GENERAL RELATIVITY HOMEWORK - WEEK 4

Exercise 1. A particle at rest with mass M decays into two lighter particles, with masses $M / 2$ and $M / 3$. Using 4-momentum conservation, find the velocities of the outgoing particles.

Exercise 2. The angular momentum of a moving particle is given by the spatial tensor $J^{i j}=x^{i} p^{j}-x^{j} p^{i}$. Let us explore its spacetime generalization $J^{\mu \nu}=x^{\mu} p^{\nu}-x^{\nu} p^{\mu}$.

1. How many components does $J^{\mu \nu}$ have in addition to those in $J^{i j}$?
2. Write a formula for these new components in terms of t, \mathbf{x}, E, and \mathbf{p}.
3. The conservation of these new components implies a relation between E, \mathbf{p}, and the particle's velocity \mathbf{v}. What is it?
4. What is the symmetry associated with this "new" conservation law?

Exercise 3. In the lecture, we saw that the stress-energy tensor for a "dust" of particles moving with velocity v^{i} takes the form:

$$
T^{\mu \nu}=\rho\left(\begin{array}{cc}
1 & v^{j} \tag{1}\\
v^{i} & v^{i} v^{j}
\end{array}\right)
$$

where ρ is the energy density.
Now, consider a "gas" of particles that move with velocities of the same magnitude $|\mathbf{v}| \equiv$ v, but in random directions. As before, let ρ be the energy density of the gas.

1. What is the form of $T^{\mu \nu}$ in this case?
2. Find a relation between ρ, v, and the gas' pressure P.
3. For what value of v does the trace T_{μ}^{μ} vanish?
