GENERAL RELATIVITY – MIDTERM EXAM

Exercise 1. In full GR, the action for a massive particle in a gravitational field reads:

$$S = -m \int_{\gamma} \sqrt{-g_{\mu\nu}(x) dx^{\mu} dx^{\nu}} , \qquad (1)$$

where $g_{\mu\nu}(x)$ is the curved spacetime metric.

- 1. Denoting $g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x)$, expand the action (1) to first order in small $h_{\mu\nu}$. Identify the linearized gravitational interaction term from the lectures.
- 2. Write this interaction term for vanishing particle velocity $\mathbf{v} = 0$. Compare with the Lagrangian of Newtonian gravity, and deduce the proportionality coefficient between h_{tt} and the Newtonian potential ϕ .
- 3. Now, consider a purely spatial and **x**-independent $h_{\mu\nu}$ (as one would encounter in a large-wavelength gravitational wave):

$$h_{tt} = h_{ti} = 0 ; \quad h_{ij} = h_{ij}(t) .$$
 (2)

From the linearized action of Part 1, derive a conserved momentum \mathbf{p} as a function of m, velocity \mathbf{v} , and h_{ij} . In the small- \mathbf{v} limit, use this to find the acceleration \mathbf{a} as a function of $\partial_t h_{ij}$ and \mathbf{v} .

Exercise 2. In this exercise, we will solve the linearized Einstein equation with sources.

1. Consider the scalar wave equation with source:

$$\Box \phi(t, \mathbf{x}) = -4\pi \rho(t, \mathbf{x}) . \tag{3}$$

Show that this equation is solved by:

$$\phi(t, \mathbf{x}) = \int d^3 \mathbf{y} \, \frac{\rho(t - |\mathbf{y} - \mathbf{x}|, \mathbf{y})}{|\mathbf{y} - \mathbf{x}|} \,. \tag{4}$$

2. Now, consider a conserved 4-current $j^{\mu}(t, \mathbf{x})$ with $\partial_{\mu} j^{\mu} = 0$, inducing the following electromagnetic potential:

$$A^{\mu}(t, \mathbf{x}) = \int d^{3}\mathbf{y} \, \frac{j^{\mu}(t - |\mathbf{y} - \mathbf{x}|, \mathbf{y})}{|\mathbf{y} - \mathbf{x}|} \,. \tag{5}$$

Show that this A^{μ} satisfies the Lorentz gauge condition $\partial_{\mu}A^{\mu} = 0$ (Hint: it may be useful to switch the integration variable to $\mathbf{r} \equiv \mathbf{y} - \mathbf{x}$).

3. Show that the potential (5) solves the Maxwell equations (in units where k = 1):

$$\Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = -4\pi j^{\mu} .$$
 (6)

4. Now, consider a conserved stress-energy tensor $T^{\mu\nu}(t, \mathbf{x})$ with $\partial_{\mu}T^{\mu\nu} = 0$. Using the results above, find a solution $h_{\mu\nu}(t, \mathbf{x})$ to the linearized Einstein equations:

$$\Box \tilde{h}^{\mu\nu} - 2\partial^{(\mu}\partial_{\rho}\tilde{h}^{\nu)\rho} + \eta^{\mu\nu}\partial_{\rho}\partial_{\sigma}\tilde{h}^{\rho\sigma} = -16\pi G T^{\mu\nu} ; \quad \tilde{h}_{\mu\nu} \equiv h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h^{\rho}_{\rho} .$$
(7)