GENERAL RELATIVITY HOMEWORK – WEEK 4

Exercise 1. Consider a particle moving along the worldline $x^{\mu}(\theta) = (\rho \sinh \theta, \rho \cosh \theta, 0, 0)$ at fixed "radius" ρ . Find the 4-velocity u^{μ} , the 4-acceleration α^{μ} and its magnitude $\alpha_{\mu}\alpha^{\mu}$.

Exercise 2. Consider a gas with n particles per unit volume. The particles are moving with velocities of the same magnitude $v = |\mathbf{v}|$, but in random directions (isotropically distributed). Find the gas' stress-energy tensor $T^{\mu\nu}$. Show that for a gas of photons, $T^{\mu\nu}$ is traceless: $T^{\mu}_{\mu} = 0$.

Exercise 3. Consider again the action of electromagnetism, now written in 4-tensor notation:

$$S = \sum_{particles} \int_{\gamma} (-md\tau + qA_{\mu}dx^{\mu}) - \frac{\varepsilon_0}{4} \int F_{\mu\nu}F^{\mu\nu} d^4x ,$$

$$where \quad d\tau = \sqrt{-dx_{\mu}dx^{\mu}} \quad and \quad F_{\mu\nu} = 2\partial_{[\mu}A_{\nu]} .$$
(1)

Derive the Lorentz force law $m \frac{du_{\mu}}{d\tau} = q F_{\mu\nu} u^{\nu}$ and the Maxwell equation $\partial_{\nu} F^{\mu\nu} = j^{\mu}/\epsilon_0$ as the Euler-Lagrange equations for $x^{\mu}(\lambda)$ and $A_{\mu}(x^{\nu})$, respectively.