## Lemma 6.2

Let $\Omega_{\theta} \subset \mathbb{C}_{t}$ be a halfstrip centred around some ray $\mathbb{R}_{\theta}$. Suppose $\varphi \in \mathcal{E}^{1}\left(\Omega_{\theta}\right)$ is a holomorphic function on $\Omega_{\theta}$ of exponential type at infinity. Then the Laplace transform of $\varphi$ in the direction $\theta$ defines a holomorphic function

$$
\begin{equation*}
f(x):=\mathfrak{L}_{\theta}[\varphi](x) \tag{6.5}
\end{equation*}
$$

on some Borel sector S whose opening $\mathrm{A}=(\theta-\pi / 2, \theta+\pi / 2)$ has angle $\pi$ and bisecting direction $\theta$. Furthermore, $f$ is asymptotically smooth with factorial growth uniformly along A , and its leading-order term is 0 . In symbols, $f \in \underline{\mathfrak{a}}^{1}(\mathrm{~S})$. Furthermore, the formal Laplace transform $\widehat{f}:=\widehat{\mathfrak{L}}[J \varphi]$ of the Taylor expansion of $\varphi$ at 0 is the asymptotic expansion of $f$ at 0 : i.e., we have the following equality of formal power series:

$$
\widehat{\mathfrak{L}}[J \varphi](x)=\widehat{f}(x)
$$

Proof. Our proof is similar to [LR16, Theorem 5.3.9]; see also [Ma195, p.182].
STEP 1: $f$ IS WELL-DEFINED. We assume without loss of generality that $\theta=0$, and denote $\Omega_{\theta}$ simply by $\Omega$. Let $K, L>0$ be such that

$$
\begin{equation*}
|\varphi(t)| \leqslant K e^{L|t|} \quad \forall t \in \Omega \tag{6.6}
\end{equation*}
$$

Fix any $R>L$. Then this exponential estimate implies that the Laplace integral

$$
\begin{equation*}
f(x):=\mathfrak{L}_{+}[\varphi](x)=\int_{0}^{+\infty} e^{-t / x} \varphi(t) \mathrm{d} t \tag{6.7}
\end{equation*}
$$

is uniformly convergent for all $x$ such that $\operatorname{Re}(1 / x)>R$. Therefore, it defines a holomorphic function on the Borel sector $\mathrm{S}:=\{x \mid \operatorname{Re}(1 / x)>R\}$.

STEP 2: ASYMPTOTIC EXPANSION. Now we compute the asymptotic expansion of $f$ by differentiating under the integral sign (thanks to the fact that the integral in (6.7) is uniformly convergent for all $x \in \mathrm{~S}$ ) and using integration by parts:

$$
\begin{aligned}
a_{0} & :=\lim _{x \rightarrow 0} \int_{0}^{+\infty} e^{-t / x} \varphi(t) \mathrm{d} t=0 \\
a_{1} & :=\lim _{x \rightarrow 0} \partial_{x} \int_{0}^{+\infty} e^{-t / x} \varphi(t) \mathrm{d} t=\varphi(0) \\
a_{2} & :=\lim _{x \rightarrow 0} \partial_{x}^{2} \int_{0}^{+\infty} e^{-t / x} \varphi(t) \mathrm{d} t=\varphi^{\prime}(0) \\
& \vdots \\
a_{k} & :=\lim _{x \rightarrow 0} \partial_{x}^{k} \int_{0}^{+\infty} e^{-t / x} \varphi(t) \mathrm{d} t=\varphi^{(k-1)}(0)
\end{aligned}
$$

Consulting the definition of the formal Laplace transform (5.22), we conclude immediately that $f \in \mathcal{A}(\mathrm{~S})$; furthermore, $\widehat{f}=æ(f)=\widehat{\mathfrak{L}}[J \varphi]$ and $\widehat{\varphi}(t)=\widehat{\mathfrak{B}}[\widehat{f}]$ where

$$
\widehat{\varphi}(t):=J \varphi(t)=\sum_{k=0}^{\infty} b_{k} t^{k} \quad \text { with } \quad b_{k}:=\frac{\varphi^{(k)}}{k!}=\frac{a_{k+1}}{k!}
$$

Step 3: asymptotic bounds. It remains to show that this function $f$ satisfies the uniform factorial asymptotic bounds: that is, there are real constants $C, M>0$ such that for all $x \in \mathrm{~S}$ sufficiently small and all positive integers $n$,

$$
\begin{equation*}
\left|R_{n}(x)\right| \leqslant\left|f(x)-\sum_{k=0}^{n-1} a_{k} x^{k}\right| \leqslant C M^{n} n!|x|^{n} \tag{6.8}
\end{equation*}
$$

Step 3.1: cover S with two smaller sectors. To do so, we cover the sector S with two smaller sectors $S_{ \pm}$whose openings $A_{ \pm}$are strictly less than $\pi$; for example, we can take:

$$
\mathrm{S}_{ \pm}:=\mathrm{S} \cap \widehat{\mathrm{~S}}_{ \pm} \quad \text { where } \quad \widehat{\mathrm{S}}_{ \pm}:=\left\{|x|<\frac{2}{R}, \quad\left|\arg (x)-\theta_{ \pm}\right|<\frac{\pi}{3}\right\} \quad \text { and } \quad \theta_{ \pm}:= \pm \frac{\pi}{4}
$$

The straight sectors $\widehat{\mathrm{S}}_{ \pm}$and the sectors $\mathrm{S}_{ \pm}$respectively have openings

$$
\widehat{\mathrm{A}}_{ \pm}:=\left(\theta_{ \pm}-\frac{\pi}{3}, \theta_{ \pm}+\frac{\pi}{3}\right) \quad, \quad \mathrm{A}_{+}:=\left(\theta_{+}-\frac{\pi}{3},+\frac{\pi}{2}\right) \quad, \quad \mathrm{A}_{-}:=\left(-\frac{\pi}{2}, \theta_{-}+\frac{\pi}{3}\right)
$$

The advantage of restricting to these subsectors $\mathrm{S}_{ \pm}$is that we get the following lower bound which will be used later in the proof:

$$
\begin{equation*}
x \in \mathrm{~S}_{ \pm} \quad \Longrightarrow \quad \operatorname{Re}\left(\omega_{ \pm} / x\right)>c /|x| \quad \text { where } \quad \omega_{ \pm}:=e^{i \theta_{ \pm}}=e^{ \pm i \pi / 4} \tag{6.9}
\end{equation*}
$$

and where $c:=\sin \left(\frac{\pi}{3}\right)>0$.
Step 3.2: Shrink $\Omega$ AND Deform integration contour in two ways. Let $\delta>0$ be such that

$$
\Omega=\left\{\operatorname{dist}\left(t, \mathbb{R}_{+}\right)<2 \delta\right\}
$$

and the formal Borel transform $\hat{\varphi}$ is absolutely convergent in the disc $\Omega_{0}=\{|t|<2 \delta\}$. Mark two points $t_{ \pm}:=\delta \omega_{ \pm} \in \mathbb{C}_{t}$ and consider the following paths contained in $\Omega$ :

$$
\gamma_{ \pm}:=\left[0, t_{ \pm}\right] \quad \text { and } \quad \ell_{ \pm}:=t_{ \pm}+\mathbb{R}_{+}
$$

Step 3.3: decompose $f$ on each subsector. Since the analytic continuation $\varphi$ is holomorphic on $\Omega$ by assumption, we can decompose $f$ on each subsector $\mathrm{S}_{ \pm}$as follows:

$$
f(x)=f_{ \pm}(x)+g_{ \pm}(x)
$$

where

$$
f_{ \pm}(x):=a_{0}+\int_{\gamma_{ \pm}} e^{-t / x} \varphi(t) \mathrm{d} t \quad \text { and } \quad g_{ \pm}(t):=\int_{\ell_{ \pm}} e^{-t / x} \varphi(t) \mathrm{d} t
$$

Claim 6.1. Each function $f_{ \pm}$admits $\widehat{f}$ as its asymptotic expansion with factorial growth uniformly along $\mathrm{A}_{ \pm}$: i.e., there is a constant $M_{1}>0$ (independent of the choice of $\pm$ ) such that, for all $n \geqslant 0$ and all $x \in \mathrm{~S}_{ \pm}$,

$$
\left|f_{ \pm}(x)-\sum_{k=0}^{n-1} a_{k} x^{k}\right| \leqslant M_{1}^{n} n!|x|^{n}
$$

Claim 6.2. Each function $g_{ \pm}$is asymptotic to 0 with factorial growth uniformly along $\mathrm{A}_{ \pm}$: i.e., there is a constant $M_{2}>0$ (independent of the choice of $\pm$ ) such that, for all $n \geqslant 0$ and all $x \in \mathrm{~S}_{ \pm}$,

$$
\left|g_{ \pm}(x)\right| \leqslant M_{2}^{n} n!|x|^{n}
$$

The lemma now follows from these two claims by taking $M:=\max \left\{M_{1}, M_{2}\right\}$. Now we prove these claims.

Proof of Claim 6.1. Each interval $\gamma_{ \pm}$is contained in the disc $\Omega_{0}$ of absolute convergence of the power series $\widehat{\varphi}$, so $\varphi(t)=\widehat{\varphi}(t)$ for all $t \in \Omega_{0}$. Therefore, we are allowed to make the following computation:

$$
\begin{align*}
f_{ \pm}(x)-\sum_{k=0}^{n-1} a_{k} x^{k} & =\int_{\gamma_{ \pm}} e^{-t / x} \widehat{\varphi}(t) \mathrm{d} t-\sum_{k=1}^{n-1} a_{k} x^{k}  \tag{6.10}\\
& =\int_{0}^{t_{ \pm}} e^{-t / x} \sum_{k=0}^{\infty} b_{k} t^{k} \mathrm{~d} t-\sum_{k=1}^{n-1} \frac{a_{k}}{(k-1)!} \int_{0}^{t_{ \pm} \cdot \infty} t^{k-1} e^{-t / x} \mathrm{~d} t \\
& =\sum_{k=0}^{\infty} b_{k} \int_{0}^{t_{ \pm}} t^{k} e^{-t / x} \mathrm{~d} t-\sum_{k=0}^{n-2} \frac{a_{k+1}}{k!} \int_{0}^{t_{ \pm} \cdot \infty} t^{k} e^{-t / x} \mathrm{~d} t \\
& =\sum_{k=0}^{\infty} b_{k} \int_{0}^{t_{ \pm}} t^{k} e^{-t / x} \mathrm{~d} t-\sum_{k=0}^{n-2} b_{k} \int_{0}^{t_{ \pm} \cdot \infty} t^{k} e^{-t / x} \mathrm{~d} t \\
& =\sum_{k=0}^{\infty} b_{k} \omega_{ \pm}^{k+1} \int_{0}^{\delta} s^{k} e^{-s \omega_{ \pm} / x} \mathrm{~d} s-\sum_{k=0}^{n-2} b_{k} \omega_{ \pm}^{k+1} \int_{0}^{+\infty} s^{k} e^{-s \omega_{ \pm} / x} \mathrm{~d} s \\
& =\sum_{k=n-1}^{\infty} b_{k} \omega_{ \pm}^{k+1} \int_{0}^{\delta} s^{k} e^{-s \omega_{ \pm} / x} \mathrm{~d} s-\sum_{k=0}^{n-2} b_{k} \omega_{ \pm}^{k+1} \int_{\delta}^{+\infty} s^{k} e^{-s \omega_{ \pm} / x} \mathrm{~d} s
\end{align*}
$$

In the third line, we were allowed to interchange integration and summation because the series $\sum b_{k} t^{k} e^{-t / x}$ is absolutely convergent for all $t$ in the interval $\left[0, t_{ \pm}\right]$. (Indeed, from the inequality (6.9), $\operatorname{Re}(t / x)=|t| \operatorname{Re}\left(\omega_{ \pm} / x\right)>0$ because $x \in \mathrm{~S}_{ \pm}$, and so $\left|t^{k} e^{-t / x}\right| \leqslant|t|^{k} \leqslant\left|t_{ \pm}\right|^{k}$ for all $t \in\left[0, t_{ \pm}\right]$.) In the fifth line, we made the substitution $t=s \omega_{ \pm}$in both integrals.

The point of this computation is that the constraints on $s$ and $k$ in both the first and the second summation terms lead to the same bound on $s^{k}$ :

$$
\left.\begin{array}{l}
s \leqslant \delta \quad \text { and } \quad k \geqslant n-1 \\
s \geqslant \delta \quad \text { and } \quad k<n-1
\end{array}\right\} \Longrightarrow\left(\frac{s}{\delta}\right)^{k-(n-1)} \leqslant 1 \Leftrightarrow s^{k} \leqslant s^{n-1} \delta^{k-n+1}
$$

So both integrals in the last line of (6.10) can be bounded above by the same quantity:

$$
\left.\begin{array}{l}
\int_{0}^{\delta} s^{k} e^{-s \omega_{ \pm} / x} \mathrm{~d} s \\
\int_{\delta}^{\infty} s^{k} e^{-s \omega_{ \pm} / x} \mathrm{~d} s
\end{array}\right\} \leqslant \delta^{k-n+1} \int_{0}^{+\infty} s^{n-1} e^{-s c /|x|} \mathrm{d} s \leqslant \delta^{k-n+1} n!\frac{|x|^{n}}{c^{n}}
$$

where we again used the inequality (6.9). As a result, for all $x \in \mathrm{~S}$, we obtain the following bound, valid for every $n \geqslant 1$ :

$$
\left|f_{ \pm}(x)-\sum_{k=0}^{n-1} a_{k} x^{k}\right| \leqslant \sum_{k=0}^{\infty}\left|b_{k}\right| \delta^{k-n+1} n!\frac{|x|^{n}}{c^{n}}=|x|^{n} C_{1} M_{1}^{n} n!
$$

where $C_{1}:=\delta \sum_{k=0}^{\infty}\left|b_{k}\right| \delta^{k}$ and $M_{1}:=1 / c \delta$. Note that $C_{1}$ is finite because $\delta=\left|t_{ \pm}\right|$ and $t_{ \pm}$is contained in the disc $\Omega_{0}$ of uniform convergence of the power series $\widehat{\varphi}$.

Proof of Claim 6.2. Parameterise the path $\ell_{ \pm}$as $t(s)=t_{ \pm}+s$ for $s \in \mathbb{R}_{+}$. Then using the exponential estimate (6.6) it is easy to show that for all $x \in \mathrm{~S}_{ \pm}$, the function $g_{ \pm}(x)$ is exponentially decaying:

$$
\begin{aligned}
\left|g_{ \pm}(x)\right| & \leqslant \int_{0}^{+\infty} e^{-\operatorname{Re}\left(t_{ \pm} / x\right)} e^{-s \operatorname{Re}(1 / x)}\left|\varphi\left(t_{ \pm}+s\right)\right| \mathrm{d} s \\
& \leqslant K e^{\delta L} e^{-c \delta /|x|} \int_{0}^{+\infty} e^{-s(R-L)} \\
& \leqslant C_{2} e^{-M_{2} /|x|}
\end{aligned}
$$

where $C_{2}:=K e^{\delta L}(R-L)^{-1}$ and $M_{2}:=c \delta$. In particular, it follows that for every $n \in \mathbb{Z}_{+}$we have the bound

$$
\left|g_{ \pm}(x) x^{-n}\right| \leqslant C_{2} e^{-M_{2} /|x|}|x|^{-n}
$$

For $n=0$, the claim is obviously true, so let us assume that $n \geqslant 1$ and analyse the real-valued function $r \mapsto r^{-n} e^{-M_{2} / r}$ on $\mathbb{R}_{+}$. It achieves its maximum value at $r=M_{2} / n$, so upon using Stirling's bounds, we obtain the desired estimate:

$$
\left|g_{ \pm}(x) x^{-n}\right| \leqslant C_{2} K^{-n} n^{n} e^{-n} \leqslant C_{2} M_{2}^{n} n!
$$

This completes the proof of Lemma 6.2.

## Lemma 6.3

Let S be a sector with opening angle $\pi$ and bisecting direction $\theta$. Suppose $f \in \underline{\mathcal{A}}^{1}(\mathrm{~S})$ is a holomorphic function on $S$ which is uniformly asymptotically smooth with factorial growth. Then the Borel transform of $f$ in the direction $\theta$ defines a holomorphic function

$$
\begin{equation*}
\varphi(t):=\mathfrak{B}_{\theta}[f](t) \tag{6.17}
\end{equation*}
$$

of exponential type at infinity in some halfstrip $\Omega_{\theta}$ centred around the ray $\mathbb{R}_{\theta}$. In symbols, $\varphi \in \mathcal{E}^{1}\left(\Omega_{\theta}\right)$. Furthermore, $f(x)$ can be expressed in terms of the Laplace transform of $\varphi$ :

$$
\begin{equation*}
f=a_{0}+\mathfrak{L}_{\theta}[\varphi] \tag{6.18}
\end{equation*}
$$

In particular, the formal Borel transform of the asymptotic expansion of $f$ is the Taylor series expansion of $\varphi$ at 0 ; that is, if $\widehat{f}:=æ(f)$ and $\widehat{\varphi}:=J \varphi \in \mathbb{C}\{t\}$, then there is a disc $\mathbb{D}$ around the origin in $\mathbb{C}_{t}$ such that for all $t \in \mathbb{D}$,

$$
\begin{equation*}
\widehat{\mathfrak{B}}[\widehat{f}](t)=J \varphi(t) \tag{6.19}
\end{equation*}
$$

Explicitly, formulas (6.17) and (6.18) read as follows:

$$
\begin{align*}
f(x) & =a_{0}+\mathfrak{L}_{\theta}[\varphi](x)=a_{0}+\int_{(\theta)} e^{-t / x} \varphi(t) \mathrm{d} t  \tag{6.20}\\
\varphi(t) & =\mathfrak{B}_{\theta}[f](t)=\frac{1}{2 \pi i} \oint_{(\theta)} e^{t / x} f(x) \frac{\mathrm{d} x}{x^{2}} \tag{6.21}
\end{align*}
$$

Identities (6.20) and (6.21) are sometimes called the Borel-Laplace identities.
Proof. Although the proof of this lemma may be long, the strategy is straightforward: we just need to verify directly that $\varphi$ has all the desired properties. This
verification is a combination of standard techniques from real and complex analysis which crucially rely on the fact that $f$ admits asymptotics with factorial growth as $x \rightarrow 0$ uniformly along A.

Step 1: Setup. Let

$$
\widehat{f}(x):=\sum_{k=0}^{\infty} a_{k} x^{k} \in \mathbb{C}^{1} \llbracket x \rrbracket
$$

be the asymptotic expansion of $f$. We assume without loss of generality that $\theta=0$ and $S$ is the Borel sector

$$
\mathrm{S}:=\{\operatorname{Re}(1 / x)>\widehat{R}\}
$$

with inverse-radius $\widehat{R}>1$ so large that there are constants $C, M>0$ such that for all $n \geqslant 0$, and all $x \in \mathrm{~S}$ sufficiently small,

$$
\begin{equation*}
\left|R_{n}(x)\right| \leqslant\left|f(x)-\sum_{k=0}^{n-1} a_{k} x^{k}\right| \leqslant C M^{n} n!|x|^{n} \tag{6.22}
\end{equation*}
$$

By Lemma 4.2, these constants $C, M$ can be chosen such that the coefficients $a_{k}$ of the asymptotic expansion $\widehat{f}$, and therefore the coefficients $b_{k}$ of the formal Borel transform $\widehat{\varphi}:=\widehat{\mathfrak{B}}[\widehat{f}]$, satisfy the following bounds:

$$
\begin{equation*}
\left(\forall k \in \mathbb{Z}_{\geqslant 0}\right) \quad\left|a_{k}\right| \leqslant C M^{k} k!\quad \text { and } \quad\left|b_{k}\right| \leqslant C M^{k} \tag{6.23}
\end{equation*}
$$

Then the power series $\widehat{\varphi}$ is absolutely convergent on the disc

$$
\widehat{\mathbb{D}}:=\{t \in \mathbb{C}| | t \mid<\widehat{r}\}
$$

of radius $\widehat{r}:=1 / M$.
STEP 2: COVER $\mathbb{R}_{+}$WITH DISCS. Fix any $r \in(0, \widehat{r})$. For every point $t_{0}$ on the real axis $\mathbb{R}_{t}$ in the complex plane $\mathbb{C}_{t}$, consider the following interval and disc centred at $t_{0}$ :

$$
\begin{align*}
\mathbb{I}\left(t_{0}\right) & :=\left\{t \in \mathbb{R}| | t-t_{0} \mid<r\right\} \subset \mathbb{R}_{t}  \tag{6.24}\\
\mathbb{D}\left(t_{0}\right) & :=\left\{t \in \mathbb{C}| | t-t_{0} \mid<r\right\} \subset \mathbb{C}_{t} \tag{6.25}
\end{align*}
$$

Obviously, $\mathbb{I}\left(t_{0}\right)=\mathbb{D}\left(t_{0}\right) \cap \mathbb{R}_{t}$. We also define $\widehat{\mathbb{I}}:=\widehat{\mathbb{D}} \cap \mathbb{R}_{t}$. Let $\Omega$ be the strip neighbourhood of the positive real axis $\mathbb{R}_{+}$of thickness $r$ :

$$
\begin{equation*}
\Omega:=\left\{t \in \mathbb{C}_{t} \mid \operatorname{dist}\left(t, \mathbb{R}_{+}\right)<r\right\} \subset \widehat{\mathbb{D}} \cup \bigcup_{t_{0}>\widehat{r}} \mathbb{D}\left(t_{0}\right) \tag{6.26}
\end{equation*}
$$

Step 3: Five claims. The rest of the proof can be broken down into a sequence of five claims. The first task is to check that formula (6.21) actually makes sense and defines a holomorphic function near $t=0$ which coincides with the power series $\widehat{\varphi}$.

Claim 6.1. The function $\varphi$ given by (6.21) is well-defined for all $t \in \mathbb{R}_{+}$.
So, in particular, $\varphi$ is a function of the real variable $t$ on the interval $\widehat{\mathbb{I}}$, where it can be compared with the power series $\widehat{\varphi}$.

Claim 6.2. The power series $\widehat{\varphi}$ converges uniformly to $\varphi$ for all $t \in \widehat{\mathbb{I}}=\widehat{\mathbb{D}} \cap \mathbb{R}_{t}$.
Therefore, the convergent power series $\widehat{\varphi}$ is the analytic continuation of $\varphi$ from the open interval $\widehat{\mathbb{I}}$ to the open disc $\widehat{\mathbb{D}}$. Next, we verify that $\varphi$ is itself the analytic continuation of $\widehat{\varphi}$ along $\mathbb{R}_{+}$.

Claim 6.3. The function $\varphi$ is infinitely-differentiable at every point $t \in \mathbb{R}_{+}$. Furthermore, the constants $C, M>0$ can be taken so large that all derivatives of $\varphi$ satisfy the following exponential bound: for all $n \in \mathbb{Z}_{\geqslant 0}$, all $R>\widehat{R}$, and all $t \in \mathbb{R}_{+}$,

$$
\begin{equation*}
\left|\partial_{t}^{n} \varphi(t)\right| \leqslant C M^{n} n!e^{R t} \tag{6.27}
\end{equation*}
$$

Claim 6.4. For every $t_{0} \in \mathbb{R}_{+}$with $t_{0}>\widehat{r}$, the Taylor series $J_{t_{0}} \varphi$ of $\varphi$ centred at the point $t_{0}$ is absolutely convergent to $\varphi$ on the interval $\mathbb{I}\left(t_{0}\right)$.

So the Taylor series $J_{t_{0}} \varphi$ is absolutely convergent on the whole disc $\mathbb{D}\left(t_{0}\right)$ and defines the analytic continuation of $\varphi$ from the interval $\mathbb{I}\left(t_{0}\right)$ to the disc $\mathbb{D}\left(t_{0}\right)$. Since $t_{0}$ is arbitrary, this means that the function $\varphi$, defined by formula (6.21), admits analytic continuation to a holomorphic function (which we continue to denote by $\varphi$ ) on the tubular neighbourhood $\Omega$. All that remains is to show that the Laplace transform of $\varphi$ is well-defined and satisfies the equality (6.20).

Claim 6.5. The holomorphic function $\varphi$ on $\Omega$ has exponential type at infinity (i.e., $\varphi$ satisfies the bound (6.6)), so its Laplace transform is well-defined and satisfies the equality (6.20) for all $t \in \mathbb{R}_{+}$.

Step 4: Proofs of the five claims. Now we prove these claims.
Proof of Claim 6.1. We look at the second remainder term

$$
R_{2}(x)=f(x)-\left(a_{0}+x a_{1}\right)
$$

If the Borel transforms $\mathfrak{B}\left[a_{0}\right], \mathfrak{B}\left[x a_{1}\right], \mathfrak{B}\left[R_{2}\right]$ are well-defined, it will follow that $\varphi(t)$ given by (6.21) is a well-defined function on $\mathbb{R}_{+}$. The first two are obviously well-defined, so we just need to examine $\mathfrak{B}\left[R_{2}\right]$. The asymptotic condition (6.22) with $n=2$ reads $\left|R_{2}(x)\right| \leqslant 2!C M^{2}|x|^{2}$. So if $\beta$ is the Borel circle with any inverseradius $R>\widehat{R}$, then the integral over $\beta$ is well-defined because

$$
\frac{1}{2 \pi} \int_{\beta}\left|R_{2}(x)\right| e^{t \operatorname{Re}(1 / x)}\left|\frac{\mathrm{d} x}{x^{2}}\right| \leqslant \frac{1}{\pi} C M^{2} e^{R t} \int_{\beta}|\mathrm{d} x| \leqslant C M^{2} e^{R t} R^{-1}
$$

Moreover, the integral only depends on the homotopy class (with fixed endpoints at $\pm \pi / 2$ ) of the integration path $\beta$ because because the integrand is holomorphic in the sector and the integral over any Borel circle $\beta$ decays as the radius $R$ increases.

Proof of Claim 6.2. For any $n \geqslant 2$, take the identity

$$
f(x)=\sum_{k=0}^{n-1} a_{k} x^{k}+R_{n}(x)
$$

and plug it into formula (6.21) for $\varphi$ to get

$$
\begin{equation*}
\varphi(t)=\sum_{k=0}^{n-2} a_{k} t^{k}+E_{n}(t) \quad \text { where } \quad E_{n}(t):=\frac{1}{2 \pi i} \int_{\gamma} R_{n}(x) e^{t / x} \frac{\mathrm{~d} x}{x^{2}} \tag{6.28}
\end{equation*}
$$

Thus, to prove this claim, we have to show that the error term $E_{n}(t)$ goes to zero as $n \rightarrow \infty$ for all $t \in \widehat{\mathbb{I}}$. For any $R>\widehat{R}$, let $\beta_{R}$ be the Borel circle with radius $R$. Note that $E_{n}$ is independent of $R$ because of Claim 6.1. So for all $t>0$, we find:

$$
\left|E_{n}(t)\right| \leqslant \frac{1}{2 \pi} \int_{\beta_{R}}\left|R_{n}(x)\right| e^{R t}\left|\frac{\mathrm{~d} x}{x^{2}}\right| \leqslant \frac{1}{2 \pi} C M^{n} n!e^{R t} \int_{\beta_{R}}\left|x^{n} \frac{\mathrm{~d} x}{x^{2}}\right| \leqslant C M^{n} n!e^{R t} R^{-n}
$$

Now, for any fixed $t$, look at the real-valued function $R \mapsto e^{R t} R^{-n}$ defined for all $R>0$. It achieves its minimum at $R=n / t$ with value $e^{n} n^{-n} t^{n}$. Fix a sufficiently large integer $N>0$ such that $N / t_{0}>R$. Then it follows that for all $n \geqslant N$,

$$
\left|E_{n}(t)\right| \leqslant C M^{n} n!e^{n} n^{-n} t^{n} \leqslant C M^{n} e n^{1 / 2} t^{n}
$$

where we used one of Stirling's bounds. Since $t<\widehat{r}=1 / M$, it follows that $\left|E_{n}(t)\right|$ goes to 0 as $n \rightarrow \infty$.

Proof of Claim 6.3. Let $n \geqslant 0$ be any integer. We claim that the $n$-th derivative $\partial_{t}^{n} \varphi$ exists at every $t \in \mathbb{R}_{+}$. To do this, just like in (6.28), we look at the expression

$$
\varphi(t)=\sum_{k=0}^{n} b_{k} t^{k}+E_{n+2}(t) \quad \text { where } \quad E_{n+2}(t)=\frac{1}{2 \pi i} \int_{\beta} R_{n+2}(x) e^{t / x} \frac{\mathrm{~d} x}{x^{2}}
$$

Then we just need to verify that the $n$-th derivative $\partial_{t}^{n} E_{n+2}$ exists at every $t \in \mathbb{R}_{+}$. In order to be able to swap differentiation and integration, we must first show that the $n$-th derivative of the integrand (which of course exists at every $t \in \mathbb{R}_{+}$) is bounded by an integrable function independent of $t$. For any $R>\widehat{R}$, restrict to the Borel circle $\gamma$ with inverse-radius $R$. For all $t \in \mathbb{R}_{+}$, we find:

$$
\begin{equation*}
\left|\partial_{t}^{n}\left(R_{n+2}(x) \frac{e^{t / x}}{x^{2}}\right)\right|=\left|R_{n+2}(x) \frac{e^{t / x}}{x^{n+2}}\right| \leqslant C M^{n+2}(n+2)!e^{R t} \tag{6.29}
\end{equation*}
$$

On any bounded interval in $\mathbb{R}_{+}$, the righthand side can be bounded by a constant independent of $t$ (although it depends on the interval) which is of course integrable. Therefore, the derivative $\partial_{t}^{n} \varphi$ exists at every $t \in \mathbb{R}_{+}$and equals

$$
\begin{equation*}
\partial_{t}^{n} \varphi(t)=n!b_{n}+\partial_{t}^{n} E_{n+2}(t)=n!b_{n}+\frac{1}{2 \pi i} \int_{\beta} R_{n+2}(x) e^{t / x} \frac{\mathrm{~d} x}{x^{n+2}} \tag{6.30}
\end{equation*}
$$

It remains to demonstrate the bounds (6.27). First, note that the integral $\int_{\beta}\left|x^{n} \frac{\mathrm{~d} x}{x^{2}}\right|$ is convergent since $n \geqslant 2$. So we can combine (6.23), (6.29), and (6.30) to deduce:

$$
\left|\partial_{t}^{n} \varphi(t)\right| \leqslant n!C M^{n}+C M^{n+2}(n+2)!e^{R t}=C M^{n} n!\left(e^{-R t}+M^{2}(n+2)(n+1)\right) e^{R t}
$$

Now, choose any number $c>1$ and let $\tilde{M}:=c M$. Then the above expression equals

$$
C \tilde{M}^{n} n!\left(c^{-n} e^{-R t}+M^{2} \frac{(n+2)(n+1)}{c^{n}}\right) e^{R t}
$$

Since $e^{-R t}<e^{-t \widehat{R}}$ and $c>1$, the expression in the brackets is bounded by a constant $\tilde{c}>1$ which is independent of $n$ and $R$. Thus, if we let $\tilde{C}:=\tilde{c} C$, we find that $\left|\partial_{t}^{n} \varphi(t)\right| \leqslant \tilde{C} \tilde{M} n$ !. But since $C \leqslant \tilde{C}$ and $M \leqslant \tilde{M}$, we can redefine $C, M$ to be the larger constants $\tilde{C}, \tilde{M}$.

Proof of Claim 6.4. Fix any $R>\widehat{R}$ and any point $t_{0}>\widehat{r}$ on the real line $\mathbb{R}_{+}$. We test the Taylor series

$$
J_{t_{0}} \varphi(t)=\sum_{n=0}^{\infty} \frac{1}{n!} \partial_{t}^{n} \varphi\left(t_{0}\right)\left(t-t_{0}\right)^{n}
$$

for absolute convergence on the interval $\mathbb{I}\left(t_{0}\right)$. Using the bound (6.27), we find:

$$
\sum_{n=0}^{\infty} \frac{1}{n!}\left|\partial_{t}^{n} \varphi\left(t_{0}\right)\right| \cdot\left|t-t_{0}\right|^{n} \leqslant C e^{R t} \sum_{n=0}^{\infty} \frac{(n+2)!}{n!}(M r)^{n} \leqslant C_{0} \sum_{n=0}^{\infty} \frac{n^{2}+3 n+2}{2^{n}}<\infty
$$

where $C_{0}:=C e^{R\left(t_{0}+r\right)}$. To see that the Taylor series $J_{t_{0}} \varphi$ converges to $\varphi$ on the interval $\mathbb{I}\left(t_{0}\right)$, we write the remainder in its mean-value form (a.k.a. Lagrange form):

$$
G_{m}(t):=\varphi(t)-\sum_{n=0}^{m} \frac{1}{n!} \partial_{t}^{n} \varphi\left(t_{0}\right)\left(t-t_{0}\right)^{n}=\frac{1}{(m+1)!} \partial_{t}^{m+1} \varphi\left(t_{*}\right)\left(t-t_{0}\right)^{m+1}
$$

for some point $t_{*} \in \mathbb{I}\left(t_{0}\right)$ that lies between $t_{0}$ and $t$. Using (6.27) again, and the fact that $r<1 / M$, this yields a bound that goes to 0 as $m \rightarrow \infty$ :

$$
\left|G_{m}(t)\right| \leqslant \frac{(m+3)!}{(m+1)!} C_{0}(M r)^{m}=C_{0}(m+3)(m+2)(M r)^{m}
$$

Proof of Claim 6.5. Fix any $t \in \Omega$ and assume without loss of generality that $\operatorname{Re}(t)>\widehat{r}$. Then $t$ is necessarily contained in a disc $\mathbb{D}\left(t_{0}\right)$ for some point $t_{0}>\widehat{r}$ on the real line. On this disc $\mathbb{D}\left(t_{0}\right)$, the holomorphic function $\varphi$ is represented by its Taylor series centred at $t_{0}$. Then for any $R>\widehat{R}$, using (6.27), we get:

$$
|\varphi(t)| \leqslant \sum_{n=0}^{\infty} \frac{1}{n!}\left|\partial_{t}^{n} \varphi\left(t_{0}\right)\right| \cdot\left|t-t_{0}\right|^{n} \leqslant C e^{R t_{0}} \sum_{n=0}^{\infty} \frac{(n+2)!}{n!}(M r)^{n}
$$

The infinite sum in this expression converges to a number $\tilde{C}$ independent of $t$. Furthermore, $t_{0}<|t|+r$ because $t \in \mathbb{D}\left(t_{0}\right)$. So setting $A:=C e^{R r} \tilde{C}$ yields an exponential bound $|\varphi(t)| \leqslant A e^{R|t|}$ which is valid for all $t \in \Omega$.

To demonstrate equality (6.20), consider again the second remainder term $R_{2}(x)=$ $f(x)-\left(a_{0}+x a_{1}\right)$. For any $x \in \mathrm{~S}$, let $\beta$ be a Borel circle of some inverse-radius $\rho$ such that $\operatorname{Re}(1 / x)>\rho>R$. In addition, take any $0<\varepsilon<|x|$ and consider the circle $\gamma$ in $\mathbb{C}_{x}$ centred at 0 with radius $\varepsilon$, oriented clockwise. It intersects $\beta$ in exactly two points; let $\gamma_{\varepsilon}$ be the arc of $\gamma$ that connects them and lies in S . Correspondingly, denote by $\beta_{\varepsilon}$ the part of $\beta$ that lies outside the disc of radius $\varepsilon$. Let the combined oriented contour be denoted by $\Gamma_{\varepsilon}$. Then we apply the Cauchy Integral Formula to $x^{-1} R_{2}(x)$ :

$$
x^{-1} R_{2}(x)=\frac{1}{2 \pi i} \int_{\Gamma_{\varepsilon}} \xi^{-1} R_{2}(\xi) \frac{\mathrm{d} \xi}{x-\xi}=\frac{1}{2 \pi i} \int_{\beta_{\varepsilon}+\gamma_{\varepsilon}} \xi^{-1} R_{2}(\xi) \frac{\mathrm{d} \xi}{x-\xi}
$$

Thanks to the estimate (6.22), we get a bound $\left|\xi^{-1} R_{2}(\xi)\right| \leqslant 2 C M^{2}|\xi|$, so the integral along the contour $\beta_{\varepsilon}$ goes to 0 as $\varepsilon \rightarrow 0$. It follows that

$$
x^{-1} R_{2}(x)=\frac{1}{2 \pi i} \int_{\beta} \xi^{-1} R_{2}(\xi) \frac{\mathrm{d} \xi}{x-\xi}
$$

Now, we write

$$
\frac{1}{x-\xi}=\frac{1}{x \xi} \cdot \frac{1}{1 / \xi-1 / x}=\frac{1}{x \xi} \int_{0}^{+\infty} e^{u / \xi-t / x} \mathrm{~d} t
$$

which gives:

$$
x^{-1} R_{2}(z)=\frac{x^{-1}}{2 \pi i} \int_{\beta} \int_{0}^{+\infty} R_{2}(\xi) e^{t / \xi-t / x} \mathrm{~d} t \frac{\mathrm{~d} \xi}{\xi^{2}}
$$

Using the estimate (6.22) again, we can apply Fubini's Theorem in order to finally obtain

$$
R_{2}(x)=\int_{0}^{+\infty} e^{-t / x}\left(\frac{1}{2 \pi i} \int_{\beta} R_{2}(\xi) e^{t / \xi} \frac{\mathrm{d} \xi}{\xi^{2}}\right) \mathrm{d} t
$$

The proof of Lemma 6.3 is now complete.

