GENERAL RELATIVITY HOMEWORK - WEEK 4

Exercise 1. A particle at rest with mass M decays into two lighter particles, with masses M/2 and M/3. Using 4-momentum conservation, find the velocities of the outgoing particles.

Exercise 2. The angular momentum of a moving particle is given by the spatial tensor $J^{ij} = x^i p^j - x^j p^i$. Let us explore its spacetime generalization $J^{\mu\nu} = x^\mu p^\nu - x^\nu p^\mu$.

- 1. How many components does $J^{\mu\nu}$ have in addition to those in J^{ij} ?
- 2. Write a formula for these new components in terms of t, \mathbf{x} , E, and \mathbf{p} .
- 3. The conservation of these new components implies a relation between E, \mathbf{p} , and the particle's velocity \mathbf{v} . What is it?
- 4. What is the symmetry associated with this "new" conservation law?

Exercise 3. In the lecture, we saw that the stress-energy tensor for a "dust" of particles moving with velocity v^i takes the form:

$$T^{\mu\nu} = \rho \begin{pmatrix} 1 & v^j \\ v^i & v^i v^j \end{pmatrix} , \qquad (1)$$

where ρ is the energy density.

Now, consider a "gas" of particles that move with velocities of the same magnitude $|\mathbf{v}| \equiv v$, but in random directions. As before, let ρ be the energy density of the gas.

- 1. What is the form of $T^{\mu\nu}$ in this case?
- 2. Find a relation between ρ , v, and the gas' pressure P.
- 3. For what value of v does the trace T^{μ}_{μ} vanish?