GENERAL RELATIVITY HOMEWORK – WEEK 5

Exercise 1. Consider the three possible Lorentz-invariant Lagrangian terms:

$$\mathcal{L}_1 = \partial_\mu A_\nu \partial^\mu A^\nu ; \quad \mathcal{L}_2 = \partial_\mu A_\nu \partial^\nu A^\mu ; \quad \mathcal{L}_3 = (\partial_\mu A^\mu)^2 . \tag{1}$$

For each of these, compute the derivatives $\frac{\partial \mathcal{L}}{\partial(\partial_{\nu}A_{\mu})}$, and the contribution $\partial_{\nu}\frac{\partial \mathcal{L}}{\partial(\partial_{\nu}A_{\mu})}$ to the Euler-Lagrange equations. Are any of your answers the same?

Exercise 2. In this exercise, we'll derive half of the Maxwell equations from the relativistic Lagrangian of the electromagnetic field (in the presence of charges and currents):

$$\mathcal{L} = A_{\mu}j^{\mu} - \frac{\epsilon_0}{2}(\mathcal{L}_1 - \mathcal{L}_2) = A_{\mu}j^{\mu} - \frac{\epsilon_0}{4}F_{\mu\nu}F^{\mu\nu} .$$
(2)

- 1. Find the Euler-Lagrange field equations $\partial_{\nu} \frac{\partial \mathcal{L}}{\partial(\partial_{\nu}A_{\mu})} = \frac{\partial \mathcal{L}}{\partial A_{\mu}}.$
- 2. Write them in terms of $F_{\mu\nu}$ (i.e. without any "naked" A_{μ} 's).
- 3. What is the equations' t component? Write it in terms of the electric field \mathbf{E} and the charge density ρ .
- 4. What is the equations' x component? Write it in terms of the electric field **E**, the magnetic field **B** and the current density **j**.

Exercise 3. The other half of the Maxwell equations comes from the identity $\partial_{[\mu}F_{\nu\rho]} = 2\partial_{[\mu}\partial_{\nu}A_{\rho]} = 0$ (remember that partial derivatives commute $\partial_{[\mu}\partial_{\nu]} = 0$!)

- 1. Write the xyz component of $\partial_{[\mu}F_{\nu\rho]} = 0$ in terms of the magnetic field **B**.
- 2. Write the txy component of $\partial_{[\mu}F_{\nu\rho]} = 0$ in terms of the electric field **E** and the magnetic field **B**.