Let: $\quad \alpha_{k}(x):=1-e^{-b_{k} / x^{\beta}}$
(details omitted.)

Q: What can we say about the kernel $\mathcal{F}_{A}=\operatorname{ker}(\nsim)$? ie. Under what conditions on A is F_{A} trivial so that x ing?

A: equally staggering: $æ$ is never infective!
Prop: (non-uniqueness of fins with prescribed asymptotics)
For any $A, \mathcal{F}_{A} \neq\{0\}$, so $\not \supset: \mathcal{A}_{A} \rightarrow \mathbb{C} \mathbb{C} \times \mathbb{J}$ is not injective.
Pf: if $A=(-\alpha,+\alpha)$, then $e^{-1 / x^{\beta}} \in \mathcal{F}_{A}$ for any $\beta<\frac{\pi}{2 \alpha}$.
$\Rightarrow \mathcal{F}_{A}$ is truly huge! \Rightarrow explains why there are so many proofs of the Borel-Ritt Lemma: each proof constructs a splitting of the BR sequence:

resummation method

Very important: any resummation method used in the proof of BR Lemma is a splitting of (∇) only as \mathbb{C}-vector spaces i.e. doesn't intertwine product or differential stirs!

- In practical terms: if looking for soln of an equation, the method of perturbation theory then resummation is not valid.
(84) Asymptotics with Factorial Growth

Def: $f \in O(S)$ is asymptotically smooth with factorial growth along A if $\forall S^{\prime} \Subset S ~ \exists C, M>0$ st $\forall k \geqslant 1$ T

$$
\sup _{x \in S^{\prime}}\left|\frac{f^{(k)}(x)}{k!}\right| \leqslant C M^{k} k!
$$

$\widehat{f}=\sum_{k=0}^{\infty} a_{k} x^{k} \in \mathbb{C} \mathbb{C} \times \mathbb{I}$ has factorial growth if $\exists C, M>0$ st

$$
\left|a_{k}\right| \leqslant C M^{k} k!
$$

Lem: $\mathcal{A}_{A}^{1}:=\left\{\begin{array}{l}\text { sectorial germs } \\ \text { nice along } A\end{array}\right\} \subset \mathcal{A}_{A}$ diff. subalgebre, local ring \downarrow ๗ diff.alg.hom

$$
\mathbb{C}^{1} \mathbb{C} \times \mathbb{I}:=\{\text { p.s.w/ fact. growth }\} \subset \mathbb{C} \mathbb{C} \times \mathbb{\mathbb { }} \quad \text { u-, } u \text { — }
$$

- $\mathbb{C}\{x\} \subset \mathbb{C}^{1} \mathbb{\llbracket} \times \rrbracket \subset \mathbb{C} \llbracket x \rrbracket$
- Main asympt. exp theorem: $\left|R_{n}(x)\right| \leqslant C M^{n} n!|x|^{n}$
- Now, we want to understand the kernel of \rightsquigarrow.

Def: $f \in O(S)$ is of exponential decay along A if $\forall S^{\prime} \Subset S \quad \exists C>0$ and $\tau>0$ st

$$
|f(x)| \leqslant C e^{-T /|x|} \quad \forall x \in S^{\prime}
$$

$$
\mathcal{F}_{A}^{1}:=\left\{\begin{array}{c}
\text { sectorial germs } \\
\text { of exp. decay } \\
\text { along } A
\end{array}\right\}
$$

Lem: \forall are $A, \mathcal{F}_{A}^{1} \subset \mathcal{X}_{A}^{1}$ diff. subalgebra and

$$
0 \rightarrow \mathcal{F}_{A}^{1} \longrightarrow \mathcal{A}_{A}^{1} \xrightarrow{æ} \mathbb{C}^{1} \llbracket \times \rrbracket
$$

note: not claiming that x is surjective!

- Proof skipped (uses Stirling approximation)
- Observe: if $|A| \leqslant \pi$, then $\mathcal{F}_{A}^{1} \neq\{0\} \quad b / c$ of functions like $e^{-1 / x}$.

The (Watsoris Lemma):
If $|A|>\pi$, then $\mathcal{F}_{A}^{1}=\{0\}$
Pf idea : $f \in \mathcal{F}_{A}^{1}$ should be like $e^{1 / x^{\beta}}$ with $\beta<1$, but $e^{1 / x^{\beta}}$ is n't nice.

- uses very interesting extension of maximum modulus principle to unbounded domains.

Tho (Watson's Lemma):
Consider $x: \mathscr{A}_{A}^{1} \longrightarrow \mathbb{C}^{1} \mathbb{I} \times \mathbb{I}$.
(1) if $|A|>\pi$, then $\mathscr{\text { infective }}$
(2) if $|A| \leqslant \pi$, then $æ$ surjective

Cor (Borel-Ritt-Watson Lemma)
If $|A| \leqslant \pi$, then

$$
0 \longrightarrow \mathcal{F}_{A}^{1} \longrightarrow \mathcal{A}_{A}^{1} \longrightarrow \mathbb{C}^{1}[\times \mathbb{T} \longrightarrow 0
$$

Pf of Watson's Lemma: Wolog, assume $A=(-\alpha,+\alpha), \quad \alpha<\frac{\pi}{2}$.
Take $\hat{f}(x):=\sum_{k=0}^{\infty} a_{k} x^{k} \in \mathbb{C}^{1} \mathbb{E x \rrbracket}$ so $\left|a_{k}\right| \leqslant C M k!$.
Need to find some $f \in A_{A}^{1}$ st $æ(f)=\hat{f}$.
Let : $\hat{\varphi}(t):=\sum_{k=0}^{\infty} \frac{a_{k+1}}{k!} t^{k} \in \mathbb{C}\{t\}$
Let: $v \in \mathbb{R}_{t}$ inside a disc of convergence of $\hat{\varphi}$.
Take:

$$
f_{v}(x):=a_{0}+\int_{0}^{v} e^{-t / x} \widehat{\varphi}(t) d t
$$

Claim: $f_{v}(x) \in \mathcal{A}^{1}\left(H_{+}\right)$and $x\left(f_{v}\right)=\hat{f}$. \rightarrow proof is similar to proof of Taylor's theorem.

Shortfalls in Watson's Theorem:

- regimes of injectivity and subjectivity are disjoint $-1 / x)$
- surjectivity does not extend to larger arcs (well see later)
- no practical description of image of x for large ares.
(35.) Borel-Laplace Transform

Introduce new complex plane \mathbb{C}_{t}.
Def: The Laplace transform of $\varphi=\varphi(t)$ in the direction θ is

$$
\mathcal{L}_{\theta}[\varphi]:=\int_{\mathbb{R}_{\theta}} e^{-t / x} \varphi(t) d t
$$

Given an arc $\mapsto \subseteq \mathbb{R}$,

$$
\mathcal{L}_{\Theta}[\varphi]:=\left\{\mathcal{L}_{\theta}[\varphi]\right\}_{\theta \in \Theta}
$$

Def: entire hel. in $\varphi \in \bigoplus\left(\mathbb{C}_{t}\right)$ is of exponential type at ∞ if $\exists C, M>0$ st $\quad|\varphi(t)| \leqslant C e^{M|t|} \quad \forall t \in \mathbb{C}_{t}$.

$$
\mathcal{E}^{1}\left(\mathbb{C}_{t}\right):=\left\{\begin{array}{l}
\text { entire fins of } \\
\text { exp. type }
\end{array}\right\} \subset\left(O\left(\mathbb{C}_{t}\right)\right.
$$

Prop: $\forall \varphi \in \mathcal{E}^{1}\left(\mathbb{C}_{t}\right)$,

$$
f(x):=\mathcal{L}[\varphi](x):=\mathcal{L}_{\theta}[\varphi](x) \quad \text { where } \quad \theta:=\arg (x)
$$

is a hol. function in some disc D around the origin, and $f(0)=0$
\Rightarrow Laplace transform defines a \mathbb{C}-linear map

$$
\mathcal{L}: \varepsilon^{1}\left(\mathbb{C}_{t}\right) \longrightarrow x \mathbb{C}\{x\}
$$

\rightarrow not algebra hon! $\mathcal{L}[\varphi \cdot \psi] \neq \mathcal{L}[\varphi] \cdot \mathcal{L}[\psi]$.

Def: convolution product :

$$
\varphi * \psi:=\int_{0}^{t} \varphi(t-u) \psi(u) d u
$$

$\Rightarrow \xi^{1}\left(\mathbb{C}_{t}\right)$ with $*$ is commutative (non-unital) \mathbb{C}-algebra - e.g.: $t^{i} * t^{j}=\frac{i!j!}{(i+j+1)!} t^{i+j+1} \Rightarrow \mathbb{C} \mathbb{t} \rrbracket$ also gets $*$.

Prop: $\mathcal{L}: \underset{\text { with } *}{\mathcal{E}_{t}^{1}\left(\mathbb{C}_{t}\right)} \longrightarrow x \mathbb{C}\{x\}$ is alg. hom ie. $\mathcal{L}[\varphi * \psi]=\mathcal{L}[\varphi] \cdot \mathcal{L}[\psi]$.

Claim: it is actually an iso! to prove, well construct explicit inverse = Borel transform.

Defn: The Borel transform of $f=f(x)$ is

$$
B[f]:=\frac{1}{2 \pi i} \oint e^{t / x} f(x) \frac{d x}{x^{2}}
$$

Lem: $\forall \hat{f} \in \mathbb{C}\{x\}, \quad \varphi(t):=B[\hat{f}](t) \in \mathcal{\xi}^{1}\left(\mathbb{C}_{t}\right)$.
So the Borel transform defines a \mathbb{C}-linear map

$$
B: \mathbb{C}\{x\} \longrightarrow \varepsilon^{1}\left(\mathbb{C}_{t}\right)
$$

$\left.\begin{array}{l}\text { - } B[1]=0 \Rightarrow \operatorname{ker}(B)=\mathbb{C} \\ \text { - } B[x]=1 \\ \text { - } B\left[x^{n}\right]=\frac{1}{(n-1)!} t^{n-1}\end{array}\right\} \quad B\left[\sum_{k=0}^{\infty} a_{k} x^{k}\right]=\sum_{k=0}^{\infty} \frac{a_{k+1}}{k!} t^{k}$

- $B[f \cdot g]=B[f] * B[g]+f(0) B[g]+g(0) B[f]$
$\Rightarrow B$ is not an algebra hom unites restricted to the ideal $x \mathbb{P}\{x\}$
Cor: $B: x \mathbb{C}\{x\} \longrightarrow \mathcal{E}^{1}\left(\mathbb{C}_{t}\right)$ alg. hoo.

The: (Convergent Borel-Laplace Isomorphism)

Pf hint: change order of integration and use Candy's integral formula.
Def: • $\widehat{\mathcal{L}}: \mathbb{C} \llbracket t \mathbb{C} \mathbb{C} x \rrbracket$

$$
\sum_{k=0}^{\infty} b_{k} t^{k} \longmapsto \sum_{k=0}^{\infty} k!b_{k} x^{k+1}
$$

formal Laplace transform

- $\widehat{\mathbb{B}}: \mathbb{C} \llbracket x \rrbracket \longrightarrow \mathbb{C} \llbracket t \rrbracket$
formal Bored

$$
\sum_{k=0}^{\infty} a_{k} x^{k} \longmapsto \sum_{k=0}^{\infty} \frac{a_{k+1}}{k!} t^{k}
$$ transform

Lem: $\widehat{f} \in \mathbb{C}^{1} \mathbb{\pi} \times \mathbb{B} \Leftrightarrow \widehat{B}[\hat{f}] \in \mathbb{C}\{t\}$
and $\mathbb{C}^{1} \mathbb{\mathbb { C }} \mathbb{\square} \xrightarrow{\widehat{B}} \mathbb{C}\{t\} \quad \mathbb{C}$-linear map

The (Formal Borel-Laplace Isomorphism):

- Want to extend this to asymptotics with factorial growth Due to Watson, Nevanlinna, and Sokal
- Let θ be a direction.

Let $\Omega_{\theta}(R):=\left\{t \mid \operatorname{dist}\left(t, \mathbb{R}_{\theta}\right)<R\right\}$ halfstrip centred at \mathbb{R}_{θ}

$$
\varepsilon_{(\theta)}^{1}:=\{
$$

