GENERAL RELATIVITY HOMEWORK - WEEK 8

Exercise 1. Consider the Schwarzschild metric induced by a central mass M:

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+\frac{d r^{2}}{1-2 G M / r}+r^{2} d \Omega^{2} \tag{1}
\end{equation*}
$$

Within this spacetime, consider a particle hanging at a constant position (r, θ, ϕ). Note that it must be using some non-gravitational force to keep it from falling inwards. Find the particle's 4-acceleration $\alpha^{\mu}=D u^{\mu} / d \tau$ and its magnitude $\sqrt{\alpha_{\mu} \alpha^{\mu}}$, as a function of r. What happens as we approach $r=2 G M$?

Exercise 2. Now, consider a free-falling particle in the Schwarzschild metric, orbiting at a constant radius r. Without loss of generality, assume that the orbit is in the $\theta=\pi / 2$ plane. Find the orbit's frequency $\omega \equiv d \phi / d t$. Hint: use the vanishing of α^{r} to relate u^{t} and u^{ϕ}. What is the smallest value of r for which circular orbits are possible? Hint: the particle's worldline must be timelike!

Exercise 3. Repeat our derivation of the Schwarzschild metric, but for 3d spacetime (t, r, ϕ) instead of $4 d$, and with circular instead of spherical symmetry. If you are weak, assume from the start that the metric is time-independent. As we did in class, find the solution to the vacuum equation $R_{\mu \nu}=0$. Can you make this solution consistent with the presence of a point mass $T^{t t}=M \delta^{2}(\vec{r})$ at the origin?

