GENERAL RELATIVITY HOMEWORK - WEEK 4

Exercise 1. Consider a particle moving along the worldline $x^{\mu}(\theta)=(\rho \sinh \theta, \rho \cosh \theta, 0,0)$ at fixed "radius" ρ. Find the 4-velocity u^{μ}, the 4 -acceleration α^{μ} and its magnitude $\alpha_{\mu} \alpha^{\mu}$.

Exercise 2. Consider a gas with n particles per unit volume. The particles are moving with velocities of the same magnitude $v=|\mathbf{v}|$, but in random directions (isotropically distributed). Find the gas' stress-energy tensor $T^{\mu \nu}$. Show that for a gas of photons, $T^{\mu \nu}$ is traceless: $T_{\mu}^{\mu}=0$.

Exercise 3. Consider again the action of electromagnetism, now written in 4-tensor notation:

$$
\begin{align*}
& S=\sum_{\text {particles }} \int_{\gamma}\left(-m d \tau+q A_{\mu} d x^{\mu}\right)-\frac{\varepsilon_{0}}{4} \int F_{\mu \nu} F^{\mu \nu} d^{4} x, \tag{1}\\
& \text { where } \quad d \tau=\sqrt{-d x_{\mu} d x^{\mu}} \quad \text { and } \quad F_{\mu \nu}=2 \partial_{[\mu} A_{\nu]}
\end{align*}
$$

Derive the Lorentz force law $m \frac{d u_{\mu}}{d \tau}=q F_{\mu \nu} u^{\nu}$ and the Maxwell equation $\partial_{\nu} F^{\mu \nu}=j^{\mu} / \epsilon_{0}$ as the Euler-Lagrange equations for $x^{\mu}(\lambda)$ and $A_{\mu}\left(x^{\nu}\right)$, respectively.

