The (Formal Bonel-Laplace Isomorphism):

- Want to extend this to asymptotics with factorial growth Due to Watson, Nevanlinna, and Sokal
(86.) Barrel Resummation
- $\forall \theta$, a halfstrip around \mathbb{R}_{θ} is

$$
\begin{gathered}
\Omega_{\theta}:=\left\{t \mid \operatorname{dist}\left(t, \mathbb{R}_{\theta}\right)<R\right\} \\
\xi^{1}\left(\Omega_{\theta}\right):=\left\{\begin{array}{c}
\text { functions of exponential } \\
\text { type at } \infty
\end{array}\right\}
\end{gathered}
$$

ie. $\varphi \in O\left(\Omega_{\theta}\right)$ st

$$
|\varphi(t)| \leqslant C e^{M|t|} \forall t \in \Omega_{\theta}
$$

- $\varepsilon_{(\theta)}^{1}:=\{$ their germs $\}=\left\{\left(\varphi, \Omega_{\theta}\right) \sim\left(\varphi^{\prime}, \Omega_{\theta}^{\prime}\right): \Leftrightarrow \varphi \equiv \varphi^{\prime}\right.$ on $\left.\Omega_{\theta n} \Omega_{\theta}^{\prime}\right\}$
- $A_{A}^{1}:=\left\{f \mid f^{(k)}\right.$ bold with fact. growth $\left.\forall A^{\prime} \Subset A\right\}$
\cup subalogbra
ie. $\left|f^{(k)} / k!\right| \leqslant C M^{k}(k!)$

$$
\mathcal{X}_{A}^{1}:=\left\{f \mid-\|-\| \text { uniformly } \forall A^{\prime} \in A\right\}
$$

The (Borel-Laplace Isomorphism)
Bore and Laplace transfroms restrict to mutually inverse alg. isms:

$$
A=(\theta-\pi / 2, \theta+\pi / 2)
$$

For $f \in \underline{\mathcal{A}}^{1}(S)$

$$
B_{\theta}[f]:=\frac{1}{2 \pi i} \underbrace{}_{\uparrow_{i}^{P} \cdot V . \int_{\beta}} e^{t / x} f(x) \frac{d x}{x^{2}}
$$

- Vertical arrows are not isomorphisms, let's fix that.

Def: $\hat{\varphi} \in \mathbb{C}\{t\}$ has endless analytic continuation of exponential type in the direction θ if it admits an. cont. $\varphi \in \xi^{1}\left(\Omega_{\theta}\right)$ for some Ω_{θ}.

亿 they form a subalg $\mathbb{C}_{\theta}^{1}\{t\} \subset \mathbb{C}\{t\}$
Def: $\hat{f} \in \mathbb{C}^{1} \mathbb{I} \times \mathbb{I}$ is Bored summable in the direction θ if $\widehat{B}[\hat{f}] \in \mathbb{C}_{\theta}^{1}\{t\}$
\uparrow they form a subalg $\mathbb{C}_{\theta}^{1} \llbracket \times \mathbb{} \subset \mathbb{C}^{1} \mathbb{\pi} \times \mathbb{J}$.

The: (Borel Resummation Theorem)
Let $A=(\theta-\pi / 2, \theta+\pi / 2)$.
Then æ restricts to algebra isomorphism

$$
\mathcal{A}_{A}^{1} \overbrace{\Sigma_{\theta}}^{\infty} \mathbb{T}_{\theta}^{1} \llbracket \times \rrbracket
$$

Its inverse Σ_{θ} is called Borel resummation in the direction θ.

Cor: (Strong Watson's Theorem)
Consider $\nVdash: \mathcal{A}_{A}^{1} \longrightarrow \mathbb{C}^{1} \llbracket \times \rrbracket$.
(1) If $|A|>\pi$, then x is inj, but not surf.
(2) If $|A| \leqslant \pi$, then x is surj, but not inj.
$\Rightarrow \nsim$ is not an isomorphism for any arc A

- if we restrict Borel Resummation iso to the ideal

Cor: (Borel-Laplace Method)
Let $A=(\theta-\pi / 2, \theta+\pi / 2)$.
Then we have a commutative diagram of algebra isomorphisms:

$$
\Rightarrow \sum_{\theta}=\mathcal{L}_{\theta} \circ\binom{a n}{\text { cont }} \circ \widehat{\mathcal{B}}
$$

i.e.: $\forall \hat{f} \in \mathbb{C}_{\theta}^{1} \mathbb{C} \times \mathbb{B} \quad \exists!f \in \bigwedge_{A}^{1}$ with $x(f)=\hat{f}$ and

$$
\begin{aligned}
& f(x)=a_{0}+\int_{\mathbb{R}_{\theta}} e^{-t / x} \underbrace{\varphi(t)}_{\hat{\uparrow} \text { an, cont. along } \mathbb{R}_{\theta}} d t \\
& \text { of } \hat{\varphi}(t):=\widehat{\beta}[\hat{f}](t) .
\end{aligned}
$$

