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Vector Bundles are comprised of a collection of vector spaces that are
smoothly parameterised by a manifold. This amounts to attaching a vector
space to each point in the manifold, and then endowing this collection of
attached vector spaces with a manifold structure of its own. The key idea is
that locally a vector bundle resembles a Cartesian product:

U

EU

p

Ep

π

whereas globally there might be nontrivial behaviour like twists. An im-
portant idea within bundle theory is that, ontologically, a bundle is nothing
more than a collection of Cartesian products U ×Rk that are glued together.

This week we explore the formal details of the above picture. We will
start with some general theory and constructions, and then we will move on
to the particular case of the tangent bundle of a smooth manifold.
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1 Vector Bundles

A vector bundle is a collection of vector spaces that are smoothly attached
to a manifold. Vector bundles are defined so as to generalise the Cartesian
product M × Rk. We allow vector bundles look a Cartesian product locally,
whereas globally they may not.

Before getting to the formal definition, we should note that different au-
thors define bundles in slightly different ways. They all end up being equiv-
alent, but there is a cloud of possible starting properties that all imply each
other. Therefore, what we might write as a definition could be a provable
result for some others.

1.1 Basic Notions

The formal definition of a vector bundle may seem obscure at first, but it
essentially all that is required to formally capture the intuition described
previously. The definition is as follows.

Definition 1.1. A vector bundle of rank k is a tuple (E, π,M), where E

and M are smooth manifolds, and π : E → M is a smooth, surjective map
satisfying the following properties.

1. For each p in M , the pre-image π−1(p) ⊂ E is a k-dimensional real
valued vector space, and

2. For every p in M there is a neighbourhood U of p and a diffeomorphism
Φ : π−1(U)→ U ×R such that the following diagram commutes (where
p1 is the map that projects onto the first factor),

π−1(U) U × Rk

U U

π

Φ

p1
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and for each q ∈ U , the restriction Φ|q : Eq → {q} × Rk is an isomor-
phism of vector spaces.

The map Φ is known as a local trivialisation, and allows us to compute a
local expression of objects of E in terms of vector spaces. These are analo-
gous to the open charts of a smooth manifold, and there is also an associated
notion of compatibility between local trivialisations. We will explore this
more in Section 1.3.

For now, we complete this section by discussing what it means for a map
between bundles to be structure-preserving. Such maps are called bundle
morphisms, and are defined as follows.

Definition 1.2. Let f : M → N be a smooth map, and let (E, πE,M) and
(F, πF , N) be vector bundles. A smooth map g : E → F is said to be a bundle
morphism covering f iff the diagram

E F

M N

πE

g

πF

f

commutes, and g is a fibrewise linear map.

Observe that a bundle morphism is a smooth map (i.e. a morphism of
manifolds) and a linear map (i.e. a morphism of vector spaces) once restricted
to fibres. The requirement that the map covers f amounts to requiring that
g maps each fibre Ep to Ff(p). Furthermore, a bundle morphism g is called a
bundle isomorphism iff it is bijective and its inverse map g−1 is also a bundle
morphism. We have the following useful condition for identifying bundle
isomorphisms.

Lemma 1.3. Let E and F be vector bundles over the same base manifold
M , and g : E → F be a bundle morphism covering the identity map on M .
If g is bijective, then g is a bundle morphism.
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1.2 Sections and Frames

We will now define the notion of a section of a bundle. This is fairly straight-
forward – a section of a vector bundle E is formed by smoothly choosing
a single element from each fibre Ep, as in Figure 1. Formally, sections are
defined as follows.

Definition 1.4. Let E be a vector bundle over M . A section is a smooth
map s : M → E such that π ◦ s = idM . We denote the space of all sections
of E by Γ(E).

We can similarly define a local section by replacing M by an open subset
U of M . Under this terminology, we will refer to the sections defined in 1.4
as global sections.

1.2.1 The Structure of Γ(E)

Denote by Γ(E) the space of all global sections of E. We will now flesh out
some of the structure of Γ(E). We first observe that Γ(E) is closed under
addition. Indeed, suppose that s1 and s2 are two global sections of E. Then
the sum (s1 + s2) : M → E is given by

(s1 + s2)(p) := s1(p) + s2(p),

where on the right hand side addition is given as the vector space addition
in the fibre Ep. One can confirm that the above expression defines a smooth
global section, and thus (s1 + s2) ∈ Γ(E).

We can also scale sections by smooth functions f ∈ C∞(M):

(fs)(p) := f(p)s(p),

where on the right-hand side we use scalar multiplication in the fibre Ep. We
may therefore conclude that the space of global sections Γ(E) is a module
over C∞(M).
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Figure 1: A smooth local section s of EU

Remark 1.5. At this point you should really be feeling a strong sense of deja
vu. We have made all of these arguments previously when discussing tensor
fields on M in Week 3. This is no coincidence – the tensor fields previously
discussed are simply global sections of an appropriate tensor bundle defined
on M .

1.2.2 Frames

In the context of linear algebra, a frame of a vector space is an ordered basis.
We can extend this notion to vector bundles by using sections.

Definition 1.6. A local frame of E is a collection of k-many local sections
si : U → EU such that for each p in U , the collection (s1(p), ..., sk(p)) is a
frame for Ep.

Included in the above definition is the idea that a local frame consists
of fibrewise linearly independent local sections. We can also extend the ter-
minology by saying that a global frame is a local frame which is defined on
U = M .

An important feature of frames is that they encode the same information
as a local trivialisation. Indeed, suppose that we have a local frame si of E
defined on some open set U of M . We can define a function Φ : EU → U×Rk
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that acts by sending the frame si to the canonical basis ei of Rk. Conversely,
if we have a local trivialisation map Φ : EU → U ×Rk, then we can define a
local frame si : U → EU by

si(p) := Φ−1(p, ei).

This will be a frame on each fibre Ep since the map Φ is an isomorphism of
fibres. With all of this in mind, we can rephrase the local triviality condi-
tion of Definition REF by asserting that every point p in M has some open
neighbourhood U on which admits a local frame of E. As a corollary of this
idea, we have the following useful result.

Theorem 1.7. A rank k vector bundle E is trivial if and only if E admits
k-many global sections that are non-zero and are linearly independent on each
fibre.

The above theorem is just saying that a vector bundle is trivial if it admits
a global frame.

1.3 Reconstruction of a Vector Bundle

Suppose that we have two local trivialisations (Uα,Φα) and (Uβ,Φβ) such
that the intersection Uα ∩ Uβ is non-empty. We then have the following
diagram,

Uαβ × Rk π−1(Uαβ) Uαβ × Rk

Uαβ Uαβ Uαβ

p1

Φβ◦Φ−1
α

π

Φα Φβ

p1
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where we have used Uαβ as a shorthand for the intersection Uα ∩ Uβ. Since
both Φ’s are bundle isomorphisms, the map Φβ◦Φ−1

α is well-defined, and sends
(p, r) 7→ (p, gαβ(p)(r)), where the map gαβ maps each element p of Uαβ to
some linear transformation on Rk. In fact, it is a map gαβ : Uαβ → GLk(R),
where GLk(R) is the general linear group of degree k over R. This is the set
of all invertible k × k matrices with entries in R, and is a Lie group. The
Lie group associated to the maps gαβ is known as the structure group of the
bundle E. The maps gαβ are known as transition functions, and are similar
to the transition maps of compatible charts of a smooth manifold. We also
have the following useful result, which allows to construct vector bundles
from local data.

Lemma 1.8 (Bundle Chart Lemma). Let M be a smooth manifold, and
suppose that for each p in M we are given a real-valued vector space Ep of
some fixed dimension k. Let E := ⊔

pEp, and let π : E → M be the map
that takes each element of Ep to the point p. Suppose furthermore that we
are given the following data:

1. an open cover {Uα}α∈A of M

2. for each α ∈ A, a bijection Φα : π−1(Uα)→ Uα × Rk whose restriction
to each Ep is a vector space isomorphism from Ep to {p} × Rk

3. for each α, β ∈ A with Uαβ 6= ∅, a smooth map gαβ : Uαβ → GLk(R)
such that the map Φα ◦ Φ−1

β from Uαβ to itself has the form Φα ◦
Φ−1
β (p, v) = (p, gαβ(p)(v)).

Then E has a unique topology and smooth structure making it into a vector
bundle over M , with π as its projection map, and (Uα,Φα) as local triviali-
sations.

For the full proof, the reader is invited to read Lee Chapter 10.

Since local trivialisations are the same as local frames, there should be an
analogous derivation of transition maps using the language of frames. This

8



is indeed true – suppose that si : Uα → EUα and s̃i : Uβ → EUβ are two local
frames, and suppose that Uαβ is non-empty. Then for each point p in Uαβ,
the two frames si and s̃i can be related to eachother by a change of basis
map:

si = λij(p)s̃j(p),

where λij is some set of coefficients that depends smoothly on p. As such,
this λij can be seen as a map from Uαβ into GL(k). A quick computation will
verify that the maps λij are precisely equal to the transition maps gαβ.

2 Vector Bundle Constructions

We have seen that we can reconstruct vector bundles from local trivialisa-
tions, which we phrased in terms of transition functions and in terms of local
frames. In this section, we will take this a step further by showing how to
construct new bundles from old data. The idea underpinning all of the con-
structions is that we perform a linear-algebraic construction fibrewise, and
then lift this to a globally-defined vector bundle using the (re)construction
theorem.

2.1 Subbundles and Quotient Bundles

Suppose that we have a vector space V and a subspace W . We can quotient
V by W to form a lower-dimensional vector space defined as follows.

V�W = V�∼ where v ∼ v′ iff v − v′ ∈ W.

The resulting space is a vector space of dimension dim(V )− dim(W ).

We would like to pass this idea over to vector bundles. In order to do so,
we first need to make precise the notion of a subbundle.
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Suppose that we have a vector bundle E of rank k. A subbundle F of E
is a collection of vector spaces Fp such that Fp is a vector subspace of Ep for
all p, with the dimension of each Fp being the same. Moreover, the collection
F of all Fp comprises a vector bundle in its own right, in such a way that F is
a submanifold of E. Since E is a vector bundle, we expect that we can relate
the transition functions of E to the transition functions of its subbundles.
This is easier to state in terms of local frames.

Proposition 2.1. Let E be a rank-k vector bundle over M and suppose that
for each p in M we have an l-dimensional subspace Fp of Ep. The collection
F := ⊔

p Fp is a rank-l subbundle of E if and only if for each p there exists a
collection of l-many local sections si : U → E such that for each q in U , the
collection (s1(q), ..., sk(q)) forms an ordered basis of Fq.

This proposition is stating that the collection F of fibrewise subspaces is
a subbundle whenever we can find a local frame for F around each point.

The quotient of a vector bundle E by one of its subbundles F is a new
vector bundle E�F whose fibres consist of the vector space quotients, that is(

E�F
)
p

= Ep�Fp.

The projection map is obvious. The transition functions hαβ of the quotient
bundle E�F can be described by arranging the transition functions of E have
the block form

gEαβ =
gFαβ −

0 hαβ


where gFαβ is an l×l block of transition data for F , and hαβ is the (k−l)×(k−l)
block of transition data for E�F . The idea behind this rearrangement is to
use the local frame of Proposition 2.1 and extend it to a local frame for E.
For the details, see Taubes Section 4.2.
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2.2 Algebraic Bundle Constructions

We will now describe the bundle-theoretic analogues to various linear alge-
braic constructions. Suppose that E and F are vector bundles over M of
rank k and l respectively. The idea behind these constuctions is to perform
the construction fibrewise, and then to use the transition maps of E and F

to create transition maps for bundles of higher ranks. The new bundles will
then exist by an application of 1.8.

1. The Dual Bundle. The dual bundle E∗ of E consists of the following
data.

• Fibres: the dual spaces of the fibres of E, that is, (E∗)p = (Ep)∗.

• Transition maps: g∗αβ : Uαβ → GL(k) given by g∗αβ = ((gαβ)T )−1,
where gαβ are the transition functions of E.

2. The Direct Sum. The direct sum E ⊕ F of the bundles E and F

consists of the following data.

• Fibres: the direct sum spaces of the fibres of E and F , that is,
(E ⊕ F )p = Ep ⊕ Fp.

• Transition maps: gαβ : Uαβ → GL(k+ l) given by gαβ = gEαβ⊕gFαβ,
that is

gαβ =
gEαβ 0

0 gFαβ

 .
3. The Tensor Product. The tensor product E ⊗ F of the bundles E

and F consists of the following data.

• Fibres: the direct sum spaces of the fibres of E and F , that is,
(E ⊕ F )p = Ep ⊕ Fp.

• Transition maps: gαβ : Uαβ → GL(kl) given by gαβ = gEαβ ⊗ gFαβ,
which is the tensor product of matrices once applied to each p in
Uαβ.
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4. The Hom-Bundle. The space of linear maps between vector spaces
V and W is denoted by Hom(V,W ).1 As a basic fact of Linear alge-
bra, there is an isomorphism Hom(V,W ) ∼= V ∗ ⊗W . We can perform
this construction on vector bundles to create Hom(E,F ), whose fi-
bres consist of the linear maps between fibres of E and F , that is,
(Hom(E,F ))p = Hom(Ep, Fp). The transition functions can be de-
scribed by viewing the Hom-bundle as E∗ ⊗ F .

5. The Endomorphism Bundle. An endomorphism of a vector space
V is a linear map to itself. We write the collection of all endomorphisms
of V as End(V ). This space is equal to Hom(V, V ), that is, V ∗⊗V , the
rank (1, 1)-tensors. We will use the same notation End(E) to denote
the bundle E∗ ⊗ E.

2.3 Restrictions and Pullbacks

Given a smooth map f : M → N and a vector bundle (F, πF , N), we can
define a new bundle over M by restricting the structure of F to the fibres
that cover f(M). This is called a pullback bundle, and is commonly denoted
by f ∗F . The fibres are given by (f ∗F )p = Ff(p). The formal definition is as
follows.

Definition 2.2. Let f : M → N be a smooth map and (F, πF , N) a vector
bundle. The pullback bundle has as elements:

f ∗F := {(m,u) ∈M × F | f(m) = πF (u)},

and the projection map of f ∗F is given by the projection onto the first factor.

We also make the following useful observation.

Proposition 2.3. Let f : M → N be a smooth map, and (F, πF , N) a
vector bundle. The map p2 : f ∗F → F is a bundle morphism, and p2 is an
isomorphism whenever f is a diffeomorphism.

1The “hom” is short for “homomorphism”, the general term.
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It can also be shown that every bundle morphism g : E → F that covers
the map f has to factor through the pullback bundle f ∗F , i.e. for every such
g there is a unique morphism h : E → f ∗F such that the following diagram
commutes.

E f ∗F F

M M N

πE

g

h

p1

p2

πF

f

Given a vector bundle (E, π,M) and an embedded submanifold A of M ,
we can restrict the bundle E to A by pulling E back along the inclusion
map ι : A→M (which is smooth by definition). We will denote this bundle
by E|A, instead of ι∗E. The bundle (E|A, π|A, A) is then called a restricted
bundle.

3 The Tangent Bundle

The tangent bundle of a smooth manifold is the prototypical example of a
vector bundle. The reason for this is that the structure naturally follows
from the properties of a smooth manifold so it is quite easy to introduce.
In this section we will provide the details of the construction of the tangent
bundle.

3.1 Constructing the Tangent Bundle

It is possible to define a vector-bundle structure on the set

TM :=
⊔
p∈M

TpM.

There is a natural projection map π : TM → M which sends every tangent
vector in TpM to p. We can endow this collection of tangent spaces with a
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manifold structure by considering a local chart of M . Suppose we have a
chart (U,ϕ) for M , and consider the coordinate functions xi : U → R. We
would like to define a map Φ : π−1(U) → U × Rn. Let v be some element
of π−1(U). This means that v sits inside some tangent space TpM , for some
point p in U . Since U is an open chart of M we can express v in the coordinate
basis induced from U , that is:

v = vi
∂

∂xi
,

where we suppress the dependency on p for simplicity. The map Φ : π−1(U)→
U × Rn can then defined by

Φ(v) = Φ
(
vi

∂

∂xi

)
= (p, v1, ..., vn),

that is, we send every vector v to its components in the coordinate basis
induced from U .

We can go one step further and use the map Φ to describe a chart for
TM using π−1(U), by mapping (p, vi ∂

∂xi
) 7→ (x1(p), ..., xn(p), v1, ..., vn). This

can be summarised by the diagram:

TM |U U × Rm ϕ(U)× Rm

U U ϕ(U)

Φ

π

(ϕ,id)

p1 p1

ϕ

where here we use (ϕ, id) as shorthand for the map which acts by ϕ on the
first coordinate of U × Rk and does nothing to the others.

Remark 3.1. Recall that vector fields are smooth assignments of tangent
vectors to each point in M . In the language of vector bundles, a vector
field v in X(M) is actually a global section of the tangent bundle, that is
v : M → TM is a smooth right inverse of the projection map π.
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3.2 The Differential Revisited

It is also possible to define the differential of a smooth map f : M → N

using the pointwise differentials dfp. The differential of f is denoted by df ,
and is defined as

df(p, v) = (f(p), dfp(v)).

We have the following useful facts about the differential map.

Proposition 3.2. If f : M → N is a smooth map, then the differential
df : TM → TN is smooth.

Sketch. We compute the local representation of df in terms of charts of TM
and TN . For local charts (U,ϕ) of M and (V, ψ) of N , we obtain the following
diagram.

ϕ(U)× Rm TM |U TN |V ψ(V )× Rn

ϕ(U) U V ψ(V )

p1

Φ df

π

Ψ

π p1

ϕ f ψ

The key observation is that by using Euclidean space, the local representation
of the differential df will be the differential of the local representation of f . By
some basic computations one will see that a point (p, v) in ϕ(U)×Rm will be
mapped to (ψ◦f ◦ϕ−1(p), d(ψ◦f ◦ϕ−1)p(v)) under the local representation of
df . The first component is smooth since it is the coordinate representation of
a smooth map, and the second component is smooth since it is the derivative
of a smooth map. Since each component of this function is smooth, the entire
coordinate representation of df is smooth. For the full details, see Dundas
Lemma 5.5.4.

Since the pointwise differential dfp is a linear map, we may conclude from
the above that the differential df is a bundle morphism from TM into TN
covering f , as organised in the following diagram.
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TM TN

M N

df

π π

f

We also have the following facts, which follow routinely from the properties
of the pointwise differential and bundle morphisms.

Proposition 3.3. Let f : M → N and g : N → L be smooth maps. Then

1. d(g ◦ f) = dg ◦ df

2. If f is a diffeomorphism then df is a bundle isomorphism, with (df)−1 =
d(f−1).

3. If f : M → N is a diffeomorphism then df : TM → TN is a bundle
isomorphism.

3.3 Further Bundles

We can use the constructions detailed in Section 2 to construct other bundles
from TM . According to our discussion in Section 2, we should be able to
describe a dual bundle to TM by suitably modifying the transition functions
of TM . Recall the transformation rule for cotangent vectors:

ω̃i = ωj
∂yj

∂xi
.

This map is indeed the inverse transpose of the Jacobian that is used to
transform tangent vectors. A similar line of reasoning confirms the transition
charts of tensor bundles are indeed the transformation laws for tensors on
M .
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4 Some Parallelizable Manifolds

A manifold is called parallelizable if its tangent bundle is trivial. From The-
orem 1.7, this means that a manifold M is parallelizable if its tangent bundle
admits a global frame, that is, if we can find n-many global sections that
are linearly independent and everywhere non-vanishing. We will now review
several interesting examples of manifolds and their tangent bundles.

4.1 The Tangent Bundle of S1

We opt for an extrinsic construction of S1, by interpreting S1 as the set of
unit norm vectors in R2. Based on this construction, we expect that the
tangent space at a point TpS1 will be a ray in R2 that touches S1 at precisely
one point. Precisely, the tangent space TpS1 should be the one-dimensional
subspace of R2 that is normal to the vector formed from p.

We can create a simple formula for the tangent space TpS1. Let p = (x, y).
Then the tangent space at p will be

TpS
1 = {(v1, v2) ∈ R2 | xv1 + yv2 = 0}.

Consider the tangent bundle TS1. There are really only two choices for the
structure of this bundle – either TS1 is equal to the infinite cylinder, or it
has a twist and is thus equal to the Möbius bundle. We can show that TS1

is trivial by constructing a non-zero section. Define s : S1 → TS1 by

s(x, y) = (−y, x).

Clearly this lies in the correct tangent space, and moreover it is non-vanishing,
since (x, y) lies on the unit norm circle. Moreover, this map is smooth. It
follows that the tangent bundle TS1 is trivial, that is TS1 ∼= S1 × R.

Alternatively, we can use the complex plane C instead of R2. The non-
vanishing section will be given by s(z) = iz, which is geometrically identical
to the section described above.
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4.2 The Tangent Bundle on S2 and S3

If we try to repeat the same trick on S2 we are doomed to fail. This fol-
lows from the interesting classical result known as the Hairy ball theorem,
originally due to Poincarè.

Theorem 4.1. There is no continuous non-vanishing vector field on S2.

If we were to try and argue that the tangent bundle of S2 is trivial, then
we would need two non-vanishing global sections. But, the theorem above
tells us that we cannot find one such section, let alone two! We may thus
conclude that the 2-sphere is not parallelizable.

However, we can describe the tangent bundle of the 3-sphere explicitly.
Now we want to interpret the S3 as the sphere of unit norm sitting inside
R4. The tangent space at a point will again be equal to the orthogonal
hyperplane, that is, TpS3 = p⊥. Fix p in S3, and suppose that the vector
corresponding to p has coordinates (x1, x2, x3, x4). Using standard techniques
from linear algebra, we can describe the orthogonal complement of p as

TpS
3 = span




−x2

x1

−x4

x3

 ,

−x4

−x3

x2

x1

 ,

−x3

x4

x1

−x2



 .

These vectors form an orthogonal basis of TpS3. Moreover, they are all or-
thogonal to p itself.

To see that TS3 is trivial, we can proceed as in the case of the circle. We
define three sections s : S3 → TS3 by

s1(x1, x2, x3, x4) = (−x2, x1,−x4, x3)T

s2(x1, x2, x3, x4) = (−x4,−x3, x2, x1)T

s3(x1, x2, x3, x4) = (−x3, x4, x1,−x2)T ,
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that is, si maps to each of the three orthogonal basis vectors in TpS
3. As in

the case of S1, each of these sections is smooth and globally non-vanishing.
Moreover, they are linearly independent by construction. It follows that the
si define a global frame of TS3, and thus TS3 is trivial.

If we would like to be clever, we can actually interpret S3 as the unit
norm points sitting inside the Quarternions H. For p = h, The tangent space
TpS

3 can then be described as

TpS
3 = span(ih, jh, kh),

and the global frame of TS3 can then be described by s1(h) = ih, s2(h) = jh

and s3(h) = kh.

4.3 The Tangent Bundle of a Lie Group

We finish this section by tying in with last week’s Lie theory. Recall that a
Lie group G has a natural connection to a Lie algebra g, which can be seen as
either the tangent space at the identity, or as the collection of left-invariant
vector fields. To establish this equality between definitions of g we used the
left-translations Lg to push vectors in TeG around the manifold to induce a
smooth vector field. We can again use the left-translations to establish the
following result.

Theorem 4.2. Every Lie group is parallelizable.

Proof. Let (v1, ..., vn) be a frame of g. Recall that each vector v in g induces a
left-invariant vector field vL which is defined as vL(g) = (Lg)∗(v) for all g. If
we do this for the frame of g, we obtain n-many vector fields (vL1 , ..., vLn ). This
collection will become a global frame of TG – linear independence and global
non-vanishing follows from the fact that the differential of a diffeomorphism
acts as an isomorphism of vector spaces.
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4.4 Higher-Dimensional Spheres

To be completed after next week’s homework.
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