\begin{cases} x \sim \frac{\sqrt{t}}{3^{1/4}} \epsilon^{\frac{3}{2}} (\zeta^2 - 2)_{\geq 0}^{\frac{3}{2}} + O(\epsilon^{\frac{5}{2}}) \\ y \sim 3^{\frac{1}{4}} \sqrt{t} (y_c + \epsilon(\zeta^2 - 2)) + O(\epsilon^2) \end{cases}$
(2,3) minimal model: pure gravity. [Kontsevich–Witten]

Large maps and (2,2m+1) minimal model

For maps, critical spectral curves of the form

$$\begin{cases} x(\zeta) = A_c \epsilon^{m+\frac{1}{2}} \left[(\zeta^2 - 2u)^{m+\frac{1}{2}} \right]_{\geq 0} + O(\epsilon^{m+\frac{3}{2}}) \\ y(\zeta) = a_c + c_c \epsilon(\zeta^2 - 2u) + O(\epsilon^2) \end{cases} \longleftrightarrow (2, 2m+1) - \text{minimal model} \end{cases}$$

where $\epsilon^2 = t_c - t$ and ζ special parametrisation of the spectral curve.

Pure gravity
$V(u) = \frac{u^2}{2} - t_3 \frac{u^3}{3}$ Critical point: $tt_3^2 = \frac{1}{12\sqrt{3}}$ Near criticality: $tt_3^2 = \frac{1}{12\sqrt{3}}(1 - \frac{3}{4}\epsilon^2)^2$
$\begin{cases} x \sim \frac{\sqrt{t}}{3^{1/4}} \epsilon^{\frac{3}{2}} (\zeta^2 - 2)_{\geq 0}^{\frac{3}{2}} + O(\epsilon^{\frac{5}{2}}) \\ y \sim 3^{\frac{1}{4}} \sqrt{t} (y_c + \epsilon(\zeta^2 - 2)) + O(\epsilon^2) \end{cases}$
(2,3) minimal model: pure gravity. [Kontsevich–Witten]

Lee–Yang singularity
$V(u) = \frac{u^2}{2} - t_4 \frac{u^4}{4} - t_6 \frac{u^6}{6}$ Critical point: $tt_4 = \frac{1}{9}$, $t^2 t_6 = -\frac{1}{270}$ Near criticality:
$tt_6 = -\frac{1}{270}(1+(2u_0\epsilon)^3)$
$\begin{cases} x \sim -\frac{8}{5}\sqrt{\frac{t}{3}}\epsilon^{\frac{5}{2}}(\zeta^{2}-2u_{0})^{\frac{5}{2}}_{\geq 0}+O(\epsilon^{\frac{7}{2}})\\ y \sim \sqrt{3t}(2+\epsilon(\zeta^{2}-2u_{0}))+O(\epsilon^{2}) \end{cases}$
(2,5) minimal model: Lee-Yang singularity.

$$C_{g,0} \underset{t o t_c}{\sim} (1 - t/t_c)^{(2-2g)\frac{2m+3}{2m+2}} t_c^{2-2g} \widetilde{C}_{g,0} (1 + o(1 - t/t_c))$$

-

590

臣

$$C_{g,0} \underset{t \to t_c}{\sim} (1 - t/t_c)^{(2-2g)\frac{2m+3}{2m+2}} t_c^{2-2g} \widetilde{C}_{g,0} (1 + o(1 - t/t_c))$$

String susceptibility exponent: γ_g .

$$C_{g,0} \underset{t \to t_c}{\sim} (1 - t/t_c)^{2 - \gamma_g} t_c^{2 - 2g} \widetilde{C}_{g,0}$$
$$\Rightarrow \qquad \gamma_g = \frac{2g(2m + 3) - 2}{2m + 2}$$

э

DQC

$$C_{g,0} \underset{t \to t_c}{\sim} (1 - t/t_c)^{(2-2g)\frac{2m+3}{2m+2}} t_c^{2-2g} \widetilde{C}_{g,0} (1 + o(1 - t/t_c))$$

String susceptibility exponent: γ_g .

$$C_{g,0} \underset{t \to t_c}{\sim} (1 - t/t_c)^{2 - \gamma_g} t_c^{2-2g} \widetilde{C}_{g,0}$$

 $\Rightarrow \qquad \gamma_g = \frac{2g(2m+3) - 2}{2m+2}$

Consistent with KPZ prediction for (p, q)-minimal model coupled to gravity:

$$\gamma_g = \frac{2g(p+q)-2}{p+q-1}.$$

nac

$$C_{g,0} \underset{t \to t_c}{\sim} (1 - t/t_c)^{(2-2g)\frac{2m+3}{2m+2}} t_c^{2-2g} \widetilde{C}_{g,0} (1 + o(1 - t/t_c))$$

String susceptibility exponent: γ_g .

$$C_{g,0} \underset{t \to t_c}{\sim} (1 - t/t_c)^{2 - \gamma_g} t_c^{2 - 2g} \widetilde{C}_{g,0}$$

 $\Rightarrow \qquad \gamma_g = \frac{2g(2m+3) - 2}{2m+2}$

Consistent with KPZ prediction for (p, q)-minimal model coupled to gravity:

$$\gamma_g = \frac{2g(p+q)-2}{p+q-1}.$$

Remark: central charge of (p, q) minimal model $c = 1 - 6\frac{(p-q)^2}{pq}$. Ex: pure gravity c = 0, Lee-Yang $c = -\frac{22}{5}$.

- Ciliated maps: definitions and enumeration results
 - Ciliated maps
 - Topological Recursion
 - Enumeration results
- 2 Large maps from ciliated maps and minimal models
 - Asymptotics of large maps
 - Singular spectral curve and minimal models
 - KPZ exponents
- 3 Topological gravity associated to ciliated maps
 Topological gravity and intersection theory
 Ciliated maps and Witten's class

Ciliated maps and free probabilities

 $\overline{\mathcal{M}}_{g,n}$: moduli space of stable curves of genus g with n marked points.

DQC

:

 $W^r_{g,n}(a_1,\ldots,a_n)\in H^{ullet}(\overline{\mathcal{M}}_{g,n},\mathbb{Q}),$

$$W^r_{g,n}(a_1,\ldots,a_n)\in H^{ullet}(\overline{\mathcal{M}}_{g,n},\mathbb{Q}),\qquad \deg \ W^r_{g,n}(a_1,\ldots,a_n)=rac{(r-2)(g-1)+\sum\limits_{i=1}^na_i}{r}.$$

$$W^r_{g,n}(a_1,\ldots,a_n)\in H^ullet(\overline{\mathcal{M}}_{g,n},\mathbb{Q}),\qquad ext{deg } W^r_{g,n}(a_1,\ldots,a_n)=rac{(r-2)(g-1)+\sum\limits_{i=1}^na_i}{r}.$$

Correlation functions: intersection numbers with Chern classes $\psi_i \in H^2(\overline{\mathcal{M}}_{g,n},\mathbb{Q})$

$$\langle \tau_{d_1,a_1}\ldots\tau_{d_n,a_n}\rangle_g\coloneqq \int_{\overline{\mathcal{M}}_{g,n}} W_{g,n}^r(a_1,\ldots,a_n)\psi_1^{d_1}\ldots\psi_n^{d_n}$$

$$W^r_{g,n}(a_1,\ldots,a_n)\in H^ullet(\overline{\mathcal{M}}_{g,n},\mathbb{Q}),\qquad ext{deg } W^r_{g,n}(a_1,\ldots,a_n)=rac{(r-2)(g-1)+\sum\limits_{i=1}^na_i}{r}.$$

Correlation functions: intersection numbers with Chern classes $\psi_i \in H^2(\overline{\mathcal{M}}_{g,n},\mathbb{Q})$

$$\langle \tau_{d_1,a_1}\ldots\tau_{d_n,a_n}\rangle_g\coloneqq \int_{\overline{\mathcal{M}}_{g,n}}W_{g,n}^r(a_1,\ldots,a_n)\psi_1^{d_1}\ldots\psi_n^{d_n}$$

Partition function

$$Z^{\mathsf{W}}(\underline{t};\hbar) := \exp\Big(\sum_{g\geq 0,n\geq 1} \frac{\hbar^{g-1}}{n!} \sum_{a_i=0}^{r-2} \sum_{d_i\geq 0} \prod_{i=1}^n t_{d_i,a_i} \langle \tau_{d_1,a_1} \dots \tau_{d_n,a_n} \rangle_g\Big)$$

٨/

Specialize the parameters

•
$$v_i = \delta_{i,r+1}$$
: $V(u) = \frac{u^{r+1}}{r+1}$

•
$$\sum_{k=1}^{N} \frac{1}{\lambda^{j}} = 0 \quad \forall j \in \{1, \ldots, r+1\}.$$

Spectral curve:
$$x(z) = z^r$$
, $y(z) = z + \frac{t}{r} \sum_{k=1}^{N} \frac{1}{\lambda_k^{r-1}(z-\lambda_k)}$.

э

臣

590

۸ı

Specialize the parameters

•
$$v_i = \delta_{i,r+1}$$
: $V(u) = \frac{u^{r+1}}{r+1}$

•
$$\sum_{k=1}^{N} \frac{1}{\lambda^{j}} = 0 \quad \forall j \in \{1, \ldots, r+1\}.$$

Spectral curve:
$$x(z) = z^r$$
, $y(z) = z + rac{t}{r} \sum_{k=1}^N rac{1}{\lambda_k^{r-1}(z-\lambda_k)}.$

Theorem [BCEG '21] [CCGG '22]

With those parameters, $Z^{W}(\underline{t}; \hbar) = Z(\underline{v}, \underline{\lambda}; \hbar)$.

۸ı

Specialize the parameters

•
$$v_i = \delta_{i,r+1}$$
: $V(u) = \frac{u^{r+1}}{r+1}$

•
$$\sum_{k=1}^{N} \frac{1}{\lambda^{j}} = 0 \quad \forall j \in \{1, \ldots, r+1\}.$$

Spectral curve:
$$x(z) = z^r$$
, $y(z) = z + \frac{t}{r} \sum_{k=1}^N \frac{1}{\lambda_k^{r-1}(z-\lambda_k)}$.

Theorem [BCEG '21] [CCGG '22]

With those parameters, $Z^{W}(\underline{t}; \hbar) = Z(\underline{v}, \underline{\lambda}; \hbar)$.

$$t_{d,a} = (-1)^d rac{\Gamma(d+(j+1)/r)}{\Gamma((j+1)/r)} \sum_{k=1}^N rac{1}{\lambda^{rd+a+1}}$$

Λ1

Specialize the parameters

•
$$v_i = \delta_{i,r+1}$$
: $V(u) = \frac{u^{r+1}}{r+1}$

•
$$\sum_{k=1}^{N} \frac{1}{\lambda^{j}} = 0 \quad \forall j \in \{1, \ldots, r+1\}.$$

Spectral curve:
$$x(z) = z^r$$
, $y(z) = z + rac{t}{r} \sum_{k=1}^N rac{1}{\lambda_k^{r-1}(z-\lambda_k)}$.

Theorem [BCEG '21] [CCGG '22]

With those parameters, $Z^{W}(\underline{t}; \hbar) = Z(\underline{v}, \underline{\lambda}; \hbar)$.

$$t_{d,a} = (-1)^d rac{\Gamma(d+(j+1)/r)}{\Gamma((j+1)/r)} \sum_{k=1}^N rac{1}{\lambda^{rd+a+1}}$$

 [BCEG '21] Matrix model of ciliated maps: solution of the rth reduction of Kadomtsev-Petviashvili hierarchy [Adler-van Moerbeke '92]; as well as Z^W [Faber-Shadrin-Zvonkine '06].
Ciliated maps and Witten's class

^/

Specialize the parameters

•
$$v_i = \delta_{i,r+1}$$
: $V(u) = \frac{u^{r+1}}{r+1}$

•
$$\sum_{k=1}^{N} \frac{1}{\lambda^{j}} = 0 \quad \forall j \in \{1, \ldots, r+1\}.$$

Spectral curve:
$$x(z) = z^r$$
, $y(z) = z + rac{t}{r} \sum_{k=1}^N rac{1}{\lambda_k^{r-1}(z-\lambda_k)}$.

Theorem [BCEG '21] [CCGG '22]

With those parameters, $Z^{W}(\underline{t}; \hbar) = Z(\underline{v}, \underline{\lambda}; \hbar).$

$$t_{d,a} = (-1)^d rac{\Gamma(d+(j+1)/r)}{\Gamma((j+1)/r)} \sum_{k=1}^N rac{1}{\lambda^{rd+a+1}}$$

- [BCEG '21] Matrix model of ciliated maps: solution of the *r*th reduction of Kadomtsev–Petviashvili hierarchy [Adler–van Moerbeke '92]; as well as *Z*^W [Faber–Shadrin–Zvonkine '06].
- [CCGG '22] Associate a Cohomological Field Theory to spectral curve, identified with *W^r* [Pandharipande–Pixton–Zvonkine '19].

Séverin Charbonnier (Unige)

1 Ciliated maps: definitions and enumeration results

- Ciliated maps
- Topological Recursion
- Enumeration results

2 Large maps from ciliated maps and minimal models

- Asymptotics of large maps
- Singular spectral curve and minimal models
- KPZ exponents

3 Topological gravity associated to ciliated maps
 • Topological gravity and intersection theory
 • Ciliated maps and Witten's class

④ Ciliated maps and free probabilities

Ciliated maps and matrix model with external field

 H_N : hermitian matrices size N; $\lambda := \text{diag}(\lambda_1, \ldots, \lambda_N)$ (external field/source). Z is also the partition function of a hermitian matrix model with external field:

$$Z(\underline{\lambda},\underline{v};\frac{t^2}{N^2}) = \frac{\int_{H_N} dM \exp\left(-\frac{N}{t} \operatorname{Tr}(V(M+\lambda) - V(\lambda) - MV'(\lambda))\right)}{\int_{H_N} dM \exp\left(-\frac{N}{2t} \sum_{i,j=1}^N \frac{M_{i,j}M_{j,i}}{\mathcal{P}(\lambda_i,\lambda_j)}\right)}$$

э

Ciliated maps and matrix model with external field

 H_N : hermitian matrices size N; $\lambda := \text{diag}(\lambda_1, \ldots, \lambda_N)$ (external field/source). Z is also the partition function of a hermitian matrix model with external field:

$$Z(\underline{\lambda}, \underline{v}; \frac{t^2}{N^2}) = \frac{\int_{H_N} dM \exp\left(-\frac{N}{t} \operatorname{Tr}\left(V(M+\lambda) - V(\lambda) - MV'(\lambda)\right)\right)}{\int_{H_N} dM \exp\left(-\frac{N}{2t} \sum_{i,j=1}^N \frac{M_{i,j}M_{j,i}}{\mathcal{P}(\lambda_i, \lambda_j)}\right)}$$

Ciliated maps are Feynman graphs of this matrix model ($\Lambda_i = V'(\lambda_i)$):

$$\sum_{g\geq 0} \left(\frac{N}{t}\right)^{2-2g-n} C_{g,n}(\lambda_{i_1},\ldots,\lambda_{i_n}) = \frac{t^n}{N^n} \frac{\partial}{\partial \Lambda_{i_1}} \ldots \frac{\partial}{\partial \Lambda_{i_n}} \log Z = \langle M_{i_1,i_1} \ldots M_{i_n,i_n} \rangle_c.$$

Ciliated maps and matrix model with external field

 H_N : hermitian matrices size N; $\lambda := \text{diag}(\lambda_1, \ldots, \lambda_N)$ (external field/source). Z is also the partition function of a hermitian matrix model with external field:

$$Z(\underline{\lambda}, \underline{v}; \frac{t^2}{N^2}) = \frac{\int_{H_N} dM \exp\left(-\frac{N}{t} \operatorname{Tr}\left(V(M+\lambda) - V(\lambda) - MV'(\lambda)\right)\right)}{\int_{H_N} dM \exp\left(-\frac{N}{2t} \sum_{i,j=1}^N \frac{M_{i,j}M_{j,i}}{\mathcal{P}(\lambda_i, \lambda_j)}\right)}$$

Ciliated maps are Feynman graphs of this matrix model ($\Lambda_i = V'(\lambda_i)$):

$$\sum_{g\geq 0} \left(\frac{N}{t}\right)^{2-2g-n} C_{g,n}(\lambda_{i_1},\ldots,\lambda_{i_n}) = \frac{t^n}{N^n} \frac{\partial}{\partial \Lambda_{i_1}} \ldots \frac{\partial}{\partial \Lambda_{i_n}} \log Z = \langle M_{i_1,i_1} \ldots M_{i_n,i_n} \rangle_c.$$

Remarks:

- $\langle \cdot \rangle_c$: classical cumulant of the matrix model;
- the matrix model was actually the inspiration for the study of ciliated maps;
- the particular form of the weights V_k come from Taylor expansion of V(M + λ) (divided difference).

▶ < Ξ ▶</p>

Let $\gamma_1, \ldots, \gamma_n \in \mathfrak{S}_n$ be disjoint cycles, of total length *L*; monomials $\mathcal{P}_{\gamma_i} = \prod_{j=1}^{\ell(\gamma_i)} M_{(\gamma_i)_j, (\gamma_i)_{j+1}}$.

Let $\gamma_1, \ldots, \gamma_n \in \mathfrak{S}_n$ be disjoint cycles, of total length *L*; monomials $\mathcal{P}_{\gamma_i} = \prod_{j=1}^{\ell(\gamma_i)} M_{(\gamma_i)_{j,(\gamma_i)_{j+1}}}$. Two kinds of correlations functions from the matrix model:

Theorem [Eynard–Orantin '08] $\langle \operatorname{Tr} M^{\ell_1} \dots \operatorname{Tr} M^{\ell_n} \rangle_c$ are computed via topological recursion on the spectral curve $\begin{cases}
x(\zeta) = \zeta + t \sum_{k=1}^{N} \frac{1}{Q'(\xi_k)(\zeta - \xi_k)} \\
y(\zeta) = Q(\zeta) \\
\omega_{0,2}(\zeta_1, \zeta_2) = \frac{d\zeta_1 d\zeta_2}{(\zeta_1 - \zeta_2)^2}
\end{cases}$ Let $\gamma_1, \ldots, \gamma_n \in \mathfrak{S}_n$ be disjoint cycles, of total length *L*; monomials $\mathcal{P}_{\gamma_i} = \prod_{j=1}^{\ell(\gamma_i)} M_{(\gamma_i)_j, (\gamma_i)_{j+1}}$. Two kinds of correlations functions from the matrix model:

Theorem [Eynard–Orantin '08] $\langle \operatorname{Tr} M^{\ell_1} \dots \operatorname{Tr} M^{\ell_n} \rangle_c$ are computed via topological recursion on the spectral curve $\begin{cases}
x(\zeta) = \zeta + t \sum_{k=1}^{N} \frac{1}{Q'(\xi_k)(\zeta - \xi_k)} \\
y(\zeta) = Q(\zeta) \\
\omega_{0,2}(\zeta_1, \zeta_2) = \frac{d\zeta_1 d\zeta_2}{(\zeta_1 - \zeta_2)^2}
\end{cases}$

Theorem [BCEG '21]

 $\begin{array}{l} \langle \mathcal{P}_{\gamma_1} \dots \mathcal{P}_{\gamma_n} \rangle_c \text{ are computed via} \\ \text{topological recursion on the spectral} \\ \text{curve} \\ \begin{cases} x(\zeta) = Q(\zeta) \\ y(\zeta) = \zeta + t \sum\limits_{k=1}^N \frac{1}{Q'(\xi_k)(\zeta - \xi_k)} \\ \omega_{0,2}(\zeta_1, \zeta_2) = \frac{d\zeta_1 d\zeta_2}{(\zeta_1 - \zeta_2)^2} \end{array} \end{array}$

Let $\gamma_1, \ldots, \gamma_n \in \mathfrak{S}_n$ be disjoint cycles, of total length *L*; monomials $\mathcal{P}_{\gamma_i} = \prod_{j=1}^{\ell(\gamma_i)} M_{(\gamma_i)_{j}, (\gamma_i)_{j+1}}$. Two kinds of correlations functions from the matrix model:

Theorem [Eynard–Orantin '08] $\langle \operatorname{Tr} \mathcal{M}^{\ell_1} \dots \operatorname{Tr} \mathcal{M}^{\ell_n} \rangle_c$ are computed via topological recursion on the spectral curve $\begin{cases}
x(\zeta) = \zeta + t \sum_{k=1}^{N} \frac{1}{Q'(\xi_k)(\zeta - \xi_k)} \\
y(\zeta) = Q(\zeta) \\
\omega_{0,2}(\zeta_1, \zeta_2) = \frac{d\zeta_1 d\zeta_2}{(\zeta_1 - \zeta_2)^2}
\end{cases}$ Theorem [BCEG '21]

 $\begin{array}{l} \left\langle \mathcal{P}_{\gamma_1} \dots \mathcal{P}_{\gamma_n} \right\rangle_c \text{ are computed via} \\ \text{topological recursion on the spectral} \\ \text{curve} \\ \left\{ \begin{array}{l} x(\zeta) = Q(\zeta) \\ y(\zeta) = \zeta + t \sum\limits_{k=1}^N \frac{1}{Q'(\xi_k)(\zeta - \xi_k)} \\ \omega_{0,2}(\zeta_1, \zeta_2) = \frac{d\zeta_1 d\zeta_2}{(\zeta_1 - \zeta_2)^2} \end{array} \right. \end{array} \right.$

[BCGLS '21]: definition of surfaced probability space, generalising higher order probability space.

Let $\gamma_1, \ldots, \gamma_n \in \mathfrak{S}_n$ be disjoint cycles, of total length *L*; monomials $\mathcal{P}_{\gamma_i} = \prod_{j=1}^{\ell(\gamma_i)} M_{(\gamma_i)_j, (\gamma_i)_{j+1}}$. Two kinds of correlations functions from the matrix model:

Theorem [Eynard–Orantin '08] $\langle \operatorname{Tr} M^{\ell_1} \dots \operatorname{Tr} M^{\ell_n} \rangle_c$ are computed via topological recursion on the spectral curve $\begin{cases}
x(\zeta) = \zeta + t \sum_{k=1}^{N} \frac{1}{Q'(\xi_k)(\zeta - \xi_k)} \\
y(\zeta) = Q(\zeta) \\
\omega_{0,2}(\zeta_1, \zeta_2) = \frac{d\zeta_1 d\zeta_2}{(\zeta_1 - \zeta_2)^2}
\end{cases}$ Theorem [BCEG '21]

 $\begin{array}{l} \left\langle \mathcal{P}_{\gamma_1} \dots \mathcal{P}_{\gamma_n} \right\rangle_c \text{ are computed via} \\ \text{topological recursion on the spectral} \\ \text{curve} \\ \left\{ \begin{array}{l} x(\zeta) = Q(\zeta) \\ y(\zeta) = \zeta + t \sum\limits_{k=1}^N \frac{1}{Q'(\xi_k)(\zeta - \xi_k)} \\ \omega_{0,2}(\zeta_1, \zeta_2) = \frac{d\zeta_1 d\zeta_2}{(\zeta_1 - \zeta_2)^2} \end{array} \right. \end{array} \right.$

[BCGLS '21]: definition of surfaced probability space, generalising higher order probability space.

Coefficient of $\left(\frac{N}{t}\right)^{2-2g-n}$ in $\langle \operatorname{Tr} M^{\ell_1} \dots \operatorname{Tr} M^{\ell_n} \rangle_c$: moments of the surfaced probability space.

Coefficient of $\left(\frac{N}{t}\right)^{2-2g-n-L}$ in $\langle \mathcal{P}_{\gamma_1} \dots \mathcal{P}_{\gamma_n} \rangle_c$: free cumulants of the surfaced probability space.

Combinatorics Ciliated maps

<ロト < 回ト < 回ト < 三ト < 三ト

900

E

→ @ ► < E ► < E</p>

 ${ \ = \ \square \ } { \ }$

590

E

E

990

- 4 回 ト - 4 三 ト - 4 三 ト

E

990

日ト・モト・モー

1

A

E

Thank you for your attention!

э

Э

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

Ξ

臣

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

590

臣

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

Ξ

臣

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

$$I = \{z_2, \dots, z_n\}$$
(a) $\overbrace{z_1 \quad g, l}^{\lambda_j}$

Ξ

臣

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

$$I = \{z_2, \dots, z_n\}$$
(a) $z_1 \overset{\circ}{\bigsqcup} \overset{\lambda_j}{u}$

Ξ

臣

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

$$I = \{z_2, \dots, z_n\}$$
(a) $z_1 \overset{\lambda_j}{\underbrace{u}} g, I$ combinatorial g, I $\lambda_j \overset{g, I}{\underbrace{v}}$ $\lambda_j \overset{g, I}{\underbrace{v}}$

590

臣

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

DQC

E

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

• Main combinatorial tool: Tutte's equation (edge removal from the maps).

• Analytical treatment (technical): structure of the poles, loop equations.

Rack Séverin Charbonnier (Unige)

Ciliated maps CFT, gravity, free proba

The spectral curve is given by:

$$\begin{cases} x(z) = Q(a + cz) = \left[V'(a + c(z + z^{-1})) \right]_{\geq 0} \\ y(z) = a + c(z + z^{-1}) \end{cases}$$

where *a* and *c* satisfy the following:

$$Q(a) = 0$$
 and $c = \frac{t}{Q'(a)}$

Back

э

臣

Free energies from TR

Formula of TR: for $g \ge 0$, $n \ge 1$ and 2g - 2 + n > 0.

$$\omega_{g,n}(z_{1}, I) = \sum_{a \in \Sigma, dx(a)=0} \operatorname{Res}_{z=a}^{\frac{1}{2} \int_{\sigma_{a}(z)}^{z} \omega_{0,2}(z_{1}, \cdot)} \left(\omega_{g-1,n+1}(z, \sigma_{a}(z), I) + \sum_{\substack{h=h'=g\\J \sqcup J'=I}}^{'} \omega_{h,1+J}(z, J) \omega_{h',1+J'}(\sigma_{a}(z), J') \right)$$

$$\begin{split} I &= \{z_2, \ldots, z_n\}; \ \sigma_a : \Sigma \to \Sigma \ \text{local involution around } a. \end{split}$$
For $g \geq 2$: $C_{g,0} = \frac{1}{2-2g} \sum_{a \in \Sigma, d \times (a) = 0} \underset{z=a}{\text{Res}} \Phi(z) \omega_{g,1}(z) \end{split}$

where $\Phi'(z) = -y(z)x'(z)$. Back

< ロ ト < 同 ト < 三 ト < 三 ト - 三

 \mathcal{A} : non commutative algebra. [Voiculescu '80s] : Non commutative probability space Moments:

$$\phi: \mathcal{S}[\mathcal{A}] \to \mathbb{C}$$

Free Cumulants:

$$\phi(\sigma)[\cdot] = \sum_{\pi \in \mathsf{NC}(\sigma)} \kappa(\pi)[\cdot]$$

Freeness of $A, B \subset A$.

-

990

Ξ

 \mathcal{A} : non commutative algebra. [Voiculescu '80s] : Non commutative probability space Moments:

$$\phi: \mathcal{S}[\mathcal{A}] \to \mathbb{C}$$

Free Cumulants:

$$\phi(\sigma)[\cdot] = \sum_{\pi \in \mathsf{NC}(\sigma)} \kappa(\pi)[\cdot]$$

Freeness of $A, B \subset A$.

Random matrices

 A_N : random hermitian, size N.

 $A_N \xrightarrow[N \to \infty]{} a.$

Asymptotic expansion of cumulants:

$$\mathbb{E}_{c}\left[\mathsf{Tr}(A_{N}^{k})\right] \underset{N \to \infty}{=} N \phi(\gamma_{k})[a, \ldots, a] + O(N^{-1})$$

DQC
A: non commutative algebra.
[Collins-Mingo-Śniady-Speicher '07] :
Higher order probability space
Moments:

$$\phi: \mathsf{PS}[\mathcal{A}] \to \mathbb{C}$$

Free cumulants:

$$\phi = \zeta * \kappa$$

Higher order freeness of $A, B \subset A$.

Random matrices

 A_N : random hermitian, size N.

 $A_N \xrightarrow[N \to \infty]{} a.$

Asymptotic expansion of cumulants:

$$\mathbb{E}_{c}\left[\mathsf{Tr}(A_{N}^{k_{1}}),\ldots,\mathsf{Tr}(A_{N}^{k_{n}})\right] \underset{N\to\infty}{=} N^{2-n}\phi(1_{\mathbf{k}},\gamma_{k_{1},\ldots,k_{n}})[a\ldots,a]+O(N^{-n})$$

イロト イヨト イヨト

DQC

3

A: non commutative algebra.
[BCGLS '21] : Surfaced probability space Moments:

$$\phi: \mathbb{PS}[\mathcal{A}] \to \mathbb{C}$$

Free cumulants:

$$\phi = \zeta \circledast \kappa$$

Surfaced freeness $A, B \subset A$. Back

Random matrices

 A_N : random hermitian, size N.

 $A_N \xrightarrow[N \to \infty]{} a.$

Asymptotic expansion of cumulants:

$$\mathbb{E}_{c}\left[\mathsf{Tr}(A_{N}^{k_{1}}),\ldots,\mathsf{Tr}(A_{N}^{k_{n}})\right] \underset{N\to\infty}{=} \\ \sum_{g\geq 0} N^{2-n-2g}\phi(\mathbf{1}_{\mathbf{k}},\gamma_{k_{1},\ldots,k_{n}},g)[a\ldots,a]$$

イロト イヨト イヨト

990

3