GENERAL RELATIVITY HOMEWORK – WEEK 7

Exercise 1. Derive the expression for the Riemann tensor in terms of Christoffel symbols, by directly evaluating the commutator $(\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu})v^{\rho} = R^{\rho}_{\sigma\mu\nu}v^{\sigma}$.

Exercise 2. Find the components of the metric, Christoffel symbols and Riemann tensor for these two cases:

- 1. Flat 3d space in spherical coordinates (r, θ, ϕ) .
- 2. A 2d sphere of radius r, in coordinates (θ, ϕ) .
- 3. 2d spacetime with the metric $ds^2 = d\rho^2 \rho^2 dt^2$. What is this spacetime? What are these coordinates?

Exercise 3. Express the Riemann tensor $R_{\mu\nu\rho\sigma}$ in terms of the metric and its derivatives, working in inertial coordinates, i.e. coordinates in which $g_{\mu\nu} = \eta_{\mu\nu}$ and $\partial_{\mu}g_{\nu\rho} = 0$ at the point under consideration.

Exercise 4. Working in inertial coordinates, consider a bunch of free-falling particles moving at non-relativistic velocities. From the Newtonian point of view, each particle experiences some acceleration a^i . Identify the acceleration gradient $\partial_i a^j$ as a component of the Riemann tensor. Using the symmetries of the Riemann tensor, verify that the gravitational force is conservative.