GENERAL RELATIVITY HOMEWORK – WEEK 6

Exercise 1. No, seriously, solve Question 1 from Week 4.

Exercise 2. Show that knowing the exterior and Lie derivatives is sufficient. Specifically, given a metric $g_{\mu\nu}(x)$ and a vector field $v^{\mu}(x)$, express the covariant derivative $\nabla_{\mu}v^{\nu}$ in terms of exterior and Lie derivatives. In other words, show that any non-tensorial partial derivatives involved in the definition of $\nabla_{\mu}v^{\nu}$ can be packaged into exterior and Lie derivatives.

Exercise 3. Calculate the Christoffel symbols Γ^i_{jk} for the 2d flat plane in polar coordinates (r, ϕ) , and for 3d flat space in spherical coordinates (r, θ, ϕ)

Exercise 4. Consider Newton's law in polar coordinates $x^i = (r, \phi)$:

$$\frac{Dv^i}{dt} = F^i \ , \tag{1}$$

where $v^i = dx^i/dt$ is the velocity, F^i is the force, and $Dv^i \equiv dv^i + dx^j \Gamma^i_{jk} v^k$ is the covariant differential. We normalized the mass to m = 1.

- 1. Consider general circular motion $\phi(t)$ at a constant radius r. Find the velocity and force components $v^i = (v^r, v^{\phi})$ and $F^i = (F^r, F^{\phi})$. Notice how, for <u>uniform</u> circular motion $\phi = \omega t$, we can have acceleration despite $dv^i/dt = 0$.
- 2. Consider now a general radial force $F^r(r, \phi)$, with $F^{\phi} = 0$, and general (not necessarily circular) motion. One of the components of v^i or v_i is conserved. Identify and name it.