GENERAL RELATIVITY MIDTERM EXAM

Exercise 1. Linearized GR is formulated in terms of a symmetric tensor field $h_{\mu\nu}$ in flat spacetime (secretly, this is a perturbation of the flat metric). The action reads:

$$S = S_{matter} + \frac{1}{2} \int d^4x \, h_{\mu\nu} T^{\mu\nu} + S_{gravity} , \qquad (1)$$

where S_{matter} is the action of matter without the effect of gravity, $T^{\mu\nu}$ is the matter's stress-energy tensor, and $S_{gravity}$ is the action of $h_{\mu\nu}$ without the effect of matter:

$$S_{gravity} = -\frac{1}{64\pi G} \int d^4x \left(\partial_{\mu} h_{\nu\rho} \partial^{\mu} h^{\nu\rho} - 2 \partial_{\mu} h_{\nu\rho} \partial^{\nu} h^{\mu\rho} + 2 \partial_{\mu} h^{\mu\nu} \partial_{\nu} h^{\rho}_{\rho} - \partial_{\mu} h^{\rho}_{\rho} \partial^{\mu} h^{\sigma}_{\sigma} \right) . \tag{2}$$

Derive from the action (1) the field equations for $h_{\mu\nu}$ in the presence of gravitational sources $T^{\mu\nu}$. Show that these equations require energy-momentum conservation $\partial_{\mu}T^{\mu\nu}=0$. (As discussed in the lecture, this implies the need for a non-linear completion of the theory.)

Exercise 2. Consider an exponentially expanding universe, with coordinates (t, x, y, z), and metric given by:

$$g_{\mu\nu}(t) = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & e^{2Ht} & 0 & 0\\ 0 & 0 & e^{2Ht} & 0\\ 0 & 0 & 0 & e^{2Ht} \end{pmatrix} . \tag{3}$$

H is a constant, known as the Hubble constant. The motion of particles in this spacetime (just like in flat spacetime) is governed by an action proportional to the worldline's length:

$$S = -m \int \sqrt{-g_{\mu\nu}(t)dx^{\mu}dx^{\nu}} \ . \tag{4}$$

- 1. Write this action in a "non-relativistic" form $S = \int L dt$, and derive the equations of motion for the particle's spatial coordinates $x^i(t)$. In particular, identify a conserved momentum p_i .
- 2. Consider a particle that starts at $x^i = 0$ at time t = 0, with initial velocity $v_{(0)}$ in the x direction. A remarkable feature of the spacetime (3) is that the particle will never reach beyond a certain position $x = x_{final}$. Find x_{final} as a function of $v_{(0)}$, assuming that $v_{(0)}$ is much smaller than the speed of light.

3. Find x_{final} in the opposite limit, of a particle traveling at the speed of light. As in Week 3's homework, you may achieve this limit by sending $m \to 0$ while keeping the momentum p_i finite.