GR lecture 12

Gravitational waves: polarizations and production

I. CARROLL'S BOOK: SECTIONS 7.4-7.5

II. A WORKED-OUT EXAMPLE OF DE DONDER AND TRANSVERSE-TRACELESS
 GAUGE

In the previous lecture, we considered small perturbations of the metric around flat spacetime:

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \tag{1}
\end{equation*}
$$

and established a notation in which indices are raised and lowered using the flat metric $\eta_{\mu \nu}$. We found it convenient to define the trace-reversed version of the metric perturbation $h_{\mu \nu}$:

$$
\begin{equation*}
\tilde{h}_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} ; \quad \tilde{h}=-h . \tag{2}
\end{equation*}
$$

In terms of this quantity, we defined de Donder gauge:

$$
\begin{equation*}
\partial^{\mu} \tilde{h}_{\mu \nu}=0 . \tag{3}
\end{equation*}
$$

In this gauge, to first order in $h_{\mu \nu}$, the Einstein tensor becomes simply:

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=-\frac{1}{2} \square \tilde{h}_{\mu \nu}, \tag{4}
\end{equation*}
$$

whereis the d'Alambertian:

$$
\begin{equation*}
\square \equiv \partial_{\mu} \partial^{\mu}=-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \tag{5}
\end{equation*}
$$

The linearized Einstein equation thus reads:

$$
\begin{equation*}
\square \tilde{h}_{\mu \nu}=-16 \pi G T_{\mu \nu} . \tag{6}
\end{equation*}
$$

Let's now consider the source-free version:

$$
\begin{equation*}
\square \tilde{h}_{\mu \nu}=0 . \tag{7}
\end{equation*}
$$

The non-trivial solutions to this equation are gravitational waves. By the usual Fourier transform techniques, these solutions are spanned by plane waves of the form:

$$
\begin{equation*}
\tilde{h}_{\mu \nu}(x)=\tilde{C}_{\mu \nu} e^{i k_{\rho} x^{\rho}} \tag{8}
\end{equation*}
$$

where the wavevector k_{μ} and the polarization tensor $\tilde{C}_{\mu \nu}$ are constants. The field equation (7) implies that k_{μ} is lightlike: $k_{\mu} k^{\mu}=0$, while de Donder gauge (3) implies that $\tilde{C}_{\mu \nu}$ is transverse: $k^{\mu} \tilde{C}_{\mu \nu}=0$. As an example, consider the null wavevector:

$$
\begin{equation*}
k^{\mu}=\omega(1,1,0,0) ; \quad k_{\mu}=\omega(-1,1,0,0), \tag{9}
\end{equation*}
$$

which represents a wave with frequency ω moving along the x direction. The most general symmetric polarization tensor $\tilde{C}_{\mu \nu}$ that satisfies $k^{\mu} \tilde{C}_{\mu \nu}$ reads:

$$
\tilde{C}_{\mu \nu}=\left(\begin{array}{cccc}
\alpha & -\alpha & \beta & \gamma \tag{10}\\
-\alpha & \alpha & -\beta & -\gamma \\
\beta & -\beta & \tilde{C}_{y y} & \tilde{C}_{y z} \\
\gamma & -\gamma & \tilde{C}_{y z} & \tilde{C}_{z z}
\end{array}\right)
$$

From $\tilde{h}_{\mu \nu}$, we can extract the actual metric perturbation $h_{\mu \nu}$, via:

$$
\begin{equation*}
h_{\mu \nu}=\tilde{h}_{\mu \nu}-\frac{1}{2} \tilde{h} \eta_{\mu \nu}=C_{\mu \nu} e^{i k_{\rho} x^{\rho}} \tag{11}
\end{equation*}
$$

where the polarization tensor $C_{\mu \nu}$ in our example (10) reads:

$$
C_{\mu \nu}=\tilde{C}_{\mu \nu}-\frac{1}{2} \tilde{C} \eta_{\mu \nu}=\left(\begin{array}{cccc}
\frac{2 \alpha+\tilde{C}_{y y}+\tilde{C}_{z z}}{2} & -\alpha & \beta & \gamma \tag{12}\\
-\alpha & \frac{2 \alpha-\tilde{C}_{y y}-\tilde{C}_{z z}}{2} & -\beta & -\gamma \\
\beta & -\beta & \frac{\tilde{C}_{y y}-\tilde{C}_{z z}}{2} & \tilde{C}_{y z} \\
\gamma & -\gamma & \tilde{C}_{y z} & \frac{\tilde{C}_{z z}-\tilde{C}_{y y}}{2}
\end{array}\right)
$$

Now, recall that de Donder gauge still leaves us with some of the gauge symmetry $h_{\mu \nu} \rightarrow$ $h_{\mu \nu}-\partial_{\mu} \xi_{\nu}-\partial_{\nu} \xi_{\mu}$. Specifically, we can still apply gauge transformations that satisfy $\square \xi_{\mu}=0$. The parameter of this residual gauge symmetry can again be decomposed into plane waves of the form:

$$
\begin{equation*}
\xi_{\mu}(x)=\epsilon_{\mu} e^{i k_{\rho} x^{\rho}} \tag{13}
\end{equation*}
$$

In our example (12), we can now perform a gauge transformation with ϵ_{μ} of the form:

$$
\begin{equation*}
\epsilon_{\mu}=\frac{1}{\omega}\left(-\frac{2 \alpha+\tilde{C}_{y y}+\tilde{C}_{z z}}{4}, \frac{2 \alpha-\tilde{C}_{y y}-\tilde{C}_{z z}}{4},-\beta,-\gamma\right) \tag{14}
\end{equation*}
$$

which leaves us with the traceless-transverse polarization tensor:

$$
C_{\mu \nu}=\tilde{C}_{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{15}\\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{\tilde{C}_{y y}-\tilde{C}_{z z}}{2} & \tilde{C}_{y z} \\
0 & 0 & \tilde{C}_{y z} & \frac{\tilde{C}_{z z}-\tilde{C}_{y y}}{2}
\end{array}\right) \equiv\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & C_{\oplus} & C_{\otimes} \\
0 & 0 & C_{\otimes} & -C_{\oplus}
\end{array}\right) .
$$

Here, C_{\oplus} and C_{\otimes} are the amplitudes of the "+" and " \times " polarizations of the gravitational wave.

