GENERAL RELATIVITY HOMEWORK - WEEK 8

Exercise 1. Find the correct values of the numerical coefficients α, β in the definition of the Weyl tensor from the lecture:

$$
\begin{equation*}
C_{\mu \nu \rho \sigma}=R_{\mu \nu \rho \sigma}-\beta\left(R_{\mu \rho} g_{\nu \sigma}-R_{\nu \rho} g_{\mu \sigma}-R_{\mu \sigma} g_{\nu \rho}+R_{\nu \sigma} g_{\mu \rho}\right)-\alpha R\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) . \tag{1}
\end{equation*}
$$

In the following exercises, we will derive in steps the Newtonian limit of the Einstein equation.

Exercise 2. Rewrite the Einstein equation $R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G T_{\mu \nu}$ in the form:

$$
\begin{equation*}
R_{\mu \nu}=8 \pi G\left(T_{\mu \nu}-\gamma T g_{\mu \nu}\right) \tag{2}
\end{equation*}
$$

where γ is a numerical coefficient. What is the value of γ ?
Exercise 3. Assume that the metric is given by $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$, where $h_{\mu \nu}$ is a small perturbation over the flat Minkowski metric $\eta_{\mu \nu}$. Express the Riemann tensor in terms of $h_{\mu \nu}$ and its derivatives, neglecting all but the linear terms. Verify the index symmetries of $R_{\mu \nu \rho \sigma}$.

Exercise 4. Now, assume further that we are in a non-relativistic limit, i.e. that time derivatives ∂_{t} are negligible with respect to spatial derivatives ∂_{i}. Express the Ricci component $R_{t t}$ in terms of the Newtonian potential $\phi=-h_{t t} / 2$ and its derivatives.

Exercise 5. Now, assume a further property of the non-relativistic limit: the energy density $\rho=T^{t t}$ (which is basically mass density) is much larger than all other components of $T^{\mu \nu}$. Derive the Poisson equation for the Newtonian potential as the tt component of eq. (2). What happens if we change the spacetime dimension from $4 d$ to 3d? How about 2d?

