
GR lecture 2-1
Vectors and covectors as distinct objects; Galilean boosts

I. SOLVING EXERCISES FROM LAST WEEK.

II. VECTORS AS ARROWS, COVECTORS AS STACKS OF PLANES

In the last lecture, we pushed a particular point of view on the issue of upper/lower indices:

these are just two mutually conjugate bases in a space where all the usual rules apply. In

particular, we’ve been working in a geometry which has the ordinary scalar product to define

lengths and angles, and we just happened to have a non-orthonormal basis. From that point

of view, vi and vi are just different ways to parameterize a vector v.

There exists a different point of view, which is ultimately more fundamental. There, we

treat “vectors” vi and “covectors” ui as completely different things. Sure, they can be related

by a metric as in vi = gijv
j, but one might sometimes work in a geometry with no metric,

or with more than one metric, or – as in GR – when the metric is another variable field, not

given in advance. In fact, even when a metric is given, some quantities are more naturally

viewed as vectors, and others as covectors. For example, in a crystal lattice, positions x are

written in the basis ei, while wavevectors k are written in the co-basis ei.

In this new picture, our intuitive notion of a vector as an arrow – i.e. a displacement

in space – is captured by the upper-index objects vi. In particular, coordinates xi have an

upper index. The most basic object with a lower index is then the spatial derivative:

∂i =
∂

∂xi
. (1)

More concretely, for any scalar field f(x), the gradient ∂if is a covector – a quantity with a

lower index. To verify that this is the case, we simply note that ∂if can be contracted with

an infinitesimal displacement dxi, as befits a lower&upper index pair:

∂if dx
i =

∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3 = df . (2)

This contraction is simply the change df in the value of f as we move along the interval dxi.

Note that eq. (2) is true for any set of coordinates xi, regardless of their orthonormality

or any other geometric meaning: it is simply the decomposition of a differential in terms of
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partial derivatives. In other words, it is a “scalar product” that looks the same in every basis

– not a metric-dependent contraction of two upper indices, but a fundamental contraction

of an upper index with a lower one.

Exercise 1. Explain now why a “wavevector” k should be thought of as a covector ki. How

about momentum p?

What, then, is an appropriate geometric intuition for a covector? It is definitely not an

arrow. Absent a metric, absent a notion of lengths and angles, there is no way to produce

a scalar by multiplying two arrows. Let us again examine the gradient ∂if . At first, let’s

return to familiar metric geometry, where we do know lengths and angles. In calculus, we

were taught to think of ∂f as a vector. Recall how this vector is constructed. We draw

the surfaces of equal values of f . At each point, the equal-value surfaces have a certain

orientation, and a certain density. The magnitude of the gradient vector ∂f is then given

by the density of the equal-value surfaces, and its direction is defined as orthogonal to them.

Note that this requires the concept of orthogonality, i.e. a metric! However, we can now

play the same trick as when we got rid of vector products in Lecture 1-1: we can just skip

the last step. The covector ∂if should be thought of as the stack of equal-value surfaces of

f near the point in which we are interested! More generally, we can think of covectors as

stacks of planes: the direction of the covector is captured by the planes’ orientation, and

the magnitude of the covector is captured by their density. A scalar product uiv
i now has

an intuitive meaning: it counts how many of the planes in the ui stack are pierced by the vi

arrow. No metric needed! In particular, eq. (2) can now be read as follows: the change df

in the value of f is given by the “number” of equal-value surfaces that are traversed as we

travel along dxi.

One can also think of covectors more abstractly: a covector ui can be defined by its scalar

product uiv
i with all possible vectors (of course, a spanning set of vi’s is enough for this).

In other words, covectors are simply linear functions from vectors into scalars. Note that

this definition is completely symmetric: we could also define a vector as a linear function

from covectors into scalars. The asymmetry between vectors and covectors must be intro-

duced separately, e.g. when we define that vectors, not covectors, describe displacements

(“arrows”) in space.
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III. COMPONENTS VS. BASES

The picture we laid out above is quite consistent and self-sufficient: dxi is a vector, and

∂i = ∂/∂xi is a covector. However, in some texts, one encounters a language which, at first

sight, seems opposite. It is nice to have the mental agility to switch back and forth between

different points of view on the same concepts. The seemingly opposite language has to do

with the fact that, as we’ve seen, components in one basis have the same index structure

(upper/lower) as basis elements of the opposite basis. Thus, dxi can be thought of as the

components of a vector, or as a basis of covectors. Similarly, ∂i can be thought of as the

components of a covector, or as a basis of vectors. This makes more sense than it may seem

at first: if ∂i is a basis of vectors, then vi∂i is a vector with components vi: the components

have an upper index, as they should. Geometrically, vi∂i is a directional derivative, i.e. a

derivative in the particular direction of vi. It makes sense to identify it with the vector vi

itself. For example, ∂/∂x1 can be intuitively identified with an arrow pointing in the x1

direction, i.e. in the direction of changing x1 with (x2, x3) held fixed. Similarly, there are

two ways to make sense of the fact that dxi is a basis of vectors. First, we can just say

that uidx
i is a linear map that makes a scalar out of any displacement dxi, and thus we can

identify it with a covector ui. Second, we can geometrically consider e.g. dx1 as the gradient

of the coordinate x1. In other words, a covector whose direction is set by the surfaces of

constant x1, and whose magnitude is set by how fast the coordinate x1 changes as we move

in space (with no regard to what the other coordinates are doing, which is very different

from the case of the partial derivative [=vector] ∂/∂x1).

IV. GALILEAN SYMMETRY AND ITS DOWNFALL

Let’s get back to physics. In the above, we’ve been building mathematical tools to work

with flat space, with an eye towards curved space. GR, however, is not just about curved

space: it is about curved spacetime. So, we should first make sure that we understand flat

spacetime, also known as Minkowski space. That is the subject of Special Relativity.

Let us start from historical basics. The laws of Nature are invariant under a number of

geometric transformations: translations in time (there is no preferred t = 0), translations in

space (there is no preferred x = 0), rotations in space (there is no preferred orientation for
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the (x, y, z) axes). The great Galilei discovered another such symmetry – the symmetry of

passing into a reference frame that moves with velocity v with respect to our old one. In

modern terminology, we call such transformations boosts:

t → t ; x → x− vt . (3)

As long as people studied elementary mechanics, this symmetry was near and dear to their

hearts. However, gradually, they turned their attention to other phenomena, such as heat,

sound, fluids, solids, various waves. . . Many of these are associated with a medium, and thus

with a preferred reference frame: the frame in which the medium is at rest. After a few

decades of thinking about this stuff, people kind of forgot that velocity is relative, that

boosts are supposed to be a symmetry at all. In particular, they weren’t duly surprised

when they discovered the magnetic force law F = qv×B, or, more concretely, the magnetic

force between two parallel currents:

Fmag =
µ0I1I2r

2r2
=
µ0λ1v1λ2v2r

2r2
, (4)

where λ1,2 are the densities of moving charges per unit length, and v1,2 are their velocities.

The magnetic force clearly breaks the Galilean boost symmetry (3), and so do the Maxwell

equations. In the historical context, people didn’t worry about this too much: electromag-

netism was probably just another of those things like sound or hydrodynamics – it probably

happened in some medium, with a preferred reference frame.

– TO BE CONTINUED –
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