GENERAL RELATIVITY HOMEWORK - WEEK 7

Exercise 1. Consider the following three metrics:
Flat plane: $\quad d s^{2}=d r^{2}+r^{2} d \phi^{2} ;$
Sphere of radius R : $\quad d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$;
Hyperbolic plane of curvature radius $R: \quad d s^{2}=R^{2}\left(d \theta^{2}+\sinh ^{2} \theta d \phi^{2}\right)$.

1. For each of these, write down all components of the metric $g_{i j}$, the inverse metric $g^{i j}$ and the Christoffel connection $\Gamma_{j k}^{i}$.
2. For the sphere and the hyperbolic plane, find a coordinate transformation $\theta \rightarrow r(\theta)$ that makes the $g_{\phi \phi}$ component identical to that of the flat plane. What is $g_{r r}$ in these new coordinates?

Exercise 2. Recall the Rindler coordinates for $1+1$-dimensional flat spacetime:

$$
\begin{equation*}
d s^{2}=d \rho^{2}-\rho^{2} d \theta^{2} \tag{4}
\end{equation*}
$$

Consider a $\rho=$ const worldline in these coordinates.

1. Find a proper time parameter τ along this worldline.
2. What are the components $\left(u^{\rho}, u^{\theta}\right)$ of the 4 -velocity u^{μ} ?
3. Find the 4-acceleration $\alpha^{\mu}=\frac{d u^{\mu}}{d \tau}+\Gamma_{\nu \rho}^{\mu} u^{\nu} u^{\rho}$, and its magnitude $|\alpha| \equiv \sqrt{g_{\mu \nu} \alpha^{\mu} \alpha^{\nu}}$.

Exercise 3. On the unit sphere $d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$, consider a vector v^{i} with components $\left(v^{\theta}, v^{\phi}\right)$. Let us parallel-transport this vector along the circle C of constant θ and varying ϕ :

$$
\begin{equation*}
\frac{d v^{i}}{d \phi}+\Gamma_{\phi j}^{i} v^{j}=0 \tag{5}
\end{equation*}
$$

1. Solve this equation for $v^{i}(\phi)$. Hint: try solving in terms of v^{θ} and $\hat{v}^{\phi} \equiv v^{\phi} \sin \theta$. What is the meaning of this \hat{v}^{ϕ} ?
2. Upon being transported around the full circle C, by what angle does v^{i} rotate?
3. For small θ, show that the answer is proportional to the area inside C.
4. What happens at $\theta=\pi / 2$?
5. What happens if we transport along a circle of constant ϕ instead?
