
Lemma 6.2
Let Ωθ ⊂ Ct be a halfstrip centred around some ray Rθ. Suppose φ ∈ E1(Ωθ) is a
holomorphic function on Ωθ of exponential type at infinity. Then the Laplace transform
of φ in the direction θ defines a holomorphic function

f(x) := Lθ

[
φ
]
(x) (6.5)

on some Borel sector S whose opening A = (θ−π/2, θ+π/2) has angle π and bisecting
direction θ. Furthermore, f is asymptotically smooth with factorial growth uniformly
along A, and its leading-order term is 0. In symbols, f ∈ a1(S). Furthermore, the
formal Laplace transform f̂ := L̂[Jφ] of the Taylor expansion of φ at 0 is the asymptotic
expansion of f at 0: i.e., we have the following equality of formal power series:

L̂[Jφ](x) = f̂(x) .

Proof. Our proof is similar to [LR16, Theorem 5.3.9]; see also [Mal95, p.182].

STEP 1: f IS WELL-DEFINED. We assume without loss of generality that θ = 0, and
denote Ωθ simply by Ω. Let K,L > 0 be such that∣∣φ(t)∣∣ ⩽ KeL|t| ∀t ∈ Ω . (6.6)

Fix any R > L. Then this exponential estimate implies that the Laplace integral

f(x) := L+

[
φ
]
(x) =

∫ +∞

0
e−t/xφ(t) dt (6.7)

is uniformly convergent for all x such that Re(1/x) > R. Therefore, it defines a
holomorphic function on the Borel sector S :=

{
x
∣∣ Re(1/x) > R

}
.

STEP 2: ASYMPTOTIC EXPANSION. Now we compute the asymptotic expansion of f
by differentiating under the integral sign (thanks to the fact that the integral in (6.7)
is uniformly convergent for all x ∈ S) and using integration by parts:

a0 := lim
x→0

∫ +∞

0
e−t/xφ(t) dt = 0

a1 := lim
x→0

∂x

∫ +∞

0
e−t/xφ(t) dt = φ(0)

a2 := lim
x→0

∂2x

∫ +∞

0
e−t/xφ(t) dt = φ′(0)

...

ak := lim
x→0

∂kx

∫ +∞

0
e−t/xφ(t) dt = φ(k − 1)(0) .

Consulting the definition of the formal Laplace transform (5.22), we conclude im-
mediately that f ∈ A(S); furthermore, f̂ = æ(f) = L̂

[
Jφ
]

and φ̂(t) = B̂
[
f̂
]

where

φ̂(t) := Jφ(t) =

∞∑
k=0

bkt
k with bk :=

φ(k)

k!
=
ak+1

k!
.
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STEP 3: ASYMPTOTIC BOUNDS. It remains to show that this function f satisfies the
uniform factorial asymptotic bounds: that is, there are real constants C,M > 0 such
that for all x ∈ S sufficiently small and all positive integers n,

∣∣Rn(x)
∣∣ ⩽ ∣∣∣∣∣f(x)−

n−1∑
k=0

akx
k

∣∣∣∣∣ ⩽ CMnn!|x|n . (6.8)

STEP 3.1: COVER S WITH TWO SMALLER SECTORS. To do so, we cover the sector S

with two smaller sectors S± whose openings A± are strictly less than π; for example,
we can take:

S± := S ∩ Ŝ± where Ŝ± :=
{
|x| < 2

R ,
∣∣ arg(x)− θ±

∣∣ < π
3

}
and θ± := ±π

4 .

The straight sectors Ŝ± and the sectors S± respectively have openings

Â± := (θ± − π
3 , θ± + π

3 ) , A+ := (θ+ − π
3 ,+

π
2 ) , A− := (−π

2 , θ− + π
3 ) .

The advantage of restricting to these subsectors S± is that we get the following lower
bound which will be used later in the proof:

x ∈ S± =⇒ Re(ω±/x) > c/|x| where ω± := eiθ± = e±iπ/4 , (6.9)

and where c := sin(π3 ) > 0.

STEP 3.2: SHRINK Ω AND DEFORM INTEGRATION CONTOUR IN TWO WAYS. Let δ > 0

be such that
Ω =

{
dist(t,R+) < 2δ

}
and the formal Borel transform φ̂ is absolutely convergent in the disc Ω0 = {|t| < 2δ}.
Mark two points t± := δω± ∈ Ct and consider the following paths contained in Ω:

γ± := [0, t±] and ℓ± := t± + R+ .

STEP 3.3: DECOMPOSE f ON EACH SUBSECTOR. Since the analytic continuation φ

is holomorphic on Ω by assumption, we can decompose f on each subsector S± as
follows:

f(x) = f±(x) + g±(x)

where

f±(x) := a0 +

∫
γ±

e−t/xφ(t) dt and g±(t) :=

∫
ℓ±

e−t/xφ(t) dt .

Claim 6.1. Each function f± admits f̂ as its asymptotic expansion with factorial
growth uniformly along A±: i.e., there is a constant M1 > 0 (independent of the
choice of ±) such that, for all n ⩾ 0 and all x ∈ S±,∣∣∣∣∣f±(x)−

n−1∑
k=0

akx
k

∣∣∣∣∣ ⩽Mn
1 n!|x|n .
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Claim 6.2. Each function g± is asymptotic to 0 with factorial growth uniformly along
A±: i.e., there is a constant M2 > 0 (independent of the choice of ±) such that, for all
n ⩾ 0 and all x ∈ S±, ∣∣∣g±(x)∣∣∣ ⩽Mn

2 n!|x|n

The lemma now follows from these two claims by taking M := max{M1,M2}. Now
we prove these claims.

PROOF OF CLAIM 6.1. Each interval γ± is contained in the disc Ω0 of absolute con-
vergence of the power series φ̂, so φ(t) = φ̂(t) for all t ∈ Ω0. Therefore, we are
allowed to make the following computation:

f±(x)−
n−1∑
k=0

akx
k =

∫
γ±

e−t/xφ̂(t) dt−
n−1∑
k=1

akx
k (6.10)

=

∫ t±

0
e−t/x

∞∑
k=0

bkt
k dt−

n−1∑
k=1

ak
(k − 1)!

∫ t±·∞

0
tk−1e−t/x dt

=

∞∑
k=0

bk

∫ t±

0
tke−t/x dt−

n−2∑
k=0

ak+1

k!

∫ t±·∞

0
tke−t/x dt

=
∞∑
k=0

bk

∫ t±

0
tke−t/x dt−

n−2∑
k=0

bk

∫ t±·∞

0
tke−t/x dt

=
∞∑
k=0

bkω
k+1
±

∫ δ

0
ske−sω±/x ds−

n−2∑
k=0

bkω
k+1
±

∫ +∞

0
ske−sω±/x ds

=

∞∑
k=n−1

bkω
k+1
±

∫ δ

0
ske−sω±/x ds−

n−2∑
k=0

bkω
k+1
±

∫ +∞

δ
ske−sω±/x ds .

In the third line, we were allowed to interchange integration and summation be-
cause the series

∑
bkt

ke−t/x is absolutely convergent for all t in the interval [0, t±].
(Indeed, from the inequality (6.9), Re(t/x) = |t|Re(ω±/x) > 0 because x ∈ S±,
and so

∣∣tke−t/x
∣∣ ⩽ |t|k ⩽ |t±|k for all t ∈ [0, t±].) In the fifth line, we made the

substitution t = sω± in both integrals.

The point of this computation is that the constraints on s and k in both the first and
the second summation terms lead to the same bound on sk:

s ⩽ δ and k ⩾ n− 1

s ⩾ δ and k < n− 1

}
=⇒

( s
δ

)k−(n−1)
⩽ 1 ⇔ sk ⩽ sn−1δk−n+1 .

So both integrals in the last line of (6.10) can be bounded above by the same quan-
tity: ∫ δ

0 s
ke−sω±/x ds∫∞

δ ske−sω±/x ds

}
⩽ δk−n+1

∫ +∞

0
sn−1e−sc/|x| ds ⩽ δk−n+1n!

|x|n
cn

,

where we again used the inequality (6.9). As a result, for all x ∈ S, we obtain the
following bound, valid for every n ⩾ 1:∣∣∣∣∣f±(x)−

n−1∑
k=0

akx
k

∣∣∣∣∣ ⩽
∞∑
k=0

|bk|δk−n+1n!
|x|n
cn

= |x|nC1M
n
1 n! ,
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where C1 := δ
∑∞

k=0 |bk|δk and M1 := 1/cδ. Note that C1 is finite because δ = |t±|
and t± is contained in the disc Ω0 of uniform convergence of the power series φ̂. □

PROOF OF CLAIM 6.2. Parameterise the path ℓ± as t(s) = t± + s for s ∈ R+. Then
using the exponential estimate (6.6) it is easy to show that for all x ∈ S±, the
function g±(x) is exponentially decaying:

∣∣g±(x)∣∣ ⩽ ∫ +∞

0
e−Re(t±/x)e−sRe(1/x)

∣∣∣φ(t± + s
)∣∣∣ds

⩽ KeδLe−cδ/|x|
∫ +∞

0
e−s(R−L)

⩽ C2e
−M2/|x|

where C2 := KeδL(R − L)−1 and M2 := cδ. In particular, it follows that for every
n ∈ Z+ we have the bound∣∣g±(x)x−n

∣∣ ⩽ C2e
−M2/|x||x|−n .

For n = 0, the claim is obviously true, so let us assume that n ⩾ 1 and analyse
the real-valued function r 7→ r−ne−M2/r on R+. It achieves its maximum value at
r =M2/n, so upon using Stirling’s bounds, we obtain the desired estimate:∣∣g±(x)x−n

∣∣ ⩽ C2K
−nnne−n ⩽ C2M

n
2 n! . □

This completes the proof of Lemma 6.2. ■
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Lemma 6.3
Let S be a sector with opening angle π and bisecting direction θ. Suppose f ∈ A1(S) is
a holomorphic function on S which is uniformly asymptotically smooth with factorial
growth. Then the Borel transform of f in the direction θ defines a holomorphic function

φ(t) := Bθ

[
f
]
(t) (6.17)

of exponential type at infinity in some halfstrip Ωθ centred around the ray Rθ. In
symbols, φ ∈ E1(Ωθ). Furthermore, f(x) can be expressed in terms of the Laplace
transform of φ:

f = a0 + Lθ[φ ] . (6.18)

In particular, the formal Borel transform of the asymptotic expansion of f is the Taylor
series expansion of φ at 0; that is, if f̂ := æ(f) and φ̂ := Jφ ∈ C{t}, then there is a
disc D around the origin in Ct such that for all t ∈ D,

B̂[f̂ ](t) = Jφ(t) . (6.19)

Explicitly, formulas (6.17) and (6.18) read as follows:

f(x) = a0 + Lθ[φ ](x) = a0 +

∫
(θ)
e−t/xφ(t) dt , (6.20)

φ(t) = Bθ[ f ](t) =
1

2πi

∮
(θ)
et/xf(x)

dx

x2
. (6.21)

Identities (6.20) and (6.21) are sometimes called the Borel-Laplace identities.

Proof. Although the proof of this lemma may be long, the strategy is straightfor-
ward: we just need to verify directly that φ has all the desired properties. This
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verification is a combination of standard techniques from real and complex analysis
which crucially rely on the fact that f admits asymptotics with factorial growth as
x→ 0 uniformly along A.

STEP 1: SETUP. Let

f̂(x) :=
∞∑
k=0

akx
k ∈ C1JxK

be the asymptotic expansion of f . We assume without loss of generality that θ = 0

and S is the Borel sector
S :=

{
Re(1/x) > R̂

}
with inverse-radius R̂ > 1 so large that there are constants C,M > 0 such that for
all n ⩾ 0, and all x ∈ S sufficiently small,

∣∣Rn(x)
∣∣ ⩽ ∣∣∣∣∣f(x)−

n−1∑
k=0

akx
k

∣∣∣∣∣ ⩽ CMnn!|x|n . (6.22)

By Lemma 4.2, these constants C,M can be chosen such that the coefficients ak of
the asymptotic expansion f̂ , and therefore the coefficients bk of the formal Borel
transform φ̂ := B̂[f̂ ], satisfy the following bounds:

(∀k ∈ Z⩾0) |ak| ⩽ CMkk! and |bk| ⩽ CMk . (6.23)

Then the power series φ̂ is absolutely convergent on the disc

D̂ :=
{
t ∈ C

∣∣ |t| < r̂
}

of radius r̂ := 1/M .

STEP 2: COVER R+ WITH DISCS. Fix any r ∈ (0, r̂). For every point t0 on the real axis
Rt in the complex plane Ct, consider the following interval and disc centred at t0:

I(t0) :=
{
t ∈ R

∣∣ |t− t0| < r
}
⊂ Rt , (6.24)

D(t0) :=
{
t ∈ C

∣∣ |t− t0| < r
}
⊂ Ct . (6.25)

Obviously, I(t0) = D(t0) ∩ Rt. We also define Î := D̂ ∩ Rt. Let Ω be the strip
neighbourhood of the positive real axis R+ of thickness r:

Ω :=
{
t ∈ Ct

∣∣∣ dist(t,R+) < r
}

⊂ D̂ ∪
⋃
t0>r̂

D(t0) . (6.26)

STEP 3: FIVE CLAIMS. The rest of the proof can be broken down into a sequence of
five claims. The first task is to check that formula (6.21) actually makes sense and
defines a holomorphic function near t = 0 which coincides with the power series φ̂.

Claim 6.1. The function φ given by (6.21) is well-defined for all t ∈ R+.

So, in particular, φ is a function of the real variable t on the interval Î, where it can
be compared with the power series φ̂.
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Claim 6.2. The power series φ̂ converges uniformly to φ for all t ∈ Î = D̂ ∩ Rt.

Therefore, the convergent power series φ̂ is the analytic continuation of φ from
the open interval Î to the open disc D̂. Next, we verify that φ is itself the analytic
continuation of φ̂ along R+.

Claim 6.3. The function φ is infinitely-differentiable at every point t ∈ R+. Further-
more, the constants C,M > 0 can be taken so large that all derivatives of φ satisfy the
following exponential bound: for all n ∈ Z⩾0, all R > R̂, and all t ∈ R+,∣∣∂nt φ(t)∣∣ ⩽ CMnn!eRt . (6.27)

Claim 6.4. For every t0 ∈ R+ with t0 > r̂, the Taylor series Jt0φ of φ centred at the
point t0 is absolutely convergent to φ on the interval I(t0).

So the Taylor series Jt0φ is absolutely convergent on the whole disc D(t0) and defines
the analytic continuation of φ from the interval I(t0) to the disc D(t0). Since t0 is
arbitrary, this means that the function φ, defined by formula (6.21), admits analytic
continuation to a holomorphic function (which we continue to denote by φ) on the
tubular neighbourhood Ω. All that remains is to show that the Laplace transform of
φ is well-defined and satisfies the equality (6.20).

Claim 6.5. The holomorphic function φ on Ω has exponential type at infinity (i.e.,
φ satisfies the bound (6.6)), so its Laplace transform is well-defined and satisfies the
equality (6.20) for all t ∈ R+.

STEP 4: PROOFS OF THE FIVE CLAIMS. Now we prove these claims.

PROOF OF CLAIM 6.1. We look at the second remainder term

R2(x) = f(x)−
(
a0 + xa1

)
.

If the Borel transforms B[ a0 ],B[xa1 ],B[R2 ] are well-defined, it will follow that
φ(t) given by (6.21) is a well-defined function on R+. The first two are obviously
well-defined, so we just need to examine B[R2 ]. The asymptotic condition (6.22)
with n = 2 reads

∣∣R2(x)
∣∣ ⩽ 2!CM2|x|2. So if β is the Borel circle with any inverse-

radius R > R̂, then the integral over β is well-defined because

1

2π

∫
β

∣∣R2(x)
∣∣etRe(1/x)

∣∣∣∣dxx2
∣∣∣∣ ⩽ 1

π
CM2eRt

∫
β
|dx | ⩽ CM2eRtR−1 .

Moreover, the integral only depends on the homotopy class (with fixed endpoints at
±π/2) of the integration path β because because the integrand is holomorphic in the
sector and the integral over any Borel circle β decays as the radius R increases. □

PROOF OF CLAIM 6.2. For any n ⩾ 2, take the identity

f(x) =

n−1∑
k=0

akx
k +Rn(x) ,
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and plug it into formula (6.21) for φ to get

φ(t) =
n−2∑
k=0

akt
k + En(t) where En(t) :=

1

2πi

∫
γ
Rn(x)e

t/xdx

x2
. (6.28)

Thus, to prove this claim, we have to show that the error term En(t) goes to zero as
n → ∞ for all t ∈ Î. For any R > R̂, let βR be the Borel circle with radius R. Note
that En is independent of R because of Claim 6.1. So for all t > 0, we find:

∣∣En(t)
∣∣ ⩽ 1

2π

∫
βR

∣∣Rn(x)
∣∣eRt

∣∣∣∣dxx2
∣∣∣∣ ⩽ 1

2πCM
nn!eRt

∫
βR

∣∣∣xndx
x2

∣∣∣ ⩽ CMnn!eRtR−n .

Now, for any fixed t, look at the real-valued function R 7→ eRtR−n defined for all
R > 0. It achieves its minimum at R = n/t with value enn−ntn. Fix a sufficiently
large integer N > 0 such that N/t0 > R. Then it follows that for all n ⩾ N ,∣∣En(t)

∣∣ ⩽ CMnn!enn−ntn ⩽ CMnen1/2 tn ,

where we used one of Stirling’s bounds. Since t < r̂ = 1/M , it follows that |En(t)|
goes to 0 as n→ ∞. □

PROOF OF CLAIM 6.3. Let n ⩾ 0 be any integer. We claim that the n-th derivative
∂nt φ exists at every t ∈ R+. To do this, just like in (6.28), we look at the expression

φ(t) =
n∑

k=0

bkt
k + En+2(t) where En+2(t) =

1

2πi

∫
β
Rn+2(x)e

t/xdx

x2
.

Then we just need to verify that the n-th derivative ∂nt En+2 exists at every t ∈ R+. In
order to be able to swap differentiation and integration, we must first show that the
n-th derivative of the integrand (which of course exists at every t ∈ R+) is bounded
by an integrable function independent of t. For any R > R̂, restrict to the Borel
circle γ with inverse-radius R. For all t ∈ R+, we find:∣∣∣∣∣∂nt

(
Rn+2(x)

et/x

x2

)∣∣∣∣∣ =
∣∣∣∣∣Rn+2(x)

et/x

xn+2

∣∣∣∣∣ ⩽ CMn+2(n+ 2)!eRt . (6.29)

On any bounded interval in R+, the righthand side can be bounded by a constant
independent of t (although it depends on the interval) which is of course integrable.
Therefore, the derivative ∂nt φ exists at every t ∈ R+ and equals

∂nt φ(t) = n!bn + ∂nt En+2(t) = n!bn +
1

2πi

∫
β
Rn+2(x)e

t/x dx

xn+2
. (6.30)

It remains to demonstrate the bounds (6.27). First, note that the integral
∫
β

∣∣xn dx
x2

∣∣
is convergent since n ⩾ 2. So we can combine (6.23), (6.29), and (6.30) to deduce:∣∣∂nt φ(t)∣∣ ⩽ n!CMn + CMn+2(n+ 2)!eRt = CMnn!

(
e−Rt +M2(n+ 2)(n+ 1)

)
eRt .

Now, choose any number c > 1 and let M̃ := cM . Then the above expression equals

CM̃nn!
(
c−ne−Rt +M2 (n+2)(n+1)

cn

)
eRt
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Since e−Rt < e−tR̂ and c > 1, the expression in the brackets is bounded by a constant
c̃ > 1 which is independent of n and R. Thus, if we let C̃ := c̃C, we find that∣∣∂nt φ(t)∣∣ ⩽ C̃M̃n!. But since C ⩽ C̃ and M ⩽ M̃ , we can redefine C,M to be the
larger constants C̃, M̃ . □

PROOF OF CLAIM 6.4. Fix any R > R̂ and any point t0 > r̂ on the real line R+. We
test the Taylor series

Jt0φ(t) =
∞∑
n=0

1

n!
∂nt φ(t0)

(
t− t0

)n
for absolute convergence on the interval I(t0). Using the bound (6.27), we find:

∞∑
n=0

1

n!

∣∣∂nt φ(t0)∣∣ · ∣∣t− t0
∣∣n ⩽ CeRt

∞∑
n=0

(n+2)!
n! (Mr)n ⩽ C0

∞∑
n=0

n2+3n+2
2n <∞ ,

where C0 := CeR(t0+r). To see that the Taylor series Jt0φ converges to φ on the
interval I(t0), we write the remainder in its mean-value form (a.k.a. Lagrange form):

Gm(t) := φ(t)−
m∑

n=0

1

n!
∂nt φ(t0)(t− t0)

n =
1

(m+ 1)!
∂m+1
t φ(t∗)

(
t− t0)

m+1

for some point t∗ ∈ I(t0) that lies between t0 and t. Using (6.27) again, and the fact
that r < 1/M , this yields a bound that goes to 0 as m→ ∞:

∣∣Gm(t)
∣∣ ⩽ (m+ 3)!

(m+ 1)!
C0(Mr)m = C0(m+ 3)(m+ 2)(Mr)m . □

PROOF OF CLAIM 6.5. Fix any t ∈ Ω and assume without loss of generality that
Re(t) > r̂. Then t is necessarily contained in a disc D(t0) for some point t0 > r̂ on
the real line. On this disc D(t0), the holomorphic function φ is represented by its
Taylor series centred at t0. Then for any R > R̂, using (6.27), we get:

∣∣φ(t)∣∣ ⩽ ∞∑
n=0

1

n!

∣∣∂nt φ(t0)∣∣ · ∣∣t− t0
∣∣n ⩽ CeRt0

∞∑
n=0

(n+2)!
n! (Mr)n .

The infinite sum in this expression converges to a number C̃ independent of t. Fur-
thermore, t0 < |t|+r because t ∈ D(t0). So settingA := CeRrC̃ yields an exponential
bound

∣∣φ(t)∣∣ ⩽ AeR|t| which is valid for all t ∈ Ω.

To demonstrate equality (6.20), consider again the second remainder term R2(x) =

f(x) −
(
a0 + xa1

)
. For any x ∈ S, let β be a Borel circle of some inverse-radius

ρ such that Re(1/x) > ρ > R. In addition, take any 0 < ε < |x| and consider the
circle γ in Cx centred at 0 with radius ε, oriented clockwise. It intersects β in exactly
two points; let γε be the arc of γ that connects them and lies in S. Correspondingly,
denote by βε the part of β that lies outside the disc of radius ε. Let the combined
oriented contour be denoted by Γε. Then we apply the Cauchy Integral Formula to
x−1R2(x):

x−1R2(x) =
1

2πi

∫
Γε

ξ−1R2(ξ)
dξ

x− ξ
=

1

2πi

∫
βε+γε

ξ−1R2(ξ)
dξ

x− ξ
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Thanks to the estimate (6.22), we get a bound
∣∣ξ−1R2(ξ)

∣∣ ⩽ 2CM2|ξ|, so the inte-
gral along the contour βε goes to 0 as ε→ 0. It follows that

x−1R2(x) =
1

2πi

∫
β
ξ−1R2(ξ)

dξ

x− ξ
.

Now, we write

1

x− ξ
=

1

xξ
· 1

1/ξ − 1/x
=

1

xξ

∫ +∞

0
eu/ξ−t/x dt .

which gives:

x−1R2(z) =
x−1

2πi

∫
β

∫ +∞

0
R2(ξ)e

t/ξ−t/x dt
dξ

ξ2
.

Using the estimate (6.22) again, we can apply Fubini’s Theorem in order to finally
obtain

R2(x) =

∫ +∞

0
e−t/x

(
1

2πi

∫
β
R2(ξ)e

t/ξ dξ

ξ2

)
dt . □

The proof of Lemma 6.3 is now complete. ■

1
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