
GR lecture 6
The Riemann curvature tensor

I. CARROLL’S BOOK: SECTIONS 3.6, 3.7

II. THE RIEMANN TENSOR FROM PARALLEL TRANSPORT ALONG A LOOP

Consider an infinitesimal “square” closed loop around a point x. We denote the displace-

ments along the loop’s sides as Aµ, Bµ, −Aµ and −Bµ respectively. The loop’s corners are

at xµ − Aµ/2 − Bµ/2, xµ + Aµ/2 − Bµ/2, xµ + Aµ/2 + Bµ/2 and xµ − Aµ/2 + Bµ/2. The

midpoints of the loop’s sides are at xµ −Bµ/2, xµ + Aµ/2, xµ +Bµ/2 and xµ − Aµ/2.

Now, consider parallel transport around this loop, calculated to second order in the

infinitesimal vectors Aµ and Bµ. First, we must calculate the parallel transport along a

single side to second order. Consider e.g. the first side, along which the displacement vector

is Aµ. To first order, the basis transformation matrix for this parallel transport is δνµ+AρΓνρµ,

or, in matrix notation for the µν indices, 1+AρΓρ. To get the second-order result, we should

momentarily stop treating Aµ as infinitesimal, and construct the basis transformation matrix

as the product of matrices along N →∞ smaller intervals Aµ/N :

M =

(
1 +

1

N
AρΓρ

)N

→ eA
ρΓρ = 1 + AρΓρ +

1

2
(AρΓρ)

2 + . . . . (1)

Restoring the indices, and following the appropriate index pattern for the matrix product

(AρΓρ)µ
λ(AσΓσ)λ

ν , the result to second order reads:

Mµ
ν = δνµ + AρΓνρµ +

1

2
AρΓλρµA

σΓνσλ . (2)

Now, we should remember that we’re talking about one side in a square loop, and the

midpoint of this side is not at xµ, but at xµ −Bµ/2. Thus, to be exact to second order, we

must replace Γνµρ in the second term with Γνµρ(x−B/2) = Γνµρ(x)− (1/2)Bσ∂σΓνµρ:

Mµ
ν = δνµ + Aρ

(
Γνρµ −

1

2
Bσ∂σΓνρµ +

1

2
AσΓλρµΓνσλ

)
. (3)

We can now multiply 4 of these matrices, corresponding to the loop’s 4 sides, keeping only

terms up to second order in Aµ and Bµ. The linear terms cancel, and so do the quadratic

1



terms proportional to AµAν and BµBν . We are left with just a term proportional to the

antisymmetric matrix A[µBν], which defines our infinitesimal loop:

Mµ
ν = δνµ +Rν

µρσA
ρBσ , (4)

where Rµ
νρσ is the Riemann tensor:

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµρν + ΓµρλΓ

λ
σν − ΓµσλΓ

λ
ρν . (5)

In particular, when acting on a vector vµ or a covector uµ, this leads to:

vµ → (M−1)ν
µvν = vµ −Rµ

νρσA
ρBσvν ; (6)

uµ → Mµ
νuν = uµ +Rν

µρσA
ρBσuν . (7)

III. COMMUTATOR OF COVARIANT DERIVATIVES ON ARBITRARY TEN-

SORS

In the absence of torsion, the commutator of covariant derivatives [∇µ,∇ν ] = ∇µ∇ν −

∇ν∇µ precisely encodes the notion of traveling along a closed loop. Thus, the previous

result can be reformulated as the action of this commutator on a vector or a covector:

[∇µ,∇ν ]v
ρ = Rρ

σµνv
σ ; [∇µ,∇ν ]uρ = −Rσ

ρµνuσ . (8)

From here, we can derive the rule for [∇µ,∇ν ] acting on an arbitrary tensor:

[∇µ,∇ν ]T
ρ...σ

κ...λ = Rρ
αµνT

α...σ
κ...λ + . . .+Rσ

αµνT
ρ...α

κ...λ

−Rα
κµνT

ρ...σ
α...λ − . . .−Rα

λµνT
ρ...σ

κ...α .
(9)

This, like its relatives, can be derived via the Leibniz rule by writing the tensor T ρ...σκ...λ

as a product of vectors and covectors. The products of first derivatives will cancel between

∇µ∇ν(. . . ) and ∇ν∇µ(. . . ), and only second derivatives acting on the individual vectors and

covectors will remain, leading to (9).

IV. JACOBI/BIANCHI IDENTITIES

Any operator ∇µ, even if non-commutative, automatically satisfies the Jacobi identity:

[∇µ, [∇ν ,∇ρ]] + [∇ν , [∇ρ,∇µ]] + [∇ρ, [∇µ,∇ν ]] = 3
[
∇[µ, [∇ν ,∇ρ]]

]
= 0 . (10)
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Let us apply this to a vector vσ. For the first term in (10), we get:

[∇µ, [∇ν ,∇ρ]] v
σ = ∇µ[∇ν ,∇ρ]v

σ − [∇ν ,∇ρ](∇µv
σ)

= ∇µ(Rσ
λνρv

λ) +Rλ
µνρ∇λv

σ −Rσ
λνρ∇µv

λ

= vλ∇µR
σ
λνρ +Rλ

µνρ∇λv
σ .

(11)

Now, antisymmetrizing over µνρ (or, equivalently, adding the cyclic permutations of µνρ),

we get:

vλ(∇µR
σ
λνρ +∇νR

σ
λρµ +∇ρR

σ
λµν) + 3Rλ

[µνρ]∇λv
σ = 0 . (12)

Demanding that this holds for any vector field vµ, we get the algebraic and differential

Bianchi identities:

Rλ
[µνρ] = 0 ; ∇µR

σ
λνρ +∇νR

σ
λρµ +∇ρR

σ
λµν = 0 . (13)

EXERCISES

Exercise 1. Derive the expression (5) for the Riemann tensor directly from one of the

commutators (8).

Exercise 2. For the Riemann tensor of the Christoffel connection, derive the index sym-

metry Rµνρσ = −Rνµρσ from the commutator [∇µ,∇ν ]gνρ.

Exercise 3. Find the components of the Riemann tensor for:

• A 2d sphere, with metric ds2 = R2(dθ2 + sin2 θdφ2).

• 3d flat space in spherical coordinates, with metric ds2 = dr2 + r2(dθ2 + sin2 θdφ2).

Exercise 4. Find the components of the Riemann tensor at t = 0 for the metric:

ds2 = −dt2 + (1 + αt2)dx2 + (1 + βt2)dy2 + (1 + γt2)dz2 , (14)

where α, β, γ are constants.
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