GENERAL RELATIVITY HOMEWORK – WEEK 3

Exercise 1. Consider a stick of length L in its rest frame, such that its endpoints stay at $x_1 = 0$ and $x_2 = L$ at all times. Now pass into a reference frame moving at velocity -v, so that the stick now moves at velocity v. What's the length of the stick in the new frame, defined as the distance $x'_2 - x'_1$ between its endpoints at a fixed time t'?

Exercise 2. Consider a gas of n particles per unit volume. Each particle has the same mass m and velocity of magnitude v. The directions of the particles' velocities are uniformly distributed. Show that the stress-energy tensor has the form:

$$T^{\mu\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ 0 & 0 & 0 & P \end{pmatrix} , \qquad (1)$$

and find the values of ε and P. What is the physical meaning of these components?

Exercise 3. Now, take the limits $m \to 0$ and $v \to 1$, such that the energy E and momentum $|\mathbf{p}|$ of each particle remain finite. What happens to the length of the 4-momentum $p^{\mu} = (E, \mathbf{p})$? What happens to the trace T^{μ}_{μ} of the gas' stress-energy tensor? Do you understand how the two facts are related?

Exercise 4. In electrodynamics, the electric field \mathbf{E} and magnetic field \mathbf{B} are just the (ti) and (ij) components of the field-strength tensor $F_{\mu\nu}$:

$$E^{i} = F^{ti} ; \quad B^{i} = \frac{1}{2} \epsilon_{ijk} F^{jk} .$$

$$\tag{2}$$

Decompose the relation $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, and express **E** and **B** in terms of the potentials ϕ and **A**.

Exercise 5. The Maxwell equations in spacetime notation (in units with $\epsilon_0 = 1$) read:

$$\partial_{[\mu}F_{\nu\rho]} = 0 ; \quad \partial_{\nu}F^{\mu\nu} = j^{\mu} .$$
(3)

Decompose these to find the more widely-known equations in terms of \mathbf{E} and \mathbf{B} .

Exercise 6. Show that the electromagnetic force formula $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ can be expressed in spacetime notation as:

$$\frac{dp_{\mu}}{d\tau} = qF_{\mu\nu}u^{\nu} . \tag{4}$$

Note that force \mathbf{F} is always defined as momentum change per unit time $d\mathbf{p}/dt$.