11 Black hole entropy as a Noether charge

In lecture 9 we have discussed black hole spacetimes and their symmetries, while in lecture
10 we used covariant phase space formalism to study the phase space of asymptotically flat
spacetimes and identify the asymptotic notions of energy, angular momentum, and electric
charge with the Noether charges associated with the asymptotic symmetry generators. In this
lecture, we combine some of the aspects discussed in the previous lecture for asymptotically flat
spacetimes with the presence of a bifurcate Killing horizon (as it is the case for stationary black
hole solutions) and take a further step forward before moving to the discussion of the laws of
black holes mechanics and their thermodynamical interpretation, which will be the subject of
the next lecture.

Specifically, in this lecture, we consider a general classical theory of gravity in D dimensions,
described by a diffeomorphism invariant Lagrangian and, assuming only that the theory admits
stationary black hole solutions with a bifurcate Killing horizon, and that the canonical mass
and angular momentum of solutions are well defined at infinity, it is possible to show that the
first law of black hole mechanics always holds for perturbations to nearby stationary black hole
solutions. In particular, the quantity playing the role of black hole entropy turns out to be
27 times the integral over the horizon bifurcation surface of the Noether charge (D — 2)-form
associated with the horizon Killing vector field, normalized so as to have unit surface gravity.

This result was first obtained by Wald in his seminal paper [gr-qc/9307038], further analysed
in his second paper [gr-qc/9403028] together with Iyer where the possibility of extending such
a result to the non-stationary case was also analysed in detail. More recently, in their systematic
discussion of the boundary terms in covariant phase space formalism [gr-qc/1906.08616],
Harlow and Wu clarified certain subtleties due to boundary terms/ambiguities in the formalism
and identified a key step in Iyer-Wald analysis to be actually related to the contribution of
the boundary Lagrangian which was not explicitly introduced from the very beginning in the
original derivations. The presentation of this lecture will mainly follow these references to
which we refer for those details omitted here due to time restrictions. In particular, as a fully
satisfactory dynamical extension of Wald’s entropy formula to non-stationary black holes is
still subject of active research, we will focus here on the better understrood stationary case and
only briefly comment on the status of the extension at the end.

11.1 Noether charges with bifurcate Killing horizons

Let us consider generic theories of gravity defined on a D-dimensional spacetime M with
dynamical fields consisting of a Lorentzian spacetime metric and possibly other matter fields'
such that the equations of motion for the metric and the other fields are derived from a
diffeomorphism covariant Lagrangian.

I For example, as discussed in lecture 10, Maxwell electromagnetic field can be included to describe electrically
charged black hole solutions to Einstein-Maxwell equations.
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Let us further assume that a suitable notion of asymptotic flatness is defined for our spacetimes
as e.g. the coordinate-free definition of asymptotically flat spacetime given in lecture 10.

More specifically, we are interested in black hole spacetimes.
From lecture 9, we recall that the black hole (BH) region of
an asymptotically flat spacetime is defined to be the comple-
ment of the past of the asymptotic region. For example, in
the case of the Kruskal extension of a Schwarzschild space-
time reported in the side figure, by considering a Cauchy
slice 3, the BH interior region (light blue) is the complement
in the future of ¥ of the past of the asymptotic region .#*

(grey).

A stationary black hole’s event horizon is a Killing horizon and we recall from lecture 9 that
a Killing horizon (KH) is a null hypersurface N/ such that there exists a Killing vector field
(KVF) £ € (M) such that, on NV, £ is normal to N and satisfies the condition

£V =R (11.1)

where k is the surface gravity. Denoting by B the (D — 2)-dimensional bifurcation surface, the
KVF ¢ vanishes on B
&g =0. (11.2)

Bifurcate Killing horizons have constant non-vanishing surface gravity and it can be shown that
any Killing horizon with constant, non-vanishing surface gravity can be locally extended (if
necessary) to a bifurcate horizon. We will come back to the thermodynamic interpretation of
the surface gravity in relation to Hawking temperature and the 0-th law in the next lecture.

Wald’s derivation is based on applying the co-
variant phase space formalism to a single exterior
subregion of an equilibrium wormhole solution.
To this aim, let ¥ be (the portion of) a Cauchy

. . . . — WY UH-
surface in the exterior region of our stationary aN Z UH
. . . “o0” % = BU “o0”
black hole spacetime which lies between the bi- Y
= N -

furcate Killing horizon and asymptotic infinity.
Looking for instance at the side figure for the

Kruskal spacetime, the bifurcate Killing horizon
is given by the null surface N' = HT U H~ with
bifurcation surface B = HTNH ™. The boundary of the Cauchy slice ¥ then has two components
respectively at B and at infinity, namely 0% = BU “oc”. Here we are intentionally sloppy in our
notion of infinity and colloquially denoted by “co” the (D — 2)-dimensional sphere at infinity
without specifying whether we are referring to spatial infinity or the past of future null infinity.
We will come back on this point below.

As we have discussed in lecture 8 when deriving the expression of the diffeomorphism charges,
in a diffeomorphism-covariant theory the Noether charge H associated with a spacetime
diffeomorphism generated by the vector field £ € X(M) is a pure boundary term on-shell (i.e.
on solutions of the equations of motion) given by

ngfazcggﬂgufxfc . Iy Qs = 0H, (11.3)
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where Q¢ is a (D — 2,0)-form such that J = dQ¢, with Je the Noether potential/current
(D —1,0)-form, ¢ is the boundary Lagrangian (D — 1, 0)-form, X is the lift on field space of the
vector field &, and C'is the (D — 2, 1)-form ensuring the action to be stationary up to past/future
boundary terms. In the original papers by Wald or by ILyer and Wald, C' was not present (C' = 0)
as in their analysis now C' term was included in the definition of the (pre)symplectic potential
as § — dC'. In the following, we will also set C' = 0 to allow the comparison with the literature
and comment on its possible role later at the end of the lecture.

Specialising Eq. (11.3) for the above setup of a stationary black hole solution with a bifurcate
Killing horizon, 0¥ = BU “00” so that dH can be split into two contributions

SHe = SHE — (s/BQ5 , (11.4)

where the “ext” superscript denotes the asymptotic contribution, while the second term in the
only non-zero contribution on B since the latter is a bifurcation surface and the KVF ¢ vanishes
at B and also X¢, which for covariant Lagrangians is given by X = [, d? z(Led) - % (cfr. Eq.
(8), Lecture 8), vanishes at any point in pre-phase space where it generates a symmetry (i.e.
where L¢¢ = 0 for all dynamical fields ¢). The relative sign on the r.h.s of (11.4) is due to the
orientation of B with normal pointing towards the interior of . As for the Lh.s. of Eq. (11.3),
we have

Ix s = [ Lxw =0, (11.5)

as a direct consequence of the vanishing of X, when £ is a symmetry of all dynamical fields as
e.g. it is the case for the metric as the KVF & generates the isometries of the metric (L¢g = 0).
For a stationary BH solution with bifurcate Killing horizon, the Killing vector field £ vanishing
on B can be chosen to be normalised so that

£ =10+ Oyl (11.6)

where t* is the stationary Killing field with unit norm at infinity, ¢(,) denotes the axial Killing
fields acting in orthogonal planes?, and Qur is the angular velocity of the horizon (we used the
subscript A to avoid confusion with the symplectic form Q). Now, as discussed in lecture 10 for
the case of null infinity, asymptotically flat spacetimes admit well-defined notions of energy E
and angular momentum J which are identified with the Noether charges H, E’Xt associated with

the generators of asymptotic time translations £* = t* and asymptotic rotations £* = Q(N“) s
respectively®.

A few comments are in order at this point.

« spatial or null infinity: the discussion of the previous lecture mainly focused on null
infinity and it was only briefly mentioned that a similar discussion can be carried out for
spatial infinity. The notions of energy and angular momentum charges on null infinity are
related to the so-called Bondi energy-momentum. In their analysis, [yer and Wald instead

2 The sum over y is needed in dimensions higher then 4 (D > 5). In D = 4 dimensions, we can think of ¢
as playing the role of the vector field Y = 0, generating rotations around ¢ in the case of the Kerr-Newman
solution discussed at the end of the last lecture.

3 Here, unlike lecture 10, we use calligraphic font 7 for the angular momentum and not .J to avoid confusion
with the generic notation for the Noether current J¢ = dQ¢ mentioned above.
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considered the spatial slice ¥ to have one component of its boundary extending at spatial
infinity so that the corresponding charges are the so-called ADM energy-momentum
charges. Here there is no particular conflict in what we may think of being a discrepancy
and in fact, in lecture 10, the definition of the charges at null infinity of a black hole
spacetime was obtained by taking as starting point the expression of the charges H,
derived in lecture 8, where the very same quantity was shown to agree with the known
results of for the charges obtained via the canonical formalism (for the explicit case of
GR). In general, indeed, as long as no Bondi news is involved (i.e. no gravitational
radiation), it has been discussed in the literature (see e.g. [gr-qc/0511036]) that the
ADM energy-momentum can be regarded as the past limit of Bondy energy-momentum.
In presence of non-zero news, however, the ADM total energy is no longer the past limit
of the Bondi mass. This is not a problem for our present discussion as for the case of our
interest no news is involved (cfr. discussion of the Kerr-Newman metric in Bondi gauge
in Sec. 10.6).

the role of boundary terms: coming back to the expression of the charges H, g’“ with &
given in Eq. (11.6), let us comment on the inclusion of the boundary terms from the very
beginning of the analysis of covariant phase space with boundaries as done in these lecture
notes following Harlow and Wu compared to the original derivation of Iyer and Wald. In
Iyer-Wald, the boundary contribution to H, coming from the boundary Lagrangian ¢ was
not included in the analysis and one of the key (but also kind of “obscure”) points in their
work was that the relation

5H§:5/2J5—d(L59) :5/@@5_/00%6’ (11.7)

valid for ¢ solution of the equations of motion, £ such that L:¢ = 0, and ¢ a solution
of the linearised equations but not necessarily L¢0¢ = 0 (the only contribution to the
integral over 0¥ = B U oo in second term is only the asymptotic one as £ = 0 on B), led
them — actually Wald in his first paper — to argue that a Hamiltonian associated with the
vector field £ does exist if (and only if) one can find a (D — 1)-form B such that

5/ W: ::/ b, (11.8)

HE = /OO Q¢ — 1B . (11.9)

The expression for B was then found case by case by computing it via Eq. (11.8) and

so that

showing that the resulting expression (11.9) for the Hamiltonian Hg"t reproduced the
correct result for the energy of asymptotically flat solutions of vacuum GR (see discussion
p. 15-16, Egs. (83)-(90) of Iyer-Wald paper). However, the (D — 1)-form B was not
derived systematically from the analysis. It was only recently that in their systematic
investigation of boundary terms in the covariant phase space formalism, Harlow and Wu
found out that the B term of Iyer-Wald analysis is nothing but the contribution coming
from the inclusion of the boundary Lagrangian in the very beginning of the analysis as
we also did in our discussion of the Noether charges in Secs. 7 and 8. Eq. (11.9) is in fact
nothing but the expression (11.3) for H at infinity with ¢ — —B (and C' = 0). Moreover,
as it was already explained in Iyer-Wald (cfr. discussion below Eq. (90) on p. 16), such a
boundary term in the expression of the energy accounts for the discrepancy (by a factor

14



2) in the Komar mass formula, while the angular momentum coincides exactly with the
Komar angular momentum.

With this being said, let us continue with our discussion of Egs. (11.3)-(11.6). Using Eqgs. (11.4)
and (11.5), the second equation in (11.3) yields

OH = 6/8625 : (11.10)
and, for ¢ given in Eq. (11.6), we have
OH" = 0E — Qnd T (11.11)
E:/ Qt"‘btg:/ Qt_LtB s (]_]_]_2)
J=-/ Q.. (11.13)

where t* is the vector field generating asymptotic time translations and ¢* the vector field
generator of asymptotic rotations. The latter is everywhere tangent to the (D — 2)-sphere at
infinity so that the pull-back of ¢,6 to that surface vanishes and no ¢¢f contribution survives in
J. The sign difference in the Q¢ and @), part is due to the Lorentz signature of the spacetime
metrict. All together, we have the following result

5F — QuoT — (S/BQ§ (11.14)

This is the “first law of black hole mechanics”. The same result can be derived also via the
canonical instantaneous Hamiltonian formalism. Wald’s derivation based on covariant phase
space formalism has the advantage that the surface term at the BH bifurcation surface on the
r.h.s. of (11.14) comes now to be explicitly identified with the variation of the Noether charge
Qe on B. Eq. (11.14) however is not yet in the desired form to be identified/related with the
first law as, first of all, Q¢ on the r.h.s. of (11.14) is locally constructed from &%, its derivatives,
as well as from the dynamical fields of the theory and has not been written yet in terms of local
geometric quantities on B which depend only on the dynamical fields, and second we need to
relate it to the usual black hole entropy term multiplied by the surface gravity. This turns out
to be the case when we further restrict d¢ to be a perturbation to a nearby stationary black
hole as we will discuss in the next subsection.

11.2 (Towards) the first law of black hole mechanics

The Q¢ term on the r.h.s. of Eq. (11.14) can be recast in terms of a local geometric quantity
on the bifurcation surface B multiplied by the surface gravity by using the properties of Killing
vector fields as follows. First, for any Killing vector field £%, any derivative V,, ... V,, £ can
be expressed in terms of linear combinations of £* and its first derivative V,&, with coefficients
depending on the Riemann curvature tensor and its derivatives®. Second, on B, we have £% = 0
and V& = ke (cfr. Eq. (11.1)), where €,, denotes the binormal to the bifurcation surface 5.

4 A similar relative sign difference occurs for instance in the definitions of energy F = —p,t* and angular
momentum J = p,p® of a particle in special relativity.

% Indeed, recalling the definition of Riemann tensor V,Vy&. — ViyVaé. = R, %€, and using the Killing

abc

equation V& + Vpé, = 0, we have V, V&, + ViV &, = Rabcdgd. Then, adding the same equation with
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Using these properties, we can get rid of the dependence on higher derivatives of £ in the
(D —2)-form Q¢ by expressing them in terms of £* and V,&,. Moreover, as the r.h.s. of (11.14)
only involves an integral over B, we can set £* = 0 and re-express V, &, terms as k €y, thus
eliminating any reference to £ in the resulting expression. Denoting by Q the (D — 2)-form so
obtained, we have that () is locally constructed out of only the dynamical fields ¢ entering the
Lagrangian of the theory. The explicit expression is rather involved and generically contains the
derivatives of the Lagrangian w.r.t. the Riemann tensor and its covariant derivatives. We do not
report it here as it is not necessary for our discussion and we refer to the paper by Iyer and Wald
for details (cfr. Lemma 3.1, Proposition 4.1, and Theorem 6.1). The key observation is that,
since we are considering Lagrangian theories which are covariant under diffeomorphisms acting
on the dynamical fields, Q) is invariant under spacetime diffeomorphisms mapping B into itself.
Therefore, the r.h.s. of Eq. (11.14) can be now rewritten in terms of a local geometric quantity
Q on B. Such a (D — 2)-form @ is nothing but the Noether charge (D — 2)-form associated
with the rescaled horizon Killing vector field £* = k £ normalised to have unit surface gravity.

So far, Eq. (11.14) and the considerations above did not require us to restrict ourselves to
any specific on-shell field variations d¢. However, let us now consider d¢ to be a perturbation
to a nearby stationary black hole spacetime and let us identify the unperturbed and perturbed
spacetimes in such a way that the Killing horizons of the two spacetimes coincide, and the
unit surface gravity horizon KVFs € coincide in a neighborhood of the horizons. Note that
the near-horizon identification of the KVFs of the perturbed and unperturbed stationary black
hole spacetimes refers to the unit surface gravity vector fields € and not €. For a perturbation
changing the surface gravity, in fact, it is not possible to identify the two spacetimes in such a
way that the KVFs £ given in Eq. (11.6) coincide on the horizon. Moreover, for a perturbation
which changes s, since 0t* = 0 = dp? near infinity, the requirement 6£* = 0 prevents & to be
proportional to the horizon KVF near infinity in the perturbed spacetime. For such a nearby
stationary black hole perturbations with the above-mentioned identification of the unit surface
gravity horizon KVFs, the variation of the Noether charge 6Q can be written as 6Q = x6Q
with x the surface gravity of the unperturbed black hole. Eq. (11.14) thus yields

5E—QN6JZ/<5/13Q (11.15)

which can be interpreted as an expression of the first law of thermodynamics 6E = T9.S for
perturbation to a nearby stationary black hole

SE — Qp0T = —- 85 |, (11.16)
27
with the role of the black hole entropy played by the quantity
S = 27r/ Q. (11.17)
B

permuted indices bca to the latter equation and subtracting the cab indices equation, it follows that 2V, V £, =
(Rabcd + Rbmd — Rcabd)fd = —2Rcabd§d, where in the second equality the property R[abc]d = 0 of the Riemann

tensor has been used. Thus, one obtains that the relation V,Vé. = —2R__,%¢, holds for any Killing vector field
&. Similar discussion holds for higher derivatives.
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The result (11.17) is know as the Wald’s entropy formula and tells us that, in a general theory
of gravity, the entropy of a stationary black hole is a local geometrical quantity constructed out
of the dynamical fields and is just given by 27 times the Noether charge of the horizon Killing
vector field normalised to have unit surface gravity. It should be however kept in mind that in
order for Eq. (11.16) to be really identified with the first law of black hole mechanics we still
need to relate the /27 factor in front of Wald’s entropy with the temperature of the black hole.
Such a thermodynamic interpretation for the surface gravity in terms of the so-called Hawking
temperature will be discussed in the next lecture and the statement of the surface gravity being
constant over the event horizon of stationary black holes will then amount to the zeroth law of
black hole thermodynamics.

Finally, as proposed by Wald in his 1993 paper and then further investigated in his 1994
paper with Iyer, the local geometric character of the entropy formula (11.17) suggests a possible
generalisation to the non-stationary case. The idea is that, in the non-stationary case, the same
procedure described above for the bifurcation surface of a stationary black hole Killing horizon
can be in principle used also to construct the quantity ) for an arbitrary cross-section of the
horizon of a non-stationary black hole. The resulting integral over the cross-section would
then provide us with a candidate expression for a dynamical black hole entropy. However, Iyer
and Wald argued that the covariant phase space ambiguity of adding an extact form to the
presymplectic potential 6 leads to an ambiguity in the definition of the Noether charge Q¢
which vanishes only for the case of stationary solutions. Harlow and Wu, on the other hand,
suggested that the inclusion of a C' # 0 boundary contribution into the Noether charge H (11.3)
could be maybe used to fix such an issue as the only ambiguity left in the formalism would
be a simultaneous shift of § and C' which does not affect H¢. This is an interesting possibility
which will allow to unambiguously define a generalisation of Wald’s entropy for dynamical
horizons within the covariant phase space formalism. This is however not straigthforward as it
might seem as the identification of the proper C' term requires a careful analysis of boundary
conditions at the horizon and is strictly related to the construction of a correct phase space
description for the exterior region. No definite answer has been given yet. Moreover, the first
law is not expected to hold for perturbations of non-stationary configurations, for which only
the second law is expected to apply. In this respect, as discussed by Wald, the black hole
entropy-Noether charge relation would imply that, for a dynamical process from an initially
stationary black hole configuration to a stationary final state, the net change of entropy is given
by the flux through the horizon of the Noether current associated with time translations on
the horizon. This in turn hints at a possible connection between the validity of the second
law of BH mechanics and the positive energy properties of the theory under consideration. A
covariant phase space derivation of the second law is also subject of open research.
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