GENERAL RELATIVITY HOMEWORK – WEEK 8

Exercise 1. Find the correct values of the numerical coefficients α, β in the definition of the Weyl tensor from the lecture:

$$C_{\mu\nu\rho\sigma} = R_{\mu\nu\rho\sigma} - \beta (R_{\mu\rho}g_{\nu\sigma} - R_{\nu\rho}g_{\mu\sigma} - R_{\mu\sigma}g_{\nu\rho} + R_{\nu\sigma}g_{\mu\rho}) - \alpha R(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}) .$$
(1)

In the following exercises, we will derive in steps the Newtonian limit of the Einstein equation.

Exercise 2. Rewrite the Einstein equation $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi GT_{\mu\nu}$ in the form:

$$R_{\mu\nu} = 8\pi G \left(T_{\mu\nu} - \gamma T g_{\mu\nu} \right) \quad , \tag{2}$$

where γ is a numerical coefficient. What is the value of γ ?

Exercise 3. Assume that the metric is given by $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, where $h_{\mu\nu}$ is a small perturbation over the flat Minkowski metric $\eta_{\mu\nu}$. Express the Riemann tensor in terms of $h_{\mu\nu}$ and its derivatives, neglecting all but the linear terms. Verify the index symmetries of $R_{\mu\nu\rho\sigma}$.

Exercise 4. Now, assume further that we are in a non-relativistic limit, i.e. that time derivatives ∂_t are negligible with respect to spatial derivatives ∂_i . Express the Ricci component R_{tt} in terms of the Newtonian potential $\phi = -h_{tt}/2$ and its derivatives.

Exercise 5. Now, assume a further property of the non-relativistic limit: the energy density $\rho = T^{tt}$ (which is basically mass density) is much larger than all other components of $T^{\mu\nu}$. Derive the Poisson equation for the Newtonian potential as the tt component of eq. (2). What happens if we change the spacetime dimension from 4d to 3d? How about 2d?