GENERAL RELATIVITY HOMEWORK – WEEK 7

Exercise 1. Consider the following three metrics:

Flat plane:	$ds^2 = dr^2 + r^2 d\phi^2 ;$	(1)
Sphere of radius R:	$ds^2 = R^2 (d\theta^2 + \sin^2 \theta d\phi^2) ;$	(2)
Hyperbolic plane of curvature radius R:	$ds^2 = R^2 (d\theta^2 + \sinh^2 \theta d\phi^2) \; .$	(3)

- 1. For each of these, write down all components of the metric g_{ij} , the inverse metric g^{ij} and the Christoffel connection Γ^i_{jk} .
- 2. For the sphere and the hyperbolic plane, find a coordinate transformation $\theta \to r(\theta)$ that makes the $g_{\phi\phi}$ component identical to that of the flat plane. What is g_{rr} in these new coordinates?

Exercise 2. Recall the Rindler coordinates for 1 + 1-dimensional flat spacetime:

$$ds^2 = d\rho^2 - \rho^2 d\theta^2 . aga{4}$$

Consider a $\rho = const$ worldline in these coordinates.

- 1. Find a proper time parameter τ along this worldline.
- 2. What are the components (u^{ρ}, u^{θ}) of the 4-velocity u^{μ} ?
- 3. Find the 4-acceleration $\alpha^{\mu} = \frac{du^{\mu}}{d\tau} + \Gamma^{\mu}_{\nu\rho} u^{\nu} u^{\rho}$, and its magnitude $|\alpha| \equiv \sqrt{g_{\mu\nu} \alpha^{\mu} \alpha^{\nu}}$.

Exercise 3. On the unit sphere $ds^2 = d\theta^2 + \sin^2 \theta \, d\phi^2$, consider a vector v^i with components (v^{θ}, v^{ϕ}) . Let us parallel-transport this vector along the circle C of constant θ and varying ϕ :

$$\frac{dv^i}{d\phi} + \Gamma^i_{\phi j} v^j = 0 . ag{5}$$

- 1. Solve this equation for $v^i(\phi)$. <u>Hint: try solving in terms of v^{θ} and $\hat{v}^{\phi} \equiv v^{\phi} \sin \theta$. What is the meaning of this \hat{v}^{ϕ} ?</u>
- 2. Upon being transported around the full circle C, by what angle does v^i rotate?
- 3. For small θ , show that the answer is proportional to the area inside C.
- 4. What happens at $\theta = \pi/2$?
- 5. What happens if we transport along a circle of constant ϕ instead?