2.2 Constrained Hamiltonian Systems

Many interesting physical systems which admit a Lagrangian description are characterised
by so-called degenerate Lagrangians, i.e. the Hessian matrix of the Lagrangian w.r.t. the
velocities is degenerate. This is in fact the case of all fundamental interactions, including
gravity. For such systems, the Legendre transformation is not invertible and, passing at
the Hamiltonian description, this implies the existence of constraints providing functional
relations between the canonical variables. A canonical formulation of the dynamics would
then require to appropriately take into account the constraints. This can be done by
following the so-called Dirac algorithm for constrained systems [8, 9], which we will briefly
review in this section. Other references for the topic including excellent reviews are [10-13]
(as well as [5, 6] for a modern geometric description including a Lagrangian counterpart of
the constraint algorithm). We refer to them for those technical details that will be omitted
here for brevity.

2.2.1 Singular Lagrangians and Dirac’s Algorithm

The discussion of Sec. 2.1 was based on the assumption of the Lagrangian function to be
regular, that is the associated Hessian matrix % was assumed to be non singular. Such
a regularity assumption has profound consequences both on the description of the dynamics
on TQ and on T*Q, as well as on the transition from one description to the other. Indeed,
as we have seen at the beginning of the Chapter, in the case of regular Lagrangians, the
Legendre map (2.10) provides a (local) diffeomorphism between T'Q and T*Q or in other
words, each point (¢%, %) € TQ is mapped to a unique point (¢*,p;) € T*Q and vice-versa.
This means that we are able to invert the map FL to express all the velocities ¢* (hence
the accelerations ') in terms of the canonical momenta p; and generalized coordinates ¢'.
This essentially encodes the equivalence between Lagrangian and Hamiltonian mechanics
in the sense that we can visualize the dynamical trajectories either as integral curves of the

Fuler-Lagrange equations in T'Q or as solutions of the Hamilton equations in 7% Q.

Let us consider now the case of a degenerate Lagrangian, i.e. det (831'28%1‘) = det (gg;ﬁ) =0.

In other words, now the Hessian matrix has less than maximum rank, namely

9*L

At the Lagrangian level, this means that the Euler-Lagrange equations are unable to

uniquely determine the accelerations ¢ as functions of ¢ and ¢. At the canonical level,

this implies that the ¢’s and p’s are not all independent as locally only K of the N mo-
oL
agt
in this case, there are only N 4+ K independent phase space variables and the Legendre

menta p; = can be inverted to express the velocities ¢* in terms of ¢ and p. Therefore,

transformation identifies a (N + K)-dimensional subspace 3¢ of the 2/N-dimensional phase
space defined by (N — K) functionally independent relations
(pa(qap)zo ) azla"'7N_K7 (229)

called primary constraints. Therefore, in the singular case, the Legendre map F'L is not
a diffeomorphism as its range is not the whole of T*Q but only a (N + K)-dimensional
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submanifold ¥ of the phase space P =T*Q, i.e.
i i i oL %
FL:TQB(q,q)M(q,pi:afq.i)GEocT Q
So={(d'p) €TQ| palg.p) =0, a =1, ,N-K}CT°Q,  (230)

the latter is called the primary constraint submanifold. Note that the Legendre transform
still has the property that

, , oL .
d¢" = ¢'dp; — —dq", (2.31)

d(pi¢" — L) = ¢'dp; + pidg" — —dq ¢

og " O

i.e., ¢ and p; are the dynamical variables of the Hamiltonian formulation. However, the
Hamiltonian now is not unique due to the presence of the constraints (2.29). Indeed, any
function f € F(T'Q), when we try to express it in terms of phase-space variables, will
appear as a function of the (N + K) independent variables (the N configuration variables
and the K independent momenta) as well as the (N — K) unsolved velocities. Therefore,
there is some freedom in the functional form in virtue of the choice of the unsolved velocities
and the independent momenta. In particular, even if the canonical Hamiltonian defined as
the Legendre transform of the Lagrangian restricted to the primary constraint surface X

Ho:= H(q,p)|g,=pid' = L(a,p)|y,, (st (FL)"Ho=&r) (2.32)

does not depend on the (unsolved) velocities and so it can be considered as a function only
of the ¢’s and p’s, any total Hamiltonian obtained by adding to it a linear combination of
the primary constraints

Hpr = Hy+u%pq , (2.33)

would be on the same footing. The coeflicients u® are to be treated as Lagrange multi-
pliers and are arbitrary functions of time (as well as of ¢ and p). The inclusion of the
primary constraints in the Hamiltonian makes the Legendre transformation invertible. The
Hamiltonian EOMs obtained from (2.33) reads as

i OHg a9pa

T =g T Fp, (2.34)
5, — —OHo _ 4 a0pa

pl 8(]7‘ 8(]2

so that the time derivative of a generic phase space function f(g,p) is now given by its
Poisson bracket with the Hamiltonian (2.33)

f={t,Hr} = {f, Ho} + u*{f,a} + {f.u"Ypa = {f, Ho} + u*{f, 0a} - (2.35)

Note that the constraints must be imposed only after Poisson brackets are computed. Fol-
lowing Dirac [9, 10], the latter property is usually denoted by a so-called weak equality ==,
which is an equality modulo the constraints, i.e. equality on the constraint hypersurface,
and can be used only after all Poisson brackets have been evaluated.

In this sense, the (primary) constraint equations are understood as ¢.(gq,p) =~ 0, but
{¢a, f} % 0 in general, so that we have the following generalised EOM

f={t,Hr} = {f, Ho} + u"{f,a} - (2.36)
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Remark 1. The standard Poisson brackets (2.22) on P yield {¢*,p;} = 5;-, {¢', ¢} =
{pi,p;} = 0 which can be geometrically described in terms of a Poisson bivector field (i.e.
a (2,0)-type skewsymmetric tensor) A such that

{f,9} =w(Xy, Xy) = A(df,dg) Vf,g€ F(P) , Azéq%/\%. (2.37)
qi Dj

Unlike differential forms which can be pulled-back to a submanifold, a (multi-)vector field
cannot be “restricted” to a submanifold. From this point of view, the idea of Dirac can
essentially be embodied in the statement: “if we cannot restrict the vector, then we enlarge
the functions”. This is achieved by the introduction of a new Hamiltonian function (2.33)
which “enlarges” the original Hamiltonian Hg by additional terms taking into account the
primary constraints which are zero on the (sub)manifold X.

It should be stressed that (2.34) is the initial form of the Hamiltonian phase-space EOMs.
To arrive at their final form, the theory proceeds with a step-by-step consistency analysis
of constraints. Indeed, consistency of the constraints with Hamiltonian evolution implies
the following stability conditions

L
R Yo = {@a, Hr} = {@a, Ho} + P {0, 05} (2.38)

which geometrically amount to the requirement of dynamics to be tangent to the primary
constraint surface and not carrying out of it, the latter as such remains stable under time
evolution. Such consistency conditions can lead to the following four possibilities:

1) the conditions (2.38) are trivially satisfied (e.g. 0 = 0), in which case the procedure
ends here, all the u” remain undetermined, and Eqs. (2.34) are the final form of the
EOMs. Obviously, to look for solutions of such equations as the trajectories of the
dynamics in Y, we have to choose or to specify the unknown functions « in some

way (gauge fizing);
2) the conditions (2.38) are never satisfied and the theory is inconsistent (non physical
pathological examples)?;

3) the conditions (2.38) impose restrictions on the u’s;

4) the conditions (2.38) lead to relations that are independent of the w’s thus yielding new
constraints, say xm(q,p) &~ 0. The new constraints generated in this way are called
secondary constraints'® and will in turn lead to new consistency conditions. The

9As an ad hoc example, consider Lagrangians of the form L(q, ¢) = Aq+ B¢, for some constants A, B # 0.
As can be checked by direct computation, such Lagrangians are degenerate ‘3271;‘ = 0 and the canonical
momentum p = % yields the primary constraint ¢ = p — B ~ 0. The total Hamiltonian is given by
Hr = Ho + u(p — B), with Hy = pg — L = (p — B)G¢ — Aq, and the constraint is not preserved by the
dynamics as ¢ ~ {p, Hr} ~ A{q,p} = A # 0. The problem with such a Lagrangian is that it is not
bounded, i.e., the associated action admits no extremal points thus resulting into inconsistent EOMs (EL
equations 0 = —A # 0).

®Note that for secondary constraints, one uses the EOMs, as opposed to primary constraints which
instead are kinematical relations arising from the definition of the canonical momenta.
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consistency algorithm outlined above must then be iterated until new constraints
(tertiary, and so on) or restrictions on the u’s can no longer be generated (or the
theory is inconsistent).

At each step of the analysis we restrict more and more the physically accessible region
of the phase-space and so the algorithm generates the following sequence of embedded
(sub)manifolds:

step O step 1
—

P Yo — X — - — X=X, (2.39)

where the final constraint submanifold ¥y = ¥ is determined by all the constraints, i.e.
assuming that at the end of the Dirac’s algorithm we get M new constraints

Xm(q’p)zo ) m:]'?""M (2’40)

and denoting the set of all constraints (primary, secondary, and so on) {¢1, ..., dN_K+Mm} =
{¢1,.-,oN—K,X1s---, XM} With a uniform notation ¢; ~ 0, j =1,...,J =N — K + M,
we have

Zz{(q,p)é?!gﬁj(q,p)%o,j:17...,J:N—K+M}C---CZOCP. (2.41)

The consistency conditions between the constraints lead to restrictions on the Lagrange
multipliers u. In fact, we have the following inhomogeneous linear system

¢j ~ {dj, Ho} + u"{¢;, ¢} = 0 (2.42)

of J equations for the K < .J unknowns u*. Provided the system is compatible (otherwise
the dynamics would be inconsistent), the solution is given by uF = UF 4+ VF where UF is a
particular solution of the inhomogeneous system and V* represents the general solution of
the associated homogeneous system Vk{gbj, ¢r} = 0. This is expressed as a linear combina-
tion of linearly independent solutions V¥ = vV¥ a =1,..., A = J —r, where r is the rank
of the homogeneous system assumed to be constant all over the constraint hypersurface.
Thus, the general solution of (2.42) reads as

ub =~ UF +02VF (2.43)
which can be inserted into (2.33) yielding the total Hamiltonian
Hr = H' +v%, with  H' =Ho+U ¢, , ¢a=VFs (2.44)

whose terms respectively include the contributions to u* coming from the consistency con-
ditions and those that instead remain arbitrary (the remaining A arbitrary functions v%).
2.2.2 Gauge Ambiguity of Dynamics: Presymplectic Structure

Another classification of constraints, that is physically more important than the one in
primary and secondary constraints, is that of first and second class constraints according
to the following definition:
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First and second class function

A phase space function f € F(P) is said to be first class if it has (at least weakly)

vanishing Poisson bracket with all constraints, i.e. {f,¢;} ~ 0 Vj. Otherwise, the

function is called second class.

All the ¢, above are primary first class constraints by their definition. Hrp is first class by
the consistency requirement of all constraints to be preserved in time, hence by linearity H’
in Eq. (2.44) is first class as well. The Poisson bracket of two first class constraints is also
first class and it is thus strongly equal to a linear combination of first class constraints, say

{¢i, ¢i} = Cidn . (2.45)

This shows that first class constraints close an algebra. The latter is not necessarily a Lie
algebra since the coefficients C’fj might a priori be phase space functions and not necessarily
constants (structure functions rather then structure constants). This is for instance the case
of canonical general relativity [15-17].

The importance of first class constraints lies in the fact that first class primary constraints

can be identified with the generators of infinitesimal gauge transformations'!

, i.e. they
change the canonical variables ¢, p but do not change the physical state of the system as
reflected by the ambiguity left in the final form of the dynamics encoded in the unknown
v® in Hp. To show this, let us consider a phase space function f and its variation Af along
the infinitesimal evolution generated by Hrp in (2.44) from ¢ to t + At given by (neglecting

O(At?) terms)

F(At) = fo+ fAt = fo+ {f, HT}At & fo+ {f, H}At +0"{f, o} At ,

unique arbitrary

= difference in evolution Af = AtAv*{f, ¢a} =: €*{f, da} =cf . (2.46)

The ambiguity is thus generated by the combinations €*¢, with coefficients €* being entirely
arbitrary, and states related by such transformation correspond to the same physical state.
Dirac conjectured that all first class constraints (not only primary ones) are generators of

12

gauge transformations'“. It is thus possible to define an extended Hamiltonian Hg given

by H’ plus an arbitrary combination of all first class constraints
Hp = H' + )\, , (2.47)

with the index a running over a complete set of first class constraints, collectively denoted by
Ya. Strictly speaking, only the total Hamiltonian Hr follows directly from the Lagrangian.

1Second class constraints deserve a separate discussion and require the introduction of a new mathe-
matical object, known as the Dirac bracket. Since in these lectures we will be dealing only with first class
constraints, we will not discuss this topic here and refer the interested reader to the references given above.

12The status of such a conjecture is still disputed. A proof exists under simplifying regularity conditions
that are generically satisfied (see Sec. 3.3.2 of [10]). It is however possible to construct counterexamples,
but these are pathological (see e.g. [10]). The conjecture holds true for all physically relevant systems that
have been studied so far. Moreover, in the quantisation of constrained systems all first class constraints are
treated on equal footing.
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Indeed, as discussed for instance in Ch. 3 of [10], the claim “(all) first-class constraints
generate gauge transformations” refers to the extended action

Spld'spi, A1 = /dt (pid" — Ho — A\*a) (2.48)

with the ~, first-class constraints and A® the Lagrange multipliers enforcing them. Solu-
tions to the EOMs are tuples (q(t), p(t), A(t)), and symmetries act on all these dynamical
variables. The extended action (2.48) is invariant under the infinitesimal local transfor-
mation §.f = €*{f,v.}, for any f(q,p) € F(P), only if the Lagrange multipliers are let
to transfrorm as 0 A% = €% + C;}C)\bec, where {7V, 7.} = CfLva. Such a set of symmetries
reduces to the symmetries of the non-extended canonical action

Sold', pis A = /dt (pid’ — Ho — A\7a) (2.49)

where now the A only refer to the primary constraints, only after imposing the gauge condi-
tion A*¥ = 0 for all non-primary v*. It is the symmetries of the canonical action, not of the
extended action, that directly translate to symmetries of the original Lagrangian action.
The residual gauge symmetries of this action are those that preserve the conditions \¥ = 0
for the non-primaries and are in general generated by a specific subset of combinations of the
first-class constraints that some references refer to as the gauge generator(s). The extended
Hamiltonian Hg introduces more arbitrary functions of time, but its definition is more
natural from the canonical point of view, since it allows to treat all of the gauge generators
on the same footing. The dynamics generated by the three Hamiltonian functions H', Hr
and Hg are are the same up to gauge transformations and as such are physically equivalent.

To be more precise about the above gauge ambiguity of constrained dynamics, let us go back
to the geometric description developed in the previous sections. As discussed in Sec. 2.1, the
regularity condition of the Lagrangian is equivalent to the closed 2-forms wy, on T'Q and w
on T*Q to be non dengenerate (hence symplectic). Therefore, the EOMs tx,w = dH admit
as solution a unique vector field Xz and there is a one-to-one correspondence between phase
space points and physical states of the system. In the case of non-regular Lagrangians, the
2-form is instead degenerate, that is it has a non-trivial kernel and is thus a pre-symplectic
structure. In fact, let us first prove the following claim:

There is a one-to-one correspondence between the element of ker wy (recall wy is s.t.
(FL)*wo = wr,) and first-class combinations of primary constraints.

Proof. Denoting by K < N = dim Q the rank of the Hessian matrix % and solving the
first K equations of the system p; = %(Z =1,...,N) for the velocities ¢*(a =1,...,K) in
terms of ¢*,...,¢" p1, ..., px and the remaining unknown velocities Ppsp=K+1,..., N,

13We assume with no loss of generality that the first K rows and columns of the Hessian matrix identify
a maximal nonsingular submatrix.
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In other words, there are N + K independent variables ¢, p, on the submanifold ¥ C T*Q
which is defined by N — K primary constraints of generic form

©o(0,0) =pp — folq"spa) =0 , p=K+1,...,N

which express the remaining dependent momenta pgy1,...,pn as functions of the inde-
pendent ¢', p,. The 2-form wp on the primary constraint submanifold ¥y (where v, = 0)
can be explicitly deduced from the 2-form w on the full phase space P = T*Q as
w = dpa A dg® +dp, Adg”,
= wy=1w (with X <5 P the embedding map of Xy into P)

= dpa Adg® + df, Adg” = dps A dg® + ggjdqj A dg? + g]fidpa Adg? .
Given then a vector field X € X(Xg), say
.0 0
X = X]aqu + Xa%

we have

Xo=—xrgl

txwop =0 (X € kerwyp) = Xa:—Xp%
Xo 5l + X7 (% - %)

from which, substituting the fist two equations into the third, we find the condition

0= ({fpa fa} + {faapp} - {fp,pg}) X7 = {app, L,DU}XO (on Eo) .

where in the last equality we used the linearity of the PB. This shows that the elements of
ker wy are uniquely associated with first-class combinations X%, of primary constraints.

O

Going then through the Dirac procedure discussed in the previous section, we end up with

the 2-form wy on the final constraint submanifold Xy (wy = vjw with X J, P) and the
associated final form of the EOMs generated by Hr or Hg, say

LXpW = dHT or LXpW = dHE (2.50)

would not identify just one solution but a family of solutions which differ from each other
by a vector field that is in the kernel of wy®. This means that if we now start with any
initial condition in ¥ , then we can evolve along the flow of any of these vector fields.
The evolution is thus not deterministic as we can find a solution starting at a given initial
condition with any of the vector fields solving Eqgs. (2.50), i.e., up to a vector field in the
kernel. Therefore, all these vector fields represent the same evolution and we can put them

4This is the same thing we discussed in less geometric terms about the differential equation (2.42), the
solutions of the complete equation differing by a solution of the homegeneous one
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into an equivalence class [Xy]. All such vector fields correspond to different gauges and are
all equivalent form the point of view of the Physics.

Thus, in the case of constrained system, there is no one-to-one correspondence between
points on the constraint surface and physical states because physical states have to be
interpreted as equivalence classes of points on the constraint surface. To see this, let us
first recall that the stability requirement 4, =~ 0 amounts to say that the Hamiltonian
vector fields X, associated to first-class constraints (1x, w = dy, = tx, wy = 0) generate
curves which remain on the constraint surface. These curves are called gauge orbits and
the vector fields X, are tangent to them. Moreover, since first class constraints (weakly)
Poisson-commute not only with the Hamiltonian but also among themselves, the vector
fields X, form an involutive distribution (the X,’s are closed under Lie bracket!'®) so
that, by Frobenius theorem, these vector fields generate at each point of the constraint
submanifold a hypersurface called a gauge leaf whose dimension is equal to the number of
first-class constraints. In other words, the constraints surface ¥y embedded in P = T*Q is
foliated by the gauge leaves as schematically depicted in Fig. 2.

“non-physical /redundant”
phase space (P, w)

/—

gauge leaves

(eate)

(Pnal) constraint surface

i ={@p! Plla@p" O} #P (Ppnys = 10/ 1ot phys)
physical phase spac

Figure 2 . Constraint submanifold 3 C P foliated by gauge leaves (red) spanned at each point
by the Hamiltonian vector Pelds X, , associated with the Prst-class constraintsy, (we assume there
are no second-class constraints as e.g. is the case for Yang-Mills gauge theories or gravity). Points
in phisycal phase space are identibed with equivalence classes of points belonging to the same gauge
leaf, that is points on the constraint surface related to each other by gauge transformations.

The constraints surface can be thus organised into equivalence classes by identifying all the
points that lie on a gauge leaf, thus suggesting us the following physical interpretation:

5For any two vector fields X,Y € kerw; (i.e. txwy = tyws = 0), [X,Y] will also be in kerw;. Indeed,
using Cartan’s identity and the closure of wy, we have Lxwy = Lywy = 0, hence 0 = Ly (txwy) = t[x,v]|Ws-
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Physical phase space

There is a one-to-one correspondence between gauge leaves and physical states of the
theory or equivalently, the physical phase space of the system Pppys is given by the
space of such equivalence classes, i.e. by the quotient:

constraint surface

Pohys = Xf/ ~ physical phase space = (2.51)

gauge transformations
The physical phase space Ppnys comes to be equipped with a symplectic structure
Wphys defined by

wohys (X, Y) := wp(X,Y) X,Y € X(Ppys) st. X =X, Y =Y, X, Y € X(%y),
(2.52)
where 7 : ¥y — Pppys is the map that sends each point in Xy to its G-orbit.
Note that, starting from P, pairs of canonically conjugate d.o.f. are removed by
each first-class constraint: one via the algebraic restriction imposed by the equation
Yo = 0, and another one by the quotient w.r.t. gauge transformations. This is
geometrically known as symplectic reduction and often denoted by a double quotient
notation as Pphys = P//G, with G the gauge group (cfr. Fig. 2).

Finally, since a physical observable O is a function on the phase space of the system which
takes a definite value when the system is into a definite physical state, it follows that O
has to take the same value at all the points on a given gauge leaf. In other words, only
those phase space functions which Poisson-commute (at least weakly) with all first class
constraints have a gauge-invariant physical meaning according to the following definition:

Dirac observables

A phase space function O € F(P) is called a Dirac observable if it Poisson-commutes
weakly with all first class constraints, i.e.

Lx, 0={0,7%}~0 VYa. (2.53)

Dirac observables are thus the only phase space functions surviving after symplectic reduc-
tion and as such they parametrise the physical phase space of the system. In particular,
recalling that at the end of the constraint analysis the undetermined multipliers in the
Hamiltonian multiply first-class constraints (cfr. Egs. (2.46), (2.47)), the condition (2.53)
implies that the dynamical evolution of an observable does not depend on the arbitrary mul-
tipliers. In other words, unlike non-gauge invariant functions whose dynamics depend on
the unknown multipliers, the theory is deterministc as long as we consider Dirac observables.
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Summary: constrained systems and gauge symmetry

¥ singular Lagrangian, not all velocities can be solved for the momenta, Legendre
transform leads onto primary constraints submanifold in phase space

¥ stability of constraints under evolution may lead to further constraints, consis-
tency analysis progressively reduces the physically accessible region

¥ first-class constraints generate gauge transformations, the latters being associ-
ated with the flow of null directions of the presymplectic structure

¥ physical phase space identified with space of equivalence classes of points on
the constraint surface lying on the same gauge leaf

¥ physical information encoded in gauge-invariant Dirac observables
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