
GR lecture 8
Einstein-Hilbert action; Conical singularities;
The Schwarzchild solution

I. CARROLL’S BOOK: SECTIONS 4.3, 5.1-5.4

II. Tµν AS NOETHER CHARGE VS. Tµν AS VARIATION WITH RESPECT TO

THE METRIC

When deriving the Einstein equations from an action principle, we found ourselves iden-

tifying the stress-energy tensor as:

T µν =
2√
−g

∂(
√
−gL)

∂gµν
, (1)

or, equivalently:

Tµν = − 2√
−g

∂(
√
−gL)

∂gµν
= Lgµν − 2

∂L

∂gµν
, (2)

where L is the matter Lagrangian. As we’ve seen for the electromagnetic field, this definition

actually doesn’t directly coincide with the one derived by considering T µν as the 4-current of

4-momentum, which is in turn the Noether charge associated with translations. Nevertheless,

the claim is that (1) defines something very much like the Noether current for translations,

such that e.g. the integrated total 4-momentum calculated from both definitions is the same

(at least in flat spacetime, where such an integrated quantity makes sense). Once we believe

that (1) defines something like the 4-current of 4-momentum, then it is clearly the superior

definition, since it’s automatically symmetric and gauge-invariant. However, why should we

believe that? In this section, we attempt to answer that question.

Recall that a symmetric matrix such as Tµν is fully determined by its products Tµνu
µuν

with arbitrary timelike unit vectors. Thus, to understand Tµν , it’s enough to consider Ttt in

arbitrary Lorentz frames. From the Noether point of view, Ttt should be the energy density.

To make this concrete, let’s consider the action in flat spacetime with initial conditions

somewhere and final conditions at t = tf . Then the action’s variation upon putting the

same final conditions but at a slightly later time tf + δt reads:

δS = −δt
∫
t=tf

d3xTtt . (3)
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Now, let us notice that there’s another way to change the time duration of the spacetime

region associated with S: instead of changing the final time coordinate tf , we can just stretch

the metric near t = tf ! In particular, to obtain the same shift δtf of proper time, we can

stretch a short time interval (tf −∆t, tf ) by a factor of 1 + δt/∆t, where we take ∆t small

but much longer than δt. Thus, we must stretch
√
−gtt by a factor of 1 + δt/∆t, which is

equivalent to:

δgtt = −2
√
−gtt δ(

√
−gtt) = −2

δt

∆t
, (4)

where we used the flat value gtt = −1 before the variation. The resulting variation of the

action S =
∫
d4x
√
−g L reads:

δS = ∆t

∫
d3x

δ(
√
−gL)

δgtt
δgtt = −2δt

∫
d3x

δ(
√
−gL)

δgtt
. (5)

Comparing with (3), we conclude that it indeed makes sense to identify (1) as the stress-

energy tensor.

III. GAUGE INVARIANCE VS. CONSERVATION

Another comment is that (1) has a close analog in electromagnetism. Indeed, the elec-

tric 4-current of a charged field can be defined by varying the action with respect to the

electromagnetic potential:

jµ =
δL

δAµ
. (6)

Charge conservation can then be beautifully derived as a consequence of gauge invariance.

We simply consider a variation of the particular form δAµ = ∂µθ, which is a gauge transfor-

mation, and must leave the action invariant:

0 = δS =

∫
d4x

δL

δAµ
δAµ =

∫
d4x jµ∂µθ = −

∫
d4x θ ∂µj

µ , (7)

where we integrated by parts and disposed of the boundary term by choosing θ(x) that

vanishes on the boundary. Since (7) must be true for otherwise arbitrary θ(x), we conclude

that charge is locally conserved: ∂µj
µ = 0.

To construct the analogous argument in gravity, recall that an infinitesimal coordinate

transformation xµ → xµ + ξµ acts on various fields through the Lie derivative Lξ. Indeed,
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in adapted coordinates for which ξµ = (ε, 0, 0, 0), the coordinate transformation acts simply

as the partial derivative ε(∂/∂x0); the Lie derivative Lξ is the coordinate-independent for-

mulation of the same geometric concept. As we’ve seen in Lecture 5, the Lie derivative of

the metric can be written in terms of covariant derivatives as:

δgµν = Lξgµν = ∇µξν +∇νξµ = 2∇(µξν) . (8)

Since the action should be invariant under this coordinate transformation, we conclude:

0 = δS =

∫
d4x

δ(
√
−gL)

δgµν
δgµν =

∫
d4x
√
−g T µν∇µξν = −

∫
d4x ξν∇µT

µν . (9)

Again, for this to be true for arbitrary infinitesimal ξµ(x), we must have the conservation

law ∇µT
µν = 0.

IV. THE CONICAL SINGULARITY SOLUTION IN 2+1D GR

As a warmup towards the Schwarzschild solution in 3+1d, let’s consider time-independent,

rotationally symmetric, non-rotating vacuum solutions in 2+1d. In other words, let’s find

the gravitational field of a stationary point mass in 2+1d GR. We begin by writing the

following ansatz for the metric:

ds2 = gtt(r)dt
2 + grr(r)dr

2 + r2dφ2 . (10)

This is the most general metric that satisfies the following assumptions:

• Rotationally invariant, i.e. invariant under φ→ φ+ const. This implies ∂φgµν .

• Treats the clockwise and anticlockwise directions equally, i.e. invariant under φ→ −φ.

This implies gtφ = grφ = 0.

• Static, i.e. ∂tgµν = 0 and gtr = gtφ = 0.

As we will see in an exercise, the last assumption isn’t actually necessary. Note that we

don’t need to consider a more general gφφ(r) in (10), since we can always use the tangential

length element
√
gφφ dφ ≡ rdφ as a definition of the r coordinate. The nonzero elements of
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gµν , g
µν and ∂µgνρ read:

gtt ; grr ; gφφ = r2 ; (11)

gtt =
1

gtt
; grr =

1

grr
; gφφ =

1

r2
; (12)

∂rgtt ≡ g′tt ; ∂rgrr ≡ g′rr ; ∂rgφφ = 2r . (13)

The Christoffel symbols then read:

Γrtt = − g′tt
2grr

; Γttr =
g′tt
2gtt

; Γrrr =
g′rr
2grr

; Γrφφ = − r

grr
; Γφφr =

1

r
, (14)

where all other components are either related to the above by symmetries (e.g. Γtrt = Γttr)

or vanishing. We see that a lot of Christoffel components have a form similar to g′rr/(2grr).

This is not a coincidence: the Christoffel is really about curvature angles, which are related

not to the absolute size of the metric, but to its relative rate of change; finally, the factor of

1/2 in the Christoffel’s definition tells us that it’s directly sensitive not to the metric – which

gives lengths squared – but to lengths themselves. Thus, it’s a better idea to reparameterize

the original metric (10) as:

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dφ2 , (15)

which gives us:

Γrtt = α′e2(α−β) ; Γttr = α′ ; Γrrr = β′ ; Γrφφ = −re−2β ; Γφφr =
1

r
. (16)

We can now directly compute the Ricci tensor as:

Rµν = ∂ρΓ
ρ
µν − ∂µΓρνρ + ΓρρσΓσµν − ΓρµσΓσνρ , (17)

which yields:

Rtt = e2(α−β)
(
α′′ + α′2 − α′β′ + α′

r

)
; Rrr = −α′′ − α′2 + α′β′ +

β′

r
;

Rφφ = re−2β(β′ − α′) .
(18)

Let us now apply the vacuum Einstein equations Rµν = 0. From e2(β−α)Rtt + Rrr, we find

α′+β′ = 0. On the other hand, from Rφφ, we find β′−α′ = 0. It follows that α′ and β′ both

vanish, i.e. that α and β are both constants! We can get rid of these constants by rescaling

the coordinates as:

t→ eαt ; r → eβr ; φ→ e−βφ , (19)
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which brings the metric to the flat form:

ds2 = −dt2 + dr2 + r2dφ2 . (20)

Note that rescaling φ as in (19) may affect its 2π periodicity, which so far we’ve been taking

for granted. As we’ll now see, the non-trivial part of the geometry (20) is precisely encoded

in this periodicity.

First, let’s recall that the flat answer (20) should have been expected: we know that in 3d

spacetime, Rµν = 0 implies that the entire Riemann curvature vanishes. However, now we

must be careful. For a point mass, Tµν and thus Rµν vanishes everywhere except at r = 0.

Thus, we may have some curvature that’s concentrated, like a delta function, just at the

origin. To see what this curvature should look like, let’s “zoom in” on the point mass so it

isn’t look pointlike anymore. Recall the form of Tµν for a mass density at rest, in locally

inertial coordinates:

Tµν =


ε 0 0

0 0 0

0 0 0

 , (21)

By the 3d Einstein equation, the Ricci tensor then takes the form:

Rµν = 8πG(Tµν − Tgµν) = 8πG


0 0 0

0 ε 0

0 0 ε

 . (22)

Thus, we expect a purely spatial 2d curvature Rxx = Ryy. Recall that in 2d, the Rie-

mann tensor has just one independent component. The same curvature can be expressed

equivalently as:

Rxyxy = Rxx = Ryy =
1

2
R . (23)

Thus, returning to the pointlike mass case, we are dealing with a distributional curvature of

the form:

Rxyxy = 8πGMδ2(x) , (24)

where M is the mass at the origin, and δ2(x) is a spatial delta function that integrates to 1.

What do we call a 2d flat manifold with distributional curvature at the origin? We call this
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a cone. Indeed, a 2d cone is constructed by simply “cutting out” some angle χ from a flat

plane, and gluing the two sides of the cut together. The geometry throughout the cone is

the same as that of the plane, i.e. flat, with the exception of the apex. To see that there is

curvature at the apex, we recall our definition of the Riemann in terms of parallel transport

along a closed loop. If we parallel-transport a vector around the apex of the cone, it ends

up at angle χ to its original orientation. Taking χ to be small for simplicity and taking care

with the signs (better to make a drawing for this purpose), we find that the rotation matrix

upon traversing a counterclockwise loop is:

Mi
j =

1 −χ

χ 1

 . (25)

Recalling that the Riemann tensor element Rx
yxy is My

x per unit area of a counterclockwise

loop, we read off:

Rxyxy = χδ2(x) . (26)

Comparing with (24), we see that in 2+1d GR, the geometry around a (small) mass M is

conical, with deficit angle χ = 8πGM . Returning to the polar coordinates (20), we note

that the deficit angle can be encoded by simply changing the period of φ from 2π to 2π−χ,

without any change to the ds2 formula.

EXERCISES

Exercise 1. Prove by direct calculation that the variation of the Ricci tensor is:

δRµν = ∇ρδΓ
ρ
νµ −∇νδΓ

ρ
ρµ . (27)

Exercise 2. Prove the 2+1d version of Birkhoff’s theorem. Starting from an ansatz that

doesn’t assume time independence:

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dφ2 , (28)

show that the vacuum Einstein equations Rµν = 0 imply ∂rα = ∂rβ = ∂tβ = 0, which brings

the metric to the form:

ds2 = −e2α(t)dt2 + e2βdr2 + r2dφ2 . (29)

Finally, find a coordinate transformation which brings this metric to the flat form (20).
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Exercise 3. Consider the Schwarzschild metric:

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM/r
+ r2(dθ2 + sin2 θ dφ2) . (30)

Show that this metric satisfies the vacuum Einstein equations Rµν = 0. On the other hand,

show that Rtrtr is nonzero, and compare it to the Newtonian prediction at r � GM .
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