Resurgence in quantum field theory

Tatsu MISUMI (Kindai U.)

Resurgent structure in integral

Resurgent structure in integral

In integral, original contour decomposes into steepest decent contours (Lefschetz thimbles) associated with complex saddles

Thimbles associated with distinct saddles have nontrivial relation via Stokes phenomena

- Airy integral

$$
\operatorname{Ai}\left(g^{-2}\right)=\int_{-\infty}^{\infty} d \phi \exp \left[-i\left(\frac{\phi^{3}}{3}+\frac{\phi}{g^{2}}\right)\right]
$$

Resurgent structure in integral

Complex saddle contributions in thimble decomposition (Steepest descent method)

- Airy integral

$$
\operatorname{Ai}\left(g^{-2}\right)=\int_{-\infty}^{\infty} d \phi \exp \left[-i\left(\frac{\phi^{3}}{3}+\frac{\phi}{g^{2}}\right)\right]
$$

- $\mathcal{J}_{\sigma} \quad \operatorname{Im}[S]=\operatorname{Im}\left[S_{0}\right]$

$$
\operatorname{Re}[S] \leq \operatorname{Re}\left[S_{0}\right] \quad \text { Thimble }
$$

- $n_{\sigma}=\left\langle\mathcal{K}_{\sigma}, \mathcal{C}\right\rangle \quad \begin{array}{r}\text { Intersection number } \\ \text { of dual thimble } \mathbb{K}\end{array}$ and original contour

$$
\mathcal{C}=\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}
$$

$$
\arg \left[g^{2}\right]=0+
$$

Resurgent structure in integral

Complex saddle contributions in thimble decomposition (Steepest descent method)

- Airy integral $\quad \arg \left[g^{2}\right]=0+$

$$
\begin{gathered}
n_{+}=\left\langle\mathcal{K}_{+}, \mathcal{C}\right\rangle=0 \\
n_{-}=\left\langle\mathcal{K}_{-}, \mathcal{C}\right\rangle=1 \\
\mathcal{C}=\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma} \triangleleft \mathcal{C}=\mathcal{J}_{-}
\end{gathered}
$$

valid decomposition till $\arg \left[g^{2}\right]=\frac{2 \pi}{3}-$

$$
\arg \left[g^{2}\right]=0+
$$

Resurgent structure in integral

Complex saddle contributions in thimble decomposition (Steepest descent method)

- Airy integral

$$
\arg \left[g^{2}\right]=\frac{2 \pi}{3}+
$$

$$
\begin{gathered}
n_{+}=\left\langle\mathcal{K}_{+}, \mathcal{C}\right\rangle=1 \\
n_{-}=\left\langle\mathcal{K}_{-}, \mathcal{C}\right\rangle=1 \\
\mathcal{C}=\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma} \mapsto \mathcal{C}=\mathcal{J}_{-}+\mathcal{J}_{+}
\end{gathered}
$$

Resurgent structure in integral

Complex saddle contributions in thimble decomposition (Steepest descent method)

- Airy integral

$$
\arg \left[g^{2}\right]=\frac{2 \pi}{3}-
$$

$$
\mathcal{C}=\mathcal{J}_{-} \quad \leadsto \mathcal{C}=\mathcal{J}_{-}+\mathcal{J}_{+}
$$

* Thimble decomposition is discretely changed at Stokes line.
* Airy function is continuous even at the Stokes line.

$$
\mathcal{J}_{-}\left[{\frac{2 \pi^{-}}{3}}\right]=\mathcal{J}_{-}\left[\frac{2 \pi^{+}}{3}\right]+\mathcal{J}_{+}
$$

Resurgent structure in integral

Complex saddle contributions in thimble decomposition (Steepest descent method)

- Airy integral

$$
\arg \left[g^{2}\right]=\frac{2 \pi}{3}-
$$

$$
\mathcal{C}=\mathcal{J}_{-} \quad \leadsto \sqrt{\square}=\mathcal{J}_{-}+\mathcal{J}_{+}
$$

* Thimble decomposition is discretely changed at Stokes line.
* Airy function is continuous even at the Stokes line.

Two thimbles have resurgent relation via ambiguity due to Stokes phenomena!

Resurgent structure in quantum mechanics

Perturbation and Borel resummation

$$
\left[H_{0}+g^{2} H_{\mathrm{pert}}\right] \psi(x)=E \psi(x)
$$

$P\left(g^{2}\right)=\sum_{q=0}^{\infty} a_{q} g^{2 q} \quad \begin{aligned} & \text { Perturbative series is often } \\ & \text { divergent factorially }\end{aligned} a_{q} \propto q!$

Borel transform can have singularities on positive real axis

$$
B P(t):=\sum_{q=0}^{\infty} \frac{a_{q}}{q!} t^{q} \quad \underbrace{\operatorname{Im}\left(g^{2} e^{\mp i \epsilon}\right)=\int_{0}^{\infty} \frac{t}{g^{2}} e^{-\frac{t}{g^{2}}} B P(t) \quad \begin{array}{l}
\text { Singularities on positive real } \\
\text { axis leads to ambiguity }
\end{array}}_{\text {Re }}
$$

Perturbation and Borel resummation

$$
\Rightarrow \mathbb{B}\left(g^{2} e^{\mp i \epsilon}\right)=\operatorname{Re}\left[\mathbb{B}\left(g^{2}\right)\right] \pm i \operatorname{Im}\left[\mathbb{B}\left(g^{2}\right)\right]
$$

$$
\operatorname{Im}\left[\mathbb{B}\left(g^{2}\right)\right] \approx e^{-\frac{A}{g^{2}}} \quad \begin{aligned}
& \text { This should be cancelled by that from } \\
& \text { non-perturbative contribution! }
\end{aligned}
$$

We can study non-perturbative effect in terms of perturbative Borel resummation and resurgent structure !

$$
\begin{aligned}
& {\left[H_{0}+g^{2} H_{\mathrm{pert}}\right] \psi(x)=E \psi(x)} \\
& P\left(g^{2}\right)=\sum_{q=0}^{\infty} a_{q} g^{2 q} \begin{array}{l}
\text { Perturbative series is often } \\
\text { divergent factorially }
\end{array} a_{q} \propto q!
\end{aligned}
$$

Complex bion solution as non-pert. contribution

Behtash, et.al. (I5) Fujimori, et.al. (16)(17) ex.) double-well QM

$$
x \rightarrow z=x+i y
$$

- Complex bion solutions

$$
z_{c b}(\tau)=z_{1}-\frac{\left(z_{1}-z_{T}\right)}{2} \operatorname{coth} \frac{\omega \tau_{0}}{2}\left[\tanh \frac{\omega\left(\tau+\tau_{0}\right)}{2}-\tanh \frac{\omega\left(\tau-\tau_{0}\right)}{2}\right] \quad z_{T}, \tau_{0} \in \mathbb{C}
$$

- Contribution from complex bion to E_{0}
$E_{c b}=\frac{e^{-\frac{1}{3 g^{2}}}}{\pi g^{2}}\left(\frac{g^{2}}{2}\right)^{\epsilon}\left[-\cos (\epsilon \pi) \Gamma(\epsilon) \pm \frac{i \pi}{\Gamma(1-\epsilon)}\right]$
The imaginary ambiguity from bion cancels that from perturbative series

Exact-WKB tells us complete resurgent structure

Sueishi, Kamata, TM, Unsal, [arXiv:2 103.06586]

- Exact-WKB leads to exact quantization condition.
- Fredholm det. \& resolvent leads to Gutzwiller formula and partition function
- Maslow index is identified as intersection \#
- We end up with complete trans-series including both pert. \& non-pert.

$$
\begin{aligned}
& Z(\beta)=\sum_{n} a_{n} \hbar^{n}+e^{-\frac{S_{1}}{\hbar}} \sum_{n} b_{n} \hbar^{n}+e^{-\frac{S_{2}}{\hbar}} \sum_{n} c_{n} \hbar^{n}+\ldots \\
& \text { path integral(trans-series) form }
\end{aligned}
$$

Exact-WKB tells us complete resurgent structure

Sueishi, Kamata, TM, Unsal, [arXiv:2008.00379]

$\operatorname{Im} \hbar<0$

$$
A=e^{\oint_{A} S_{\text {odd }}}, \quad B=e^{\oint_{B} S_{\text {odd }}}, \quad C=e^{\oint_{C} S_{\text {odd }}}=1 / A
$$

- Normalization condition in $x \rightarrow-\infty$ gives quantization condition among cycles

$$
D \propto\left\{\begin{array}{ll}
\left(1+A^{+}\right)\left(1+C^{+}\right)+A^{+} B^{+}=0 & \text { for } \operatorname{Im} \hbar>0 \\
\left(1+A^{-}\right)\left(1+C^{-}\right)+C^{-} B^{-}=0 & \text { for } \operatorname{Im} \hbar<0
\end{array}\right. \text { corresponding to Stokes phenomena }
$$

- leads to trans-series-form partition function, and resurgent relation among \boldsymbol{A} (pert.) and \boldsymbol{B} (bion non-pert.) : DDP formula Delabaere, Dillinger, Pham (97)

$Z_{\mathrm{p}}(\beta)$	$=\frac{1}{2 \pi i} \int_{\epsilon-i \infty}^{\epsilon+i \infty}\left[-\frac{\partial}{\partial E} \log (1+A)\right] e^{-\beta E} d E+\left(A \rightarrow A^{-1}\right)$
$Z_{\mathrm{np}}(\beta)$	$=\beta \frac{1}{2 \pi i} \int_{\epsilon-i \infty}^{\epsilon+i \infty} \sum_{n=1}^{\infty} \frac{1}{n}\left(-\frac{B}{D_{A}^{2}}\right)^{n} e^{-\beta E} d E$
n-bion	
contributions	

Complete resurgent structure

Exact-WKB analysis for S^{\prime} quantum mechanics

Sueishi, Kamata, TM, Unsal, [2 I03.06586]

$$
\text { ex.) } V(x)=1-\cos (x) \quad \psi(x+2 \pi)=e^{-i \theta} \psi(x)
$$

Quantization condition from periodicity of wave function

$$
\mathcal{M}^{ \pm}\binom{\psi_{a_{1}}^{+}(x)}{\psi_{a_{1}}^{-}(x)}=e^{i \theta}\binom{\psi_{a_{1}}^{+}(x)}{\psi_{a_{1}}^{-}(x)} \quad \neg \quad \operatorname{det}\left(\mathcal{M}^{ \pm}-e^{i \theta} I\right)=0
$$

Exact-WKB analysis for S^{\prime} quantum mechanics

Sueishi, Kamata, TM, Unsal, [2 I03.06586]
ex.) $V(x)=1-\cos (x) \quad \psi(x+2 \pi)=e^{-i \theta} \psi(x)$

Quantization condition from periodicity of wave function

$$
\mathcal{M}^{ \pm}\binom{\psi_{a_{1}}^{+}(x)}{\psi_{a_{1}}^{-}(x)}=e^{i \theta}\binom{\psi_{a_{1}}^{+}(x)}{\psi_{a_{1}}^{-}(x)} \quad \square \quad \operatorname{det}\left(\mathcal{M}^{ \pm}-e^{i \theta} I\right)=0
$$

$$
D^{ \pm} \propto 1+A^{\mp 1}+A^{\mp} B-2(\sqrt{A})^{\mp 1} \sqrt{B} \cos \theta
$$

$$
=\left(1+A^{\mp 1}\right)\left(1+\frac{B}{1+A^{ \pm 1}}-\frac{\sqrt{B}}{\sqrt{A}+\frac{1}{\sqrt{A}}}\left(e^{i \theta}+e^{-i \theta}\right)\right)=0
$$

exact agreement with Zinn-Justin-Jentschura's result Zinn-Justin, Jentschura (04)

Exact-WKB analysis for S^{\prime} quantum mechanics

Sueishi, Kamata, TM, Unsal, [2 I03.06586]
Partition function clearly shows resurgent structure
$Z(\hbar, \beta)=Z_{\mathrm{pt}}(\hbar, \beta)+Z_{\mathrm{np}}(\hbar, \beta)$

$$
Z_{\mathrm{np}}(\hbar, \beta)=\sum_{\substack{(Q, K) \in \mathbb{Z} \otimes \mathbb{N}_{0} \\|Q|+K>0}} Z_{\mathrm{np}}(\hbar, \beta ;\{Q, K\}) \quad \underset{K}{Q} \text { : topological charge }
$$

$$
\begin{aligned}
Z_{\mathrm{np}}(\hbar, \beta ;\{Q, K\})= & \frac{\beta}{2 \pi i} \int_{\epsilon-i \infty}^{\epsilon+i \infty} \frac{(-1)^{K}}{|Q|+K}\binom{|Q|+K}{K}\left[\frac{e^{-\frac{S_{B}}{\hbar}}}{2 \pi} \Gamma\left(\frac{1}{2}-\frac{E}{\omega_{\mathcal{A}}}\right)^{2}\left(\frac{\hbar}{32}\right)^{-\frac{2 E}{\omega_{\mathcal{A}}}}\right]^{|Q| / 2+K} \\
& \cdot{ }_{2} F_{1}\left(1-K,-K ;|Q|+1 ;-e^{\mp 2 \pi i \frac{E}{\omega_{\mathcal{A}}}}\right)\left(e^{ \pm 2 \pi i \frac{E}{\omega_{\mathcal{A}}}}\right)^{K} e^{-\beta E+i Q \theta} d E
\end{aligned}
$$

trans-series including bion contributions

$$
\begin{aligned}
& Z=\sum_{Q \in \mathbb{Z}} e^{i \theta Q} Z(\hbar, \beta ; Q) \\
& \mathcal{S}_{+}[Z(\hbar, \beta ; Q)]=\mathcal{S}_{-}[Z(\hbar, \beta ; Q)]
\end{aligned}
$$

Resurgent structure is closed in each Q sector : resurgence triangle

I. Resurgent structure in asymptotically free QFT

Nishimura, Fujimori,TM, Nitta, Sakai, JHEP06(2022)I5I [arXiv:2I I2.I3999].

Infrared renormalon in QCD

In asymptotically free QFT, a specific type of ambiguity exists.

- Adler function (UV \& IR convergent)

$$
\begin{aligned}
D\left(Q^{2}\right) & =\alpha_{s} \sum_{n=0}^{\infty} \int d k^{2} \frac{F\left(k^{2} / Q^{2}\right)}{k^{2}}\left[\beta_{0} \alpha_{s} \log \frac{k^{2}}{\mu^{2}}\right]^{n}\left(=\sum_{n=0}^{\infty} \int d k^{2} \frac{F\left(k^{2} / Q^{2}\right)}{k^{2}} \alpha_{s}(k)\right) \\
& \approx \alpha_{s} \sum_{n=0}^{\infty}\left(\frac{\mu^{4}}{Q^{4}}\right)\left(-\frac{\alpha_{s} \beta_{0}}{2}\right)^{n} n!+\text { UV contr. }
\end{aligned}
$$

$\overbrace{}^{\mu=|Q|} B P(t)=\alpha_{s}(\mu) \sum_{n}\left(-\frac{\alpha_{s}(\mu) \beta_{0} t}{2}\right)^{n}=\frac{\alpha_{s}(\mu)}{1+\alpha_{s}(\mu) \beta_{0} t / 2}$
㕸 $t=-\frac{2}{\alpha_{s}(\mu) \beta_{0}} \quad$ Singularity on positive real axis

ص $\mathbf{B}\left(\alpha_{s}\right)=\operatorname{Re} \mathbf{B} \pm \frac{i \pi}{\beta_{0}} e^{\frac{2}{\alpha_{s} \beta_{0}}} \approx\left(\frac{\Lambda_{Q C D}}{Q}\right)^{4} \quad \begin{aligned} & \text { Renormalon (surviving in large } N \text {) } \\ & \text { related to low-energy physics }\end{aligned}$
How is the renormalon ambiguity cancelled?

Essence of our main result

$$
\begin{aligned}
\operatorname{Im}\left\langle\delta D^{2}\right\rangle= & \pm \pi\left[\frac{\left(\mu^{2} e^{-\frac{4 \pi}{\lambda_{\mu}}}\right)^{2} \Lambda^{4}}{\Lambda^{4}}-2 \Lambda^{4}+\frac{\left(\mu^{2} e^{-\frac{4 \pi}{\lambda_{\mu}}}\right)^{-2}}{\Lambda^{-4}} \Lambda^{8}\right] \theta(\Lambda-a)=0 \\
& \text { known IR renormalon } \\
& a: \text { IR cutoff } \\
& \Lambda: \text { Dynamical scale }
\end{aligned}
$$

(1) Renormalon ambiguity is cancelled by combination of ambiguities at two nonpert. orders $\Lambda^{4} \propto \exp \left(-8 \pi / \lambda_{\mu}\right)$ and $\Lambda^{8} \propto \exp \left(-16 \pi / \lambda_{\mu}\right)$!
(2) The ambiguities emerge only for $a<\Lambda$, originating in analytic continuation from $a>\Lambda$ to $a<\Lambda(|p|>\Lambda$ to $|p|<\Lambda)$.
(3) There is binomial-expansion-type resurgent structure.
(4) The resurgent structure and the renormlon are drastically changed by infinitely many Stokes phenomena during Z_{N}-compactification.

Large- $N O(N)$ sigma model on R^{2}

- Action of $O(N)$ model
$S=\frac{1}{2 g^{2}} \int d^{2} x\left[\left(\partial_{i} \phi^{a}\right)^{2}+D\left\{\left(\phi^{a}\right)^{2}-1\right\}\right] \quad a=1 \ldots N \quad\left(\phi^{a}\right)^{2}=1$
- Effective potential in large N

$$
V_{\text {eff }}(D)=\frac{N}{2}\left[\int \frac{d^{2} p}{(2 \pi)^{2}} \log \left(p^{2}+D\right)-\frac{D}{\lambda}\right] \quad \text { 't Hooft coupling : } \lambda=g^{2} N
$$

UV subtraction with renormalized coupling
$\neg V_{\text {eff }}(D)=-\frac{N}{8 \pi} D\left(\log \frac{D}{\Lambda^{2}}-1\right)$
Dynamical scale : $\Lambda=\mu \exp \left(-\frac{2 \pi}{\lambda_{\mu}}\right)$
$\langle D\rangle=\Lambda^{2} \quad$ it works as a dynamical mass

Large- $N O(N)$ sigma model on R^{2}

- Fluctuation of $D \quad D(x)=\Lambda^{2}+\frac{\delta D(x)}{\sqrt{N}}$
- 2-point function of fluctuation of D

$$
\begin{gathered}
\langle\delta D(x) \delta D(0)\rangle=\int \frac{d^{2} p}{(2 \pi)^{2}} e^{i p \cdot x} \Delta(p) \stackrel{x \rightarrow 0}{\sim}\left\langle\delta D^{2}\right\rangle_{\tilde{a}} \equiv \int_{|p|<\tilde{a}} \frac{d^{2} p}{(2 \pi)^{2}} \Delta(p) \\
\Delta(p) \equiv \frac{8 \pi \sqrt{p^{2}\left(p^{2}+4 \Lambda^{2}\right)}}{s_{p}} \quad s_{p}=4 \log \left(\sqrt{\frac{p^{2}}{4 \Lambda^{2}}+1}+\sqrt{\frac{p^{2}}{4 \Lambda^{2}}}\right)
\end{gathered}
$$

- Exact result of this condensate Novikov, Shifman,Vainshtein, Zakkharov (84)

$$
\left\langle\delta D^{2}\right\rangle_{\tilde{a}}=2 \Lambda^{4} \int_{0}^{s_{\tilde{a}}} d s \frac{\cosh s-1}{s}=2 \Lambda^{4} \operatorname{Chin}\left(s_{\tilde{a}}\right) \quad \operatorname{Chin}\left(s_{\tilde{a}}\right)=\operatorname{Chi}\left(s_{\tilde{a}}\right)-\log \left(s_{\tilde{a}}\right)-\gamma_{E}
$$

Unambiguous and IR convergent

How to derive trans-series

- Expand $\Delta(p)$ w.r.t. Λ^{2} / p^{2} for $|p| \gg \Lambda \rightarrow$ trans-series expression (In the end, analytically continue to $|p|<\Lambda \rightarrow$ imaginary ambiguities)

$$
s_{p}=4 \log \left(\sqrt{\frac{p^{2}}{4 \Lambda^{2}}+1}+\sqrt{\frac{p^{2}}{4 \Lambda^{2}}}\right)=\frac{8 \pi}{\lambda_{p}}+\frac{4 \Lambda^{2}}{p^{2}}-\frac{6 \Lambda^{4}}{p^{4}}+\mathcal{O}\left(\Lambda^{6}\right)
$$

$$
\begin{aligned}
& \Lambda^{2} / p^{2}=\exp \left(-4 \pi / \lambda_{p}\right) \\
& \lambda_{p} \equiv \frac{2 \pi}{\log (p / \Lambda)}
\end{aligned}
$$

\neg Expansion of $\Delta(p)$ w.r.t. $\Lambda^{2 / p^{2}}$
$\Delta(p)=p^{2} \sum_{l=0}^{\infty}\left(\frac{\Lambda}{p}\right)^{2 l} f_{l}\left(\lambda_{p}\right) \quad f_{l}\left(\lambda_{p}\right)=P_{l}\left(\Lambda \partial_{\Lambda}\right) \lambda_{p}:$ polynomial of λ_{p}
$P_{l}(t) \equiv \frac{(-1)^{l}}{l!}\left[(t+l+1)^{(l)}-4 l(t+l)^{(l-1)}\right] \quad$ with $\quad(a)^{(l)}=\frac{\Gamma(a+l)}{\Gamma(a)}$
l : order of nonperturbative exponentials

How to derive trans-series

- Trans-series expansion of $<\delta D^{2>}$
we here introduce IR cutoff a to regulate IR divergence

$$
\left\langle\delta D^{2}\right\rangle_{\tilde{a}, a}=\sum_{\text {s.c. }}=\sum_{l=0}^{\infty} \Lambda^{2 l} C_{2 l}, \quad \int_{a<|p|<\bar{a}} \frac{d^{2} p}{(2 \pi)^{2}} p^{2-2 l} f_{l}\left(\lambda_{p}\right),
$$

$\lambda_{\tilde{a}}$ expansion (formal series) of each coefficient

$$
C_{2 l}=\sum_{n=0}^{\infty} \lambda_{\tilde{a}}^{n+1} c_{(2 l, n)} \quad \frac{\lambda_{p}}{4 \pi}=\left[\frac{4 \pi}{\lambda_{\bar{a}}}+\log \left(\frac{p^{2}}{\tilde{a}^{2}}\right)\right]^{-1}=\sum_{n=0}^{\infty}\left(\frac{\lambda_{\bar{a}}}{4 \pi}\right)^{n+1}\left[-\log \left(\frac{p^{2}}{\tilde{a}^{2}}\right)\right]^{n}
$$

- Separate UV and IR contributions

$$
\begin{aligned}
& C_{2 l}=\int_{a}^{\tilde{a}} \frac{d p}{2 \pi} p^{3-2 l} f_{l}\left(\lambda_{p}\right)=\left.\mathcal{C}_{2 l}(p)\right|_{a} ^{\tilde{a}}=\mathcal{C}_{2 l}(\tilde{a})-\mathcal{C}_{2 l}(a), \\
& \text { ex.) } l=0 \quad c_{(0, n)}=\int_{a<|p|\langle\hat{a}} \frac{d^{2} p}{(2 \pi)^{2}} p^{2}\left(\frac{1}{4 \pi} \log \frac{\tilde{a}^{2}}{p^{2}}\right)^{n} \quad \mathcal{C}_{0}(p)=\tilde{a}^{4} \sum_{n=0}^{\infty}\left(\frac{\lambda_{\tilde{a}}}{8 \pi}\right)^{n+1} \Gamma\left(n+1,2 \log \frac{\tilde{a}^{2}}{p^{2}}\right)
\end{aligned}
$$

Cancellation mechanism

Order Λ^{0}

$$
\begin{array}{rlr}
\mathcal{C}_{0}(p) & =\tilde{a}^{4} \sum_{n=0}^{\infty}\left(\frac{\lambda_{\tilde{a}}}{8 \pi}\right)^{n+1} \Gamma\left(n+1,2 \log \frac{\tilde{a}^{2}}{p^{2}}\right) & \Lambda^{2} / p^{2}=\exp \left(-4 \pi / \lambda_{p}\right) \\
& =-p^{\text {Berel }} \text { rexum } \\
\text { rem } & \int_{0}^{\infty} d t \frac{e^{-t}}{t-\frac{8 \pi}{\lambda_{p}}}=p^{4} e^{-8 \pi / \lambda_{p}}\left[\gamma_{E}+\log \left(-\frac{8 \pi}{\lambda_{p}}\right)-\operatorname{Ein}\left(-\frac{8 \pi}{\lambda_{p}}\right)\right]
\end{array}
$$

$\begin{aligned} &$$$
\operatorname{Im} C_{0}=
$$$\operatorname{Im} \mathcal{C}_{0}(\tilde{a})-\operatorname{Im} \mathcal{C}_{0}(a)= \pm\{\pi-\pi \theta(a-\Lambda)\} \Lambda^{4}= \\ & \begin{aligned} \text { The ambiguity emerges only for } \underset{\lambda_{a}}{a<\Lambda^{4} \theta(\Lambda-a)} \\ \text { Known IR }\end{aligned} \\ & \text { renormalon! }\end{aligned}$

Order Λ^{4}

$$
\mathcal{C}_{4}(p)=-2 \log \left(\frac{4 \pi}{\lambda_{p}}\right)-\frac{\lambda_{p}^{2}-2 \pi \lambda_{p}}{8 \pi^{2}}
$$

$\triangleright \operatorname{Im} C_{4}=\operatorname{Im} \mathcal{C}_{4}(\tilde{a})-\operatorname{Im} \mathcal{C}_{4}(a)=\mp 2 \pi \theta(\Lambda-a)$.
The ambiguity emerges only for $\begin{aligned} a & <\Lambda! \\ \lambda_{a} & <0\end{aligned}$

Cancellation mechanism

Order Λ^{8}

$$
\begin{aligned}
\mathcal{C}_{8}(p) & \supset \frac{1}{\tilde{a}^{4}} \sum_{n=0}^{\infty}\left(-\frac{\lambda_{\tilde{a}}}{8 \pi}\right)^{n+1} \Gamma\left(n+1,-2 \log \frac{\tilde{a}^{2}}{p^{2}}\right) \stackrel{\substack{\text { Borel } \\
\text { rsum }}}{=}-\frac{1}{p^{4}} \underline{\int_{0}^{\infty} d t \frac{e^{-t}}{t+\frac{8 \pi}{\lambda_{p}}} .} \\
& =\frac{1}{\Lambda^{4}}\left[-\operatorname{Ein}\left(\frac{8 \pi}{\lambda_{p}}\right)+\log \left(\frac{8 \pi}{\lambda_{p}}\right)+\gamma_{E}\right] \\
& \checkmark \operatorname{Im} C_{8}= \pm \theta(\Lambda-a) \frac{\pi}{\Lambda^{4}} .
\end{aligned}
$$

- The ambiguity emerges only for $a<\Lambda$
- It is accompanied by $\exp \left(+8 \pi / \lambda_{a}\right) \propto 1 / \Lambda^{4}$

Cancellation mechanism

Order Λ^{8}

$$
\begin{aligned}
\mathcal{C}_{8}(p) & \supset \frac{1}{\tilde{a}^{4}} \sum_{n=0}^{\infty}\left(-\frac{\lambda_{\tilde{a}}}{8 \pi}\right)^{n+1} \Gamma\left(n+1,-2 \log \frac{\tilde{a}^{2}}{p^{2}}\right) \stackrel{\substack{\text { Borel } \\
\text { rssum }}}{=}-\frac{1}{p^{4}} \underline{\int_{0}^{\infty} d t \frac{e^{-t}}{t+\frac{8 \pi}{\lambda_{p}}} .} \\
& =\frac{1}{\Lambda^{4}}\left[-\operatorname{Ein}\left(\frac{8 \pi}{\lambda_{p}}\right)+\log \left(\frac{8 \pi}{\lambda_{p}}\right)+\gamma_{E}\right] \\
& \checkmark \operatorname{Im} C_{8}= \pm \theta(\Lambda-a) \frac{\pi}{\Lambda^{4}} .
\end{aligned}
$$

- The ambiguity emerges only for $a<\Lambda$
- It is accompanied by $\exp \left(+8 \pi / \lambda_{a}\right) \propto 1 / \Lambda^{4}$

Cancellation mechanism

$$
\begin{aligned}
\left\langle\delta D^{2}\right\rangle_{\tilde{a}, a}= & \sum_{\text {s.c. }}^{\infty} \Lambda_{l=0}^{2 l}\left[\left\{\mathcal{C}_{2 l}(\tilde{a})\right\}-\left\{\mathcal{C}_{2 l}(a)\right\}\right] \\
= & \Lambda^{0}\left[\tilde{a}^{4}\left\{e^{-8 \pi / \lambda_{\tilde{a}}} \operatorname{Ei}\left(\frac{8 \pi}{\lambda_{\tilde{a}}}\right)\right\}-a^{4}\left\{e^{-8 \pi / \lambda_{a}} \operatorname{Ei}\left(\frac{8 \pi}{\lambda_{a}}\right)\right\} \pm i \pi \Lambda^{4} \theta(\Lambda-a)\right] \\
& +\Lambda^{2}\left[\tilde{a}^{2}\left\{\frac{\lambda_{\tilde{a}}}{2 \pi}\right\}-a^{2}\left\{\frac{\lambda_{a}}{2 \pi}\right\}\right] \\
& \left.+\Lambda^{4}\left[\tilde{a}^{0}\left\{\frac{\lambda_{\tilde{a}}}{4 \pi}-\frac{\lambda_{\tilde{a}}^{2}}{8 \pi^{2}}-2 \log \left(\frac{4 \pi}{\lambda_{\tilde{a}}}\right)\right\}-a^{0}\left\{\left.\frac{\lambda_{a}}{4 \pi}-\frac{\lambda_{a}^{2}}{8 \pi^{2}}-2 \log \right\rvert\, \frac{4 \pi}{\lambda_{a}}\right\}\right\} \neq 2 \pi i \theta(\Lambda-a)\right] \\
& +\Lambda^{6}\left[\frac{1}{\tilde{a}^{2}}\left\{-\frac{\lambda_{\tilde{a}}}{\pi}+\frac{\lambda_{\tilde{a}}^{2}}{24 \pi^{2}}+\frac{\lambda_{\tilde{a}}^{3}}{24 \pi^{3}}\right\}-\frac{1}{a^{2}}\left\{-\frac{\lambda_{a}}{\pi}+\frac{\lambda_{a}^{2}}{24 \pi^{2}}+\frac{\lambda_{a}^{3}}{24 \pi^{3}}\right\}\right] \\
& +\Lambda^{8}\left[\frac{1}{\tilde{a}^{4}}\left\{e^{8 \pi / \lambda_{\tilde{a}}} \operatorname{Ei}\left(-\frac{8 \pi}{\lambda_{\tilde{a}}}\right)+\frac{11 \lambda_{\tilde{a}}}{8 \pi}+\frac{13 \lambda_{\tilde{a}}^{2}}{96 \pi^{2}}-\frac{\lambda_{\tilde{a}}^{3}}{16 \pi^{3}}-\frac{\lambda_{\tilde{a}}^{4}}{64 \pi^{4}}\right\}\right. \\
& \left.-\frac{1}{a^{4}}\left\{e^{8 \pi / \lambda_{a}} \operatorname{Ei}\left(-\frac{8 \pi}{\lambda_{a}}\right)+\frac{11 \lambda_{a}}{8 \pi}+\frac{13 \lambda_{a}^{2}}{96 \pi^{2}}-\frac{\lambda_{a}^{3}}{16 \pi^{3}}-\frac{\lambda_{a}^{4}}{64 \pi^{4}}\right\} \pm \frac{i \pi}{\Lambda^{4}} \theta(\Lambda-a)\right] \\
& +\mathcal{O}\left(\Lambda^{10}\right),
\end{aligned}
$$

Analytic continuation $|p|>\Lambda$ to $|p|<\Lambda(a>\Lambda$ to $a<\Lambda)$ is responsible for (I) existence of ambiguities,
(2) cancellation of ambiguities (Λ^{-4} coefficient at the Λ^{8} order)

Cancellation mechanism

Analytic
 continuation

$|p|>\Lambda$ (trans-series expression defined)

Analytic continuation $|p|>\Lambda$ to $|p|<\Lambda(a>\Lambda$ to $a<\Lambda)$ is responsible for (I) existence of ambiguities,
(2) cancellation of ambiguities (Λ^{-4} coefficient at the Λ^{8} order)

Cancellation mechanism

Analytic
 continuation

$|p|>\Lambda$ (trans-series expression defined)

Analytic continuation $|p|>\Lambda$ to $|p|<\Lambda(a>\Lambda$ to $a<\Lambda)$ is responsible for (I) existence of ambiguities,
(2) cancellation of ambiguities (Λ^{-4} coefficient at the Λ^{8} order)

Correlation function in Large-N O(N)

Result of imaginary ambiguities

$$
\Lambda^{2} / p^{2}=\exp \left(-4 \pi / \lambda_{p}\right)
$$

$$
\operatorname{Im}\langle\delta D(x) \delta D(0)\rangle_{a}= \pm \pi \Lambda^{4} \sum_{l=0}^{\infty} \sum_{\bar{n}=0}^{\infty} A_{l, \bar{n}}\left(\frac{\Lambda^{2} x^{2}}{4}\right)^{\bar{n}} \quad \begin{aligned}
& l: \text { order of nonpert. } \\
& \bar{n}: \text { exponentials } \\
& \text { power of } x^{2}
\end{aligned}
$$

- Binomial-expansion-type cancellation

$$
A_{l, \bar{n}}=(-1)^{l+\bar{n}} \frac{1}{(\bar{n}!)^{2}}\left[\binom{2 \bar{n}+4}{l}-4\binom{2 \bar{n}+2}{l-1}\right]
$$

$\bar{n} \backslash l$	0	1	2	3	4	5	6	7	\cdots
0	-1	0	2	0	-1	0	0	0	\cdots
1	1	-2	-1	4	-1	-2	1	0	\cdots

cancellation occurs for each $x^{2 \bar{n}}$ order

Large- N CP $^{N-1}$ sigma model

$$
\mathcal{L}=\frac{1}{g^{2}}\left[\sum_{a=1}^{N}\left|\mathcal{D}_{i} \phi^{a}\right|^{2}+D\left(\left|\phi^{a}\right|^{2}-1\right)\right] \quad \mathcal{D}_{i} \phi^{a}=\left(\partial_{i}+i A_{i}\right) \phi^{a}
$$

$$
\left\langle F_{\mu \nu}^{2}\right\rangle_{\tilde{a}, a}=-\frac{1}{2 N} \sum_{l=0}^{\infty} \Lambda^{2 l} \int_{0}^{\infty} d t \Lambda^{t}\left[\tilde{a}^{2 \eta_{l}(t)}-a^{2 \eta_{l}(t)}\right] \frac{\tilde{P}_{l}(t)}{\eta_{l}(t)} \quad \begin{aligned}
& \text { condensate of } \\
& \text { field strength }
\end{aligned}
$$

- on R^{2}

- on $\mathrm{R}^{1} \times \mathrm{S}^{1}$ (Z_{N}-twist $) \quad L \Lambda \ll 1 \quad N L \Lambda \gg 1$

- Both cases have binomial-expansion-type resurgent structures.
- Z_{N}-twisted compactification drastically changes the structure.

Large- $N C^{N-1}$ sigma model

$$
\mathcal{L}=\frac{1}{g^{2}}\left[\sum_{a=1}^{N}\left|\mathcal{D}_{i} \phi^{a}\right|^{2}+D\left(\left|\phi^{a}\right|^{2}-1\right)\right] \quad \mathcal{D}_{i} \phi^{a}=\left(\partial_{i}+i A_{i}\right) \phi^{a}
$$

$$
\left\langle F_{\mu \nu}^{2}\right\rangle_{\tilde{a}, a}=-\frac{1}{2 N} \sum_{l=0}^{\infty} \Lambda^{2 l} \int_{0}^{\infty} d t \Lambda^{t}\left[\tilde{a}^{2 \eta_{l}(t)}-a^{2 \eta_{l}(t)}\right] \frac{\tilde{P}_{l}(t)}{\eta_{l}(t)} \quad \begin{aligned}
& \text { condensate of } \\
& \text { field strength }
\end{aligned}
$$

- on R^{2}

$$
\eta_{l}(t)=2-l-\frac{t}{2}
$$

$\operatorname{Im}\left\langle F_{\mu \nu}^{2}\right\rangle_{\tilde{a}, a}=\frac{ \pm \pi}{N}\left[\left[\left(\tilde{a} e^{-\frac{2 \pi}{\lambda \bar{a}}}\right)^{4}\right]-4\left(\tilde{a} e^{-\frac{2 \pi}{\lambda \tilde{a}}}\right)^{2} \Lambda^{2}+6 \Lambda^{4}-4\left(\tilde{a} e^{-\frac{2 \pi}{\lambda \tilde{a}}}\right)^{-2} \Lambda^{6}+\left(\tilde{a} e^{-\frac{2 \pi}{\lambda \tilde{a}}}\right)^{-4} \Lambda^{8}\right] \theta(\Lambda-a)=0$

- on $\mathrm{R}^{1} \times \mathrm{S}^{1}\left(\mathrm{Z}_{N}\right.$-twist $) \quad L \Lambda \ll 1 \quad N L \Lambda \gg 1$

- Both cases have binomial-expansion-type resurgent structures.
- Z_{N}-twisted compactification drastically changes the structure.

What happens in compactification

During compactification, the resurgent structure changes, where Stokes phenomena occur every time one of KaluzaKlein masses \widetilde{n} / R becomes larger than the dynamical scale Λ !

l : order of nonpert. exponentials
\tilde{n} : KK mode
Infinitely many Stokes phenomena during compactification change renormalon ambiguity from $\mathrm{O}\left(\Lambda^{4}\right)$ to $\mathrm{O}\left(\Lambda^{3} / R\right)$.

$$
\left.\operatorname{Im}\langle\delta D(x) \delta D(0)\rangle_{a}\right|_{l=0}= \pm \begin{cases}\Lambda^{3} / R & \text { for } R<\Lambda^{-1} \\ \Lambda^{4}+\cdots & \text { for } R \rightarrow \infty\end{cases}
$$

What happens in compactification

What happens in compactification

What happens in compactification

2. Phase transition and Resurgence

Fujimori, Honda, Kamata, TM, Sakai, Yoda, PTEPI0(202I)I03B04, [arXiv:2I03.I3654].

Phase transition and resurgence

Ist order phase transition is understood as Anti-Stokes phenomenon : change of dominant saddles (stationary points)

- Anti-Stokes phenomenon is encoded in perturbative series
- The picture is consistent with Lee-Yang zero picture.
- Recently 2nd-order phase transition is discussed in localized SQED

Kanazawa, Tanizaki (I5), Dunne, et.al. (16)(I7)(I8)
Russo,Tierz(17)

Can 2nd and higher order phase transitions be understood in terms of thimble decomposition and resurgence theory?

Stokes and anti-stokes phenomena

- Stokes phenomenon : Change of intersection numbers

$$
\operatorname{Im}\left[S\left[\varphi_{i}\right]\right]=\operatorname{Im}\left[S\left[\varphi_{j}\right]\right]
$$

Resurgent structure

- Anti-Stokes phenomenon : Change of dominant saddles

$$
\operatorname{Re}\left[S\left[\varphi_{i}\right]\right]=\operatorname{Re}\left[S\left[\varphi_{j}\right]\right]
$$

Ist order phase transition

3D N=4 U(I) SUSY gauge theories on S3

Parameters

- FI parameter η
- \# of hypermultiplets $2 N_{f}$
- mass m

Partition function via localization

$$
Z=\int d \sigma e^{-S(\sigma)} \quad S(\sigma)=N_{f}[-i \lambda \sigma+\ln (\cosh \sigma+\cosh m)] \begin{gathered}
\text { effective } \\
\text { action }
\end{gathered}
$$

Saddle-point approx. in 't Hooft-like limit $\quad N_{f} \rightarrow \infty, \quad \lambda \equiv \frac{\eta}{N_{f}}=$ fixed Russo,Tierz(17)

$$
\begin{aligned}
& \sigma_{n}^{ \pm}=\log \left(\frac{-\lambda \cosh m \pm i \Delta(\lambda, m)}{i+\lambda}\right)+2 \pi i n \quad(n \in \mathbb{Z}) \quad \text { saddles (stationary points) } \\
& \Delta(\lambda, m)=\sqrt{1-\lambda^{2} \sinh ^{2} m}
\end{aligned}
$$

3D N=4 U(I) SUSY gauge theories on \mathbf{S}^{3}

Parameters

- FI parameter η
- \# of hypermultiplets $2 N_{f}$
- mass m

Variables after localization

- Coulomb branch parameter σ

Partition function via localization

$$
Z=\int d \sigma e^{-S(\sigma)} \quad S(\sigma)=N_{f}[-i \lambda \sigma+\ln (\cosh \sigma+\cosh m)] \begin{gathered}
\text { effective } \\
\text { action }
\end{gathered}
$$

Saddle-point approx. in 't Hooft-like limit $\quad N_{f} \rightarrow \infty, \quad \lambda \equiv \frac{\eta}{N_{f}}=$ fixed Russo,Tierz(17)

$$
\frac{d^{2} F}{d \lambda^{2}}=\left\{\begin{array}{ll}
\frac{N_{f}}{1+\lambda^{2}}\left(1+\frac{\cosh m}{\sqrt{1-\lambda^{2} \sinh ^{2} m}}\right) & \lambda<\lambda_{c} \\
\frac{N_{f}}{1+\lambda^{2}} & \lambda \geq \lambda_{c}
\end{array} \quad \text { critical point : } \lambda_{c} \equiv \frac{1}{\sinh m}\right.
$$

Lefschetz thimble decomposition

Fujimori, Honda, Kamata, TM, Sakai, Yoda (2I)

$$
\lambda<\lambda_{c}
$$

$$
\lambda \geq \lambda_{c}
$$

Only a trivial saddle contributes
An infinite number of saddles contribute

$$
\begin{aligned}
\operatorname{Im}\left[S\left[\varphi_{i}\right]\right] & =\operatorname{Im}\left[S\left[\varphi_{j}\right]\right] \\
\operatorname{Re}\left[S\left[\varphi_{i}\right]\right] & =\operatorname{Re}\left[S\left[\varphi_{j}\right]\right]
\end{aligned}
$$

Lefschetz thimble decomposition

Fujimori, Honda, Kamata, TM, Sakai, Yoda (2I)

$$
\lambda<\lambda_{c}
$$

$$
\lambda \geq \lambda_{c}
$$

Only a trivial saddle contributes
An infinite number of saddles contribute

- At $\lambda=\lambda_{c}$, two of pair saddles collide and scatter with $\pi / 2$.
- At $\lambda=\lambda_{c}$, both Stokes and anti-Stokes phenomena simultaneously occur!

Generic argument on phase transition

Fujimori, Honda, Kamata, TM, Sakai, Yoda (2I)

Theorem

Assume action in expression as

$$
e^{-N F(\lambda)}=\int \mathrm{d} \sigma e^{-N \tilde{S}(\lambda ; \sigma)}
$$

When n saddles collide with angle $\beta \pi$, phase transition of order $\lceil(n+1) \beta\rceil$ occurs, where Stokes and anti-Stokes phenomena simultaneously occur.
ceiling function, cf.) $\lceil(2+1)(1 / 2)\rceil=2$

- Simple-model phase transitions are understood in terms of thimbles.
- It means the phase transitions can be detected from perturbative series!

Generic argument on phase transition

Fujimori, Honda, Kamata, TM, Sakai, Yoda (2I)
ex.) Airy integral

$$
\tilde{S}(\lambda ; \sigma)=\frac{i \sigma^{3}}{3}-i \lambda \sigma .
$$

$$
\tilde{S}_{ \pm}=\mp \frac{2 i}{3}(\delta \lambda)^{3 / 2}
$$

$$
\sigma_{\mathrm{c}}=0, \quad \lambda_{\mathrm{c}}=0, \quad \delta \sigma_{ \pm}= \pm \delta \lambda^{1 / 2} \quad \sigma_{ \pm}= \pm \lambda^{1 / 2}
$$

Free energy

$$
F \simeq\left\{\begin{array}{lll}
\tilde{S}_{+} & =\frac{2}{3}(-\delta \lambda)^{3 / 2} & \text { for } \delta \lambda<0 \\
\tilde{S}_{+}+\tilde{S}_{-} & =0 & \text { for } \delta \lambda>0
\end{array} \quad\right. \text { 2nd order phase transition }
$$

Generic argument on phase transition

Fujimori, Honda, Kamata, TM, Sakai, Yoda (2I)
ex.) Airy integral

$$
\tilde{S}(\lambda ; \sigma)=\frac{i \sigma^{3}}{3}-i \lambda \sigma .
$$

$$
\tilde{S}_{ \pm}=\mp \frac{2 i}{3}(\delta \lambda)^{3 / 2}
$$

$$
\sigma_{\mathrm{c}}=0, \quad \lambda_{\mathrm{c}}=0, \quad \delta \sigma_{ \pm}= \pm \delta \lambda^{1 / 2} \quad \sigma_{ \pm}= \pm \lambda^{1 / 2}
$$

Free energy

$$
F \simeq\left\{\begin{array}{ll}
\tilde{S}_{+} & =\frac{2}{3}(-\delta \lambda)^{3 / 2} \\
\tilde{S}_{+}+\tilde{S}_{-} & \text {for } \delta \lambda<0
\end{array} \quad \text { for } \delta \lambda>0\right. \text { nd order phase transition }
$$

(i) Contributing saddles jump as $\sigma_{+} \rightarrow \sigma_{+}, \sigma_{-}$
(ii) The two saddles collide and scatter with a scattering angle $\pi / 2$
(iii) Stokes and anti-Stokes phenomena occur simultaneously

$$
\lceil(2+1)(1 / 2)\rceil=2
$$

Generic argument on phase transition

Fujimori, Honda, Kamata, TM, Sakai, Yoda (2I)
ex.) Airy integral

$$
\tilde{S}(\lambda ; \sigma)=\frac{i \sigma^{3}}{3}-i \lambda \sigma .
$$

$$
\begin{aligned}
& \tilde{S}_{ \pm}=\mp \frac{2 i}{3}(\delta \lambda)^{3 / 2} \\
& \sigma_{\mathrm{c}}=0, \quad \lambda_{\mathrm{c}}=0, \quad \delta \sigma_{ \pm}= \pm \delta \lambda^{1 / 2} \quad \sigma_{ \pm}= \pm \lambda^{1 / 2}
\end{aligned}
$$

Free energy

$$
F \simeq\left\{\begin{array}{ll}
\tilde{S}_{+} & =\frac{2}{3}(-\delta \lambda)^{3 / 2} \\
\tilde{S}_{+}+\tilde{S}_{-} & =0
\end{array} \quad \text { for } \delta \lambda<0 \quad \text { for } \delta \lambda>0 \quad\right. \text { 2nd order phase transition }
$$

Summary

I. Resurgence structure in 2D sigma models:

- Analytic continuation is essential for cancellation of imaginary ambiguities,
- Combination of ambiguities at non-pert. orders cancels renormalon,
- Binomial-expansion-type resurgent structure,
- Compactif. leads to infinite-times Stokes pheno. \& change of renormalon.

2. Phase transition and resurgence:

- Higher-order phase transitions are understood as collisions of saddles,
- Stokes and anti-Stokes phenomena simultaneously occur there,
- encoded in collision of Borel singularities of perturbative series,
- Theorem: n-saddle collision with angle $\beta \pi \rightarrow$ transition order $\lceil(n+1) \beta\rceil$

3. Exact resurgence and quantization conditions from EWKB:

- Exact quantization conditions obtained for multi-well and periodic QM,
- Exact resurgent structures in these models are shown,
- Dunne-Unsal (P-NP) relation in some models is derived by exact-WKB.

