Lemma 6.2

Let $\Omega_{\theta} \subset \mathbb{C}_t$ be a halfstrip centred around some ray \mathbb{R}_{θ} . Suppose $\varphi \in \mathcal{E}^1(\Omega_{\theta})$ is a holomorphic function on Ω_{θ} of exponential type at infinity. Then the Laplace transform of φ in the direction θ defines a holomorphic function

$$f(x) \coloneqq \mathfrak{L}_{\theta}[\varphi](x) \tag{6.5}$$

on some Borel sector S whose opening $A = (\theta - \pi/2, \theta + \pi/2)$ has angle π and bisecting direction θ . Furthermore, f is asymptotically smooth with factorial growth uniformly along A, and its leading-order term is 0. In symbols, $f \in \underline{\mathfrak{a}}^1(S)$. Furthermore, the formal Laplace transform $\widehat{f} := \widehat{\mathfrak{L}}[J\varphi]$ of the Taylor expansion of φ at 0 is the asymptotic expansion of f at 0: i.e., we have the following equality of formal power series:

$$\widehat{\mathfrak{L}}[J\varphi](x) = \widehat{f}(x)$$

Proof. Our proof is similar to [LR16, Theorem 5.3.9]; see also [Mal95, p.182].

STEP 1: *f* IS WELL-DEFINED. We assume without loss of generality that $\theta = 0$, and denote Ω_{θ} simply by Ω . Let K, L > 0 be such that

$$|\varphi(t)| \leqslant K e^{L|t|} \qquad \forall t \in \Omega$$
(6.6)

Fix any R > L. Then this exponential estimate implies that the Laplace integral

$$f(x) := \mathfrak{L}_{+}[\varphi](x) = \int_{0}^{+\infty} e^{-t/x} \varphi(t) \,\mathrm{d}t$$
(6.7)

is uniformly convergent for all x such that $\operatorname{Re}(1/x) > R$. Therefore, it defines a holomorphic function on the Borel sector $S := \{x \mid \operatorname{Re}(1/x) > R\}$.

STEP 2: ASYMPTOTIC EXPANSION. Now we compute the asymptotic expansion of f by differentiating under the integral sign (thanks to the fact that the integral in (6.7) is uniformly convergent for all $x \in S$) and using integration by parts:

$$a_{0} := \lim_{x \to 0} \int_{0}^{+\infty} e^{-t/x} \varphi(t) dt = 0$$

$$a_{1} := \lim_{x \to 0} \partial_{x} \int_{0}^{+\infty} e^{-t/x} \varphi(t) dt = \varphi(0)$$

$$a_{2} := \lim_{x \to 0} \partial_{x}^{2} \int_{0}^{+\infty} e^{-t/x} \varphi(t) dt = \varphi'(0)$$

$$\vdots$$

$$a_{k} := \lim_{x \to 0} \partial_{x}^{k} \int_{0}^{+\infty} e^{-t/x} \varphi(t) dt = \varphi^{(k-1)}(0)$$

Consulting the definition of the formal Laplace transform (5.22), we conclude immediately that $f \in \mathcal{A}(S)$; furthermore, $\widehat{f} = \mathfrak{a}(f) = \widehat{\mathfrak{L}}[J\varphi]$ and $\widehat{\varphi}(t) = \widehat{\mathfrak{B}}[\widehat{f}]$ where

$$\widehat{\varphi}(t) := J\varphi(t) = \sum_{k=0}^{\infty} b_k t^k$$
 with $b_k := \frac{\varphi^{(k)}}{k!} = \frac{a_{k+1}}{k!}$

STEP 3: ASYMPTOTIC BOUNDS. It remains to show that this function f satisfies the uniform factorial asymptotic bounds: that is, there are real constants C, M > 0 such that for all $x \in S$ sufficiently small and all positive integers n,

$$\left|R_{n}(x)\right| \leq \left|f(x) - \sum_{k=0}^{n-1} a_{k} x^{k}\right| \leq C M^{n} n! |x|^{n}$$
 (6.8)

STEP 3.1: COVER S WITH TWO SMALLER SECTORS. To do so, we cover the sector S with two smaller sectors S_{\pm} whose openings A_{\pm} are strictly less than π ; for example, we can take:

$$\mathsf{S}_{\pm} := \mathsf{S} \cap \widehat{\mathsf{S}}_{\pm} \quad \text{where} \quad \widehat{\mathsf{S}}_{\pm} := \left\{ |x| < \frac{2}{R}, \quad \left| \arg(x) - \theta_{\pm} \right| < \frac{\pi}{3} \right\} \quad \text{and} \quad \theta_{\pm} := \pm \frac{\pi}{4}$$

The straight sectors \widehat{S}_\pm and the sectors S_\pm respectively have openings

$$\widehat{\mathsf{A}}_{\pm} := (\theta_{\pm} - \frac{\pi}{3}, \theta_{\pm} + \frac{\pi}{3})$$
, $\mathsf{A}_{\pm} := (\theta_{\pm} - \frac{\pi}{3}, \pm \frac{\pi}{2})$, $\mathsf{A}_{-} := (-\frac{\pi}{2}, \theta_{-} + \frac{\pi}{3})$.

The advantage of restricting to these subsectors S_{\pm} is that we get the following lower bound which will be used later in the proof:

$$x \in \mathsf{S}_{\pm} \implies \operatorname{Re}(\omega_{\pm}/x) > c/|x| \quad \text{where} \quad \omega_{\pm} := e^{i\theta_{\pm}} = e^{\pm i\pi/4} , \quad (6.9)$$

and where $c := \sin(\frac{\pi}{3}) > 0$.

STEP 3.2: SHRINK Ω AND DEFORM INTEGRATION CONTOUR IN TWO WAYS. Let $\delta > 0$ be such that

$$\Omega = \left\{ \operatorname{dist}(t, \mathbb{R}_+) < 2\delta \right\}$$

and the formal Borel transform $\widehat{\varphi}$ is absolutely convergent in the disc $\Omega_0 = \{|t| < 2\delta\}$. Mark two points $t_{\pm} := \delta \omega_{\pm} \in \mathbb{C}_t$ and consider the following paths contained in Ω :

$$\gamma_{\pm} := [0, t_{\pm}] \qquad \text{and} \qquad \ell_{\pm} := t_{\pm} + \mathbb{R}_{+}$$

STEP 3.3: DECOMPOSE f ON EACH SUBSECTOR. Since the analytic continuation φ is holomorphic on Ω by assumption, we can decompose f on each subsector S_{\pm} as follows:

$$f(x) = f_{\pm}(x) + g_{\pm}(x)$$

where

$$f_{\pm}(x) := a_0 + \int_{\gamma_{\pm}} e^{-t/x} \varphi(t) \, \mathrm{d}t \qquad \text{and} \qquad g_{\pm}(t) := \int_{\ell_{\pm}} e^{-t/x} \varphi(t) \, \mathrm{d}t$$

Claim 6.1. Each function f_{\pm} admits \hat{f} as its asymptotic expansion with factorial growth uniformly along A_{\pm} : i.e., there is a constant $M_1 > 0$ (independent of the choice of \pm) such that, for all $n \ge 0$ and all $x \in S_{\pm}$,

$$\left| f_{\pm}(x) - \sum_{k=0}^{n-1} a_k x^k \right| \leq M_1^n n! |x|^n$$

Claim 6.2. Each function g_{\pm} is asymptotic to 0 with factorial growth uniformly along A_{\pm} : i.e., there is a constant $M_2 > 0$ (independent of the choice of \pm) such that, for all $n \ge 0$ and all $x \in S_{\pm}$,

$$\left|g_{\pm}(x)\right| \leqslant M_2^n n! |x|^n$$

The lemma now follows from these two claims by taking $M := \max\{M_1, M_2\}$. Now we prove these claims.

PROOF OF CLAIM 6.1. Each interval γ_{\pm} is contained in the disc Ω_0 of absolute convergence of the power series $\widehat{\varphi}$, so $\varphi(t) = \widehat{\varphi}(t)$ for all $t \in \Omega_0$. Therefore, we are allowed to make the following computation:

$$f_{\pm}(x) - \sum_{k=0}^{n-1} a_k x^k = \int_{\gamma_{\pm}} e^{-t/x} \widehat{\varphi}(t) \, \mathrm{d}t - \sum_{k=1}^{n-1} a_k x^k$$

$$= \int_0^{t_{\pm}} e^{-t/x} \sum_{k=0}^{\infty} b_k t^k \, \mathrm{d}t - \sum_{k=1}^{n-1} \frac{a_k}{(k-1)!} \int_0^{t_{\pm} \cdot \infty} t^{k-1} e^{-t/x} \, \mathrm{d}t$$

$$= \sum_{k=0}^{\infty} b_k \int_0^{t_{\pm}} t^k e^{-t/x} \, \mathrm{d}t - \sum_{k=0}^{n-2} \frac{a_{k+1}}{k!} \int_0^{t_{\pm} \cdot \infty} t^k e^{-t/x} \, \mathrm{d}t$$

$$= \sum_{k=0}^{\infty} b_k \int_0^{t_{\pm}} t^k e^{-t/x} \, \mathrm{d}t - \sum_{k=0}^{n-2} b_k \int_0^{t_{\pm} \cdot \infty} t^k e^{-t/x} \, \mathrm{d}t$$

$$= \sum_{k=0}^{\infty} b_k \omega_{\pm}^{k+1} \int_0^{\delta} s^k e^{-s\omega_{\pm}/x} \, \mathrm{d}s - \sum_{k=0}^{n-2} b_k \omega_{\pm}^{k+1} \int_0^{+\infty} s^k e^{-s\omega_{\pm}/x} \, \mathrm{d}s$$

$$= \sum_{k=n-1}^{\infty} b_k \omega_{\pm}^{k+1} \int_0^{\delta} s^k e^{-s\omega_{\pm}/x} \, \mathrm{d}s - \sum_{k=0}^{n-2} b_k \omega_{\pm}^{k+1} \int_0^{+\infty} s^k e^{-s\omega_{\pm}/x} \, \mathrm{d}s$$

In the third line, we were allowed to interchange integration and summation because the series $\sum b_k t^k e^{-t/x}$ is absolutely convergent for all t in the interval $[0, t_{\pm}]$. (Indeed, from the inequality (6.9), $\operatorname{Re}(t/x) = |t| \operatorname{Re}(\omega_{\pm}/x) > 0$ because $x \in S_{\pm}$, and so $|t^k e^{-t/x}| \leq |t|^k \leq |t_{\pm}|^k$ for all $t \in [0, t_{\pm}]$.) In the fifth line, we made the substitution $t = s\omega_{\pm}$ in both integrals.

The point of this computation is that the constraints on s and k in both the first and the second summation terms lead to the same bound on s^k :

$$\left. \begin{array}{l} s \leqslant \delta \quad \text{and} \quad k \geqslant n-1 \\ s \geqslant \delta \quad \text{and} \quad k < n-1 \end{array} \right\} \implies \left(\begin{array}{c} s \\ \overline{\delta} \end{array} \right)^{k-(n-1)} \leqslant 1 \iff s^k \leqslant s^{n-1} \delta^{k-n+1}$$

So both integrals in the last line of (6.10) can be bounded above by the same quantity:

$$\frac{\int_0^{\delta} s^k e^{-s\omega_{\pm}/x} \,\mathrm{d}s}{\int_{\delta}^{\infty} s^k e^{-s\omega_{\pm}/x} \,\mathrm{d}s} \bigg\} \leqslant \delta^{k-n+1} \int_0^{+\infty} s^{n-1} e^{-sc/|x|} \,\mathrm{d}s \leqslant \delta^{k-n+1} n! \frac{|x|^n}{c^n} ,$$

where we again used the inequality (6.9). As a result, for all $x \in S$, we obtain the following bound, valid for every $n \ge 1$:

$$\left| f_{\pm}(x) - \sum_{k=0}^{n-1} a_k x^k \right| \leqslant \sum_{k=0}^{\infty} |b_k| \delta^{k-n+1} n! \frac{|x|^n}{c^n} = |x|^n C_1 M_1^n n! ,$$

where $C_1 := \delta \sum_{k=0}^{\infty} |b_k| \delta^k$ and $M_1 := 1/c\delta$. Note that C_1 is finite because $\delta = |t_{\pm}|$ and t_{\pm} is contained in the disc Ω_0 of uniform convergence of the power series $\hat{\varphi}$. \Box

PROOF OF CLAIM 6.2. Parameterise the path ℓ_{\pm} as $t(s) = t_{\pm} + s$ for $s \in \mathbb{R}_+$. Then using the exponential estimate (6.6) it is easy to show that for all $x \in S_{\pm}$, the function $g_{\pm}(x)$ is exponentially decaying:

$$|g_{\pm}(x)| \leq \int_{0}^{+\infty} e^{-\operatorname{Re}(t_{\pm}/x)} e^{-s\operatorname{Re}(1/x)} |\varphi(t_{\pm}+s)| \,\mathrm{d}s$$
$$\leq K e^{\delta L} e^{-c\delta/|x|} \int_{0}^{+\infty} e^{-s(R-L)}$$
$$\leq C_2 e^{-M_2/|x|}$$

where $C_2 := Ke^{\delta L}(R-L)^{-1}$ and $M_2 := c\delta$. In particular, it follows that for every $n \in \mathbb{Z}_+$ we have the bound

$$|g_{\pm}(x)x^{-n}| \leq C_2 e^{-M_2/|x|} |x|^{-n}$$

For n = 0, the claim is obviously true, so let us assume that $n \ge 1$ and analyse the real-valued function $r \mapsto r^{-n}e^{-M_2/r}$ on \mathbb{R}_+ . It achieves its maximum value at $r = M_2/n$, so upon using Stirling's bounds, we obtain the desired estimate:

$$|g_{\pm}(x)x^{-n}| \leq C_2 K^{-n} n^n e^{-n} \leq C_2 M_2^n n!$$

This completes the proof of Lemma 6.2.

55

Lemma 6.3

Let S be a sector with opening angle π and bisecting direction θ . Suppose $f \in \underline{A}^1(S)$ is a holomorphic function on S which is uniformly asymptotically smooth with factorial growth. Then the Borel transform of f in the direction θ defines a holomorphic function

$$\varphi(t) \coloneqq \mathfrak{B}_{\theta}[f](t) \tag{6.17}$$

of exponential type at infinity in some halfstrip Ω_{θ} centred around the ray \mathbb{R}_{θ} . In symbols, $\varphi \in \mathcal{E}^1(\Omega_{\theta})$. Furthermore, f(x) can be expressed in terms of the Laplace transform of φ :

$$f = a_0 + \mathfrak{L}_{\theta}[\varphi]$$
 (6.18)

In particular, the formal Borel transform of the asymptotic expansion of f is the Taylor series expansion of φ at 0; that is, if $\widehat{f} := \mathfrak{A}(f)$ and $\widehat{\varphi} := J\varphi \in \mathbb{C}\{t\}$, then there is a disc \mathbb{D} around the origin in \mathbb{C}_t such that for all $t \in \mathbb{D}$,

$$\widehat{\mathfrak{B}}[\widehat{f}](t) = J\varphi(t)$$
 (6.19)

Explicitly, formulas (6.17) and (6.18) read as follows:

$$f(x) = a_0 + \mathfrak{L}_{\theta}[\varphi](x) = a_0 + \int_{(\theta)} e^{-t/x} \varphi(t) \,\mathrm{d}t \quad , \tag{6.20}$$

$$\varphi(t) = \mathfrak{B}_{\theta}[f](t) = \frac{1}{2\pi i} \oint_{(\theta)} e^{t/x} f(x) \frac{\mathrm{d}x}{x^2}$$
(6.21)

Identities (6.20) and (6.21) are sometimes called the *Borel-Laplace identities*.

Proof. Although the proof of this lemma may be long, the strategy is straightforward: we just need to verify directly that φ has all the desired properties. This

verification is a combination of standard techniques from real and complex analysis which crucially rely on the fact that f admits asymptotics with factorial growth as $x \rightarrow 0$ uniformly along A.

STEP 1: SETUP. Let

$$\widehat{f}(x) := \sum_{k=0}^{\infty} a_k x^k \in \mathbb{C}^1 \llbracket x \rrbracket$$

be the asymptotic expansion of f. We assume without loss of generality that $\theta = 0$ and S is the Borel sector

$$\mathsf{S} := \left\{ \operatorname{Re}(1/x) > \widehat{R} \right\}$$

with inverse-radius $\widehat{R} > 1$ so large that there are constants C, M > 0 such that for all $n \ge 0$, and all $x \in S$ sufficiently small,

$$\left|R_{n}(x)\right| \leq \left|f(x) - \sum_{k=0}^{n-1} a_{k} x^{k}\right| \leq C M^{n} n! |x|^{n}$$
(6.22)

By Lemma 4.2, these constants C, M can be chosen such that the coefficients a_k of the asymptotic expansion \hat{f} , and therefore the coefficients b_k of the formal Borel transform $\hat{\varphi} := \hat{\mathfrak{B}}[\hat{f}]$, satisfy the following bounds:

$$(\forall k \in \mathbb{Z}_{\geq 0})$$
 $|a_k| \leq CM^k k!$ and $|b_k| \leq CM^k$. (6.23)

Then the power series $\widehat{\varphi}$ is absolutely convergent on the disc

$$\widehat{\mathbb{D}} := \left\{ t \in \mathbb{C} \mid |t| < \widehat{r} \right\}$$

of radius $\hat{r} := 1/M$.

STEP 2: COVER \mathbb{R}_+ WITH DISCS. Fix any $r \in (0, \hat{r})$. For every point t_0 on the real axis \mathbb{R}_t in the complex plane \mathbb{C}_t , consider the following interval and disc centred at t_0 :

$$\mathbb{I}(t_0) := \left\{ t \in \mathbb{R} \mid |t - t_0| < r \right\} \subset \mathbb{R}_t \quad , \tag{6.24}$$

$$\mathbb{D}(t_0) := \left\{ t \in \mathbb{C} \mid |t - t_0| < r \right\} \subset \mathbb{C}_t \quad (6.25)$$

Obviously, $\mathbb{I}(t_0) = \mathbb{D}(t_0) \cap \mathbb{R}_t$. We also define $\widehat{\mathbb{I}} := \widehat{\mathbb{D}} \cap \mathbb{R}_t$. Let Ω be the strip neighbourhood of the positive real axis \mathbb{R}_+ of thickness r:

$$\Omega := \left\{ t \in \mathbb{C}_t \mid \operatorname{dist}(t, \mathbb{R}_+) < r \right\} \subset \widehat{\mathbb{D}} \cup \bigcup_{t_0 > \widehat{r}} \mathbb{D}(t_0) \quad (6.26)$$

STEP 3: FIVE CLAIMS. The rest of the proof can be broken down into a sequence of five claims. The first task is to check that formula (6.21) actually makes sense and defines a holomorphic function near t = 0 which coincides with the power series $\hat{\varphi}$.

Claim 6.1. The function φ given by (6.21) is well-defined for all $t \in \mathbb{R}_+$.

So, in particular, φ is a function of the real variable t on the interval $\hat{\mathbb{I}}$, where it can be compared with the power series $\hat{\varphi}$.

Claim 6.2. The power series $\widehat{\varphi}$ converges uniformly to φ for all $t \in \widehat{\mathbb{I}} = \widehat{\mathbb{D}} \cap \mathbb{R}_t$.

Therefore, the convergent power series $\widehat{\varphi}$ is the analytic continuation of φ from the open interval $\widehat{\mathbb{I}}$ to the open disc $\widehat{\mathbb{D}}$. Next, we verify that φ is itself the analytic continuation of $\widehat{\varphi}$ along \mathbb{R}_+ .

Claim 6.3. The function φ is infinitely-differentiable at every point $t \in \mathbb{R}_+$. Furthermore, the constants C, M > 0 can be taken so large that all derivatives of φ satisfy the following exponential bound: for all $n \in \mathbb{Z}_{\geq 0}$, all $R > \hat{R}$, and all $t \in \mathbb{R}_+$,

$$\left|\partial_t^n \varphi(t)\right| \leqslant C M^n n! e^{Rt} \tag{6.27}$$

Claim 6.4. For every $t_0 \in \mathbb{R}_+$ with $t_0 > \hat{r}$, the Taylor series $J_{t_0}\varphi$ of φ centred at the point t_0 is absolutely convergent to φ on the interval $\mathbb{I}(t_0)$.

So the Taylor series $J_{t_0}\varphi$ is absolutely convergent on the whole disc $\mathbb{D}(t_0)$ and defines the analytic continuation of φ from the interval $\mathbb{I}(t_0)$ to the disc $\mathbb{D}(t_0)$. Since t_0 is arbitrary, this means that the function φ , defined by formula (6.21), admits analytic continuation to a holomorphic function (which we continue to denote by φ) on the tubular neighbourhood Ω . All that remains is to show that the Laplace transform of φ is well-defined and satisfies the equality (6.20).

Claim 6.5. The holomorphic function φ on Ω has exponential type at infinity (i.e., φ satisfies the bound (6.6)), so its Laplace transform is well-defined and satisfies the equality (6.20) for all $t \in \mathbb{R}_+$.

STEP 4: PROOFS OF THE FIVE CLAIMS. Now we prove these claims.

PROOF OF CLAIM 6.1. We look at the second remainder term

$$R_2(x) = f(x) - (a_0 + xa_1)$$

If the Borel transforms $\mathfrak{B}[a_0], \mathfrak{B}[xa_1], \mathfrak{B}[R_2]$ are well-defined, it will follow that $\varphi(t)$ given by (6.21) is a well-defined function on \mathbb{R}_+ . The first two are obviously well-defined, so we just need to examine $\mathfrak{B}[R_2]$. The asymptotic condition (6.22) with n = 2 reads $|R_2(x)| \leq 2!CM^2|x|^2$. So if β is the Borel circle with any inverse-radius $R > \hat{R}$, then the integral over β is well-defined because

$$\frac{1}{2\pi} \int_{\beta} \left| R_2(x) \right| e^{t \operatorname{Re}(1/x)} \left| \frac{\mathrm{d}x}{x^2} \right| \leq \frac{1}{\pi} C M^2 e^{Rt} \int_{\beta} |\operatorname{d}x| \leq C M^2 e^{Rt} R^{-1}$$

Moreover, the integral only depends on the homotopy class (with fixed endpoints at $\pm \pi/2$) of the integration path β because because the integrand is holomorphic in the sector and the integral over any Borel circle β decays as the radius *R* increases. \Box

PROOF OF CLAIM 6.2. For any $n \ge 2$, take the identity

$$f(x) = \sum_{k=0}^{n-1} a_k x^k + R_n(x)$$
,

and plug it into formula (6.21) for φ to get

$$\varphi(t) = \sum_{k=0}^{n-2} a_k t^k + E_n(t) \quad \text{where} \quad E_n(t) := \frac{1}{2\pi i} \int_{\gamma} R_n(x) e^{t/x} \frac{\mathrm{d}x}{x^2} \quad (6.28)$$

Thus, to prove this claim, we have to show that the error term $E_n(t)$ goes to zero as $n \to \infty$ for all $t \in \widehat{\mathbb{I}}$. For any $R > \widehat{R}$, let β_R be the Borel circle with radius R. Note that E_n is independent of R because of Claim 6.1. So for all t > 0, we find:

$$\left|E_n(t)\right| \leqslant \frac{1}{2\pi} \int_{\beta_R} \left|R_n(x)\right| e^{Rt} \left|\frac{\mathrm{d}x}{x^2}\right| \leqslant \frac{1}{2\pi} C M^n n! e^{Rt} \int_{\beta_R} \left|x^n \frac{\mathrm{d}x}{x^2}\right| \leqslant C M^n n! e^{Rt} R^{-n}$$

Now, for any fixed t, look at the real-valued function $R \mapsto e^{Rt}R^{-n}$ defined for all R > 0. It achieves its minimum at R = n/t with value $e^n n^{-n} t^n$. Fix a sufficiently large integer N > 0 such that $N/t_0 > R$. Then it follows that for all $n \ge N$,

$$\left|E_n(t)\right| \leqslant CM^n n! e^n n^{-n} t^n \leqslant CM^n e n^{1/2} t^n$$

where we used one of Stirling's bounds. Since $t < \hat{r} = 1/M$, it follows that $|E_n(t)|$ goes to 0 as $n \to \infty$.

PROOF OF CLAIM 6.3. Let $n \ge 0$ be any integer. We claim that the *n*-th derivative $\partial_t^n \varphi$ exists at every $t \in \mathbb{R}_+$. To do this, just like in (6.28), we look at the expression

$$\varphi(t) = \sum_{k=0}^{n} b_k t^k + E_{n+2}(t)$$
 where $E_{n+2}(t) = \frac{1}{2\pi i} \int_{\beta} R_{n+2}(x) e^{t/x} \frac{\mathrm{d}x}{x^2}$

Then we just need to verify that the *n*-th derivative $\partial_t^n E_{n+2}$ exists at every $t \in \mathbb{R}_+$. In order to be able to swap differentiation and integration, we must first show that the *n*-th derivative of the integrand (which of course exists at every $t \in \mathbb{R}_+$) is bounded by an integrable function independent of *t*. For any $R > \hat{R}$, restrict to the Borel circle γ with inverse-radius *R*. For all $t \in \mathbb{R}_+$, we find:

$$\left|\partial_t^n \left(R_{n+2}(x) \frac{e^{t/x}}{x^2} \right) \right| = \left| R_{n+2}(x) \frac{e^{t/x}}{x^{n+2}} \right| \le CM^{n+2}(n+2)! e^{Rt}$$
 (6.29)

On any bounded interval in \mathbb{R}_+ , the righthand side can be bounded by a constant independent of *t* (although it depends on the interval) which is of course integrable. Therefore, the derivative $\partial_t^n \varphi$ exists at every $t \in \mathbb{R}_+$ and equals

$$\partial_t^n \varphi(t) = n! b_n + \partial_t^n E_{n+2}(t) = n! b_n + \frac{1}{2\pi i} \int_\beta R_{n+2}(x) e^{t/x} \frac{\mathrm{d}x}{x^{n+2}}$$
(6.30)

It remains to demonstrate the bounds (6.27). First, note that the integral $\int_{\beta} |x^n \frac{dx}{x^2}|$ is convergent since $n \ge 2$. So we can combine (6.23), (6.29), and (6.30) to deduce:

$$\left|\partial_{t}^{n}\varphi(t)\right| \leq n!CM^{n} + CM^{n+2}(n+2)!e^{Rt} = CM^{n}n!\left(e^{-Rt} + M^{2}(n+2)(n+1)\right)e^{Rt}$$

Now, choose any number c > 1 and let $\tilde{M} := cM$. Then the above expression equals

$$C\tilde{M}^{n}n!\left(c^{-n}e^{-Rt} + M^{2}\frac{(n+2)(n+1)}{c^{n}}\right)e^{Rt}$$

Since $e^{-Rt} < e^{-t\hat{R}}$ and c > 1, the expression in the brackets is bounded by a constant $\tilde{c} > 1$ which is independent of n and R. Thus, if we let $\tilde{C} := \tilde{c}C$, we find that $\left|\partial_t^n \varphi(t)\right| \leq \tilde{C}\tilde{M}n!$. But since $C \leq \tilde{C}$ and $M \leq \tilde{M}$, we can redefine C, M to be the larger constants \tilde{C}, \tilde{M} .

PROOF OF CLAIM 6.4. Fix any $R > \hat{R}$ and any point $t_0 > \hat{r}$ on the real line \mathbb{R}_+ . We test the Taylor series

$$J_{t_0}\varphi(t) = \sum_{n=0}^{\infty} \frac{1}{n!} \partial_t^n \varphi(t_0) (t - t_0)^n$$

for absolute convergence on the interval $I(t_0)$. Using the bound (6.27), we find:

$$\sum_{n=0}^{\infty} \frac{1}{n!} \left| \partial_t^n \varphi(t_0) \right| \cdot \left| t - t_0 \right|^n \leqslant C e^{Rt} \sum_{n=0}^{\infty} \frac{(n+2)!}{n!} (Mr)^n \leqslant C_0 \sum_{n=0}^{\infty} \frac{n^2 + 3n + 2}{2^n} < \infty$$

where $C_0 := Ce^{R(t_0+r)}$. To see that the Taylor series $J_{t_0}\varphi$ converges to φ on the interval $\mathbb{I}(t_0)$, we write the remainder in its mean-value form (a.k.a. Lagrange form):

$$G_m(t) := \varphi(t) - \sum_{n=0}^m \frac{1}{n!} \partial_t^n \varphi(t_0) (t - t_0)^n = \frac{1}{(m+1)!} \partial_t^{m+1} \varphi(t_*) (t - t_0)^{m+1}$$

for some point $t_* \in \mathbb{I}(t_0)$ that lies between t_0 and t. Using (6.27) again, and the fact that r < 1/M, this yields a bound that goes to 0 as $m \to \infty$:

$$\left|G_{m}(t)\right| \leq \frac{(m+3)!}{(m+1)!}C_{0}(Mr)^{m} = C_{0}(m+3)(m+2)(Mr)^{m}$$
 .

PROOF OF CLAIM 6.5. Fix any $t \in \Omega$ and assume without loss of generality that $\operatorname{Re}(t) > \hat{r}$. Then t is necessarily contained in a disc $\mathbb{D}(t_0)$ for some point $t_0 > \hat{r}$ on the real line. On this disc $\mathbb{D}(t_0)$, the holomorphic function φ is represented by its Taylor series centred at t_0 . Then for any $R > \hat{R}$, using (6.27), we get:

$$\left|\varphi(t)\right| \leqslant \sum_{n=0}^{\infty} \frac{1}{n!} \left|\partial_t^n \varphi(t_0)\right| \cdot \left|t - t_0\right|^n \leqslant C e^{Rt_0} \sum_{n=0}^{\infty} \frac{(n+2)!}{n!} (Mr)^n$$

The infinite sum in this expression converges to a number \tilde{C} independent of t. Furthermore, $t_0 < |t|+r$ because $t \in \mathbb{D}(t_0)$. So setting $A := Ce^{Rr}\tilde{C}$ yields an exponential bound $|\varphi(t)| \leq Ae^{R|t|}$ which is valid for all $t \in \Omega$.

To demonstrate equality (6.20), consider again the second remainder term $R_2(x) = f(x) - (a_0 + xa_1)$. For any $x \in S$, let β be a Borel circle of some inverse-radius ρ such that $\operatorname{Re}(1/x) > \rho > R$. In addition, take any $0 < \varepsilon < |x|$ and consider the circle γ in \mathbb{C}_x centred at 0 with radius ε , oriented clockwise. It intersects β in exactly two points; let γ_{ε} be the arc of γ that connects them and lies in S. Correspondingly, denote by β_{ε} the part of β that lies outside the disc of radius ε . Let the combined oriented contour be denoted by Γ_{ε} . Then we apply the Cauchy Integral Formula to $x^{-1}R_2(x)$:

$$x^{-1}R_2(x) = \frac{1}{2\pi i} \int_{\Gamma_{\varepsilon}} \xi^{-1}R_2(\xi) \frac{d\xi}{x-\xi} = \frac{1}{2\pi i} \int_{\beta_{\varepsilon}+\gamma_{\varepsilon}} \xi^{-1}R_2(\xi) \frac{d\xi}{x-\xi}$$

Thanks to the estimate (6.22), we get a bound $|\xi^{-1}R_2(\xi)| \leq 2CM^2|\xi|$, so the integral along the contour β_{ε} goes to 0 as $\varepsilon \to 0$. It follows that

$$x^{-1}R_2(x) = \frac{1}{2\pi i} \int_{\beta} \xi^{-1}R_2(\xi) \frac{\mathrm{d}\xi}{x-\xi}$$

Now, we write

$$\frac{1}{x-\xi} = \frac{1}{x\xi} \cdot \frac{1}{1/\xi - 1/x} = \frac{1}{x\xi} \int_0^{+\infty} e^{u/\xi - t/x} \,\mathrm{d}t$$

which gives:

$$x^{-1}R_2(z) = \frac{x^{-1}}{2\pi i} \int_{\beta} \int_0^{+\infty} R_2(\xi) e^{t/\xi - t/x} \,\mathrm{d}t \,\frac{\mathrm{d}\xi}{\xi^2}$$

Using the estimate (6.22) again, we can apply Fubini's Theorem in order to finally obtain

$$R_2(x) = \int_0^{+\infty} e^{-t/x} \left(\frac{1}{2\pi i} \int_\beta R_2(\xi) e^{t/\xi} \frac{\mathrm{d}\xi}{\xi^2} \right) \mathrm{d}t \quad \Box$$

The proof of Lemma 6.3 is now complete.