GENERAL RELATIVITY HOMEWORK - WEEK 2

Exercise 1. Consider the following equations from electromagnetism, that involve vector products and curls:

$$
\begin{equation*}
\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} ; \quad \boldsymbol{\nabla} \times \mathbf{E}=-\dot{\mathbf{B}} ; \quad \boldsymbol{\nabla} \times \mathbf{B}=\mathbf{j}+\dot{\mathbf{E}} ; \quad \mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \tag{1}
\end{equation*}
$$

1. Write eqs. (1) in tensor notation, using the Levi-Civita tensor $\epsilon_{i j k}$.
2. Define $B_{i j}=\epsilon_{i j k} B_{k}$. Invert this relation, i.e. express the original vector B_{i} in terms of $B_{i j}$.
3. Rewrite eqs. (1), using $B_{i j}$ instead of \mathbf{B} everywhere. Verify that $\epsilon_{i j k}$ no longer appears. This means that EM respects reflection symmetry.

Exercise 2. Recall our definitions vis. a general basis \mathbf{e}_{i} and its dual basis \mathbf{e}^{i} :

$$
\begin{gather*}
\mathbf{v}=v^{i} \mathbf{e}_{i}=v_{i} \mathbf{e}^{i} ; \tag{2}\\
g_{i j}=\mathbf{e}_{i} \cdot \mathbf{e}_{j} ; \quad g^{i j}=\mathbf{e}^{i} \cdot \mathbf{e}^{j} ; \quad \mathbf{e}_{i} \cdot \mathbf{e}^{j}=\delta_{i}^{j} \tag{3}
\end{gather*}
$$

From these definitions, derive the following (closely related) statements:

1. Index raising/lowering works as $v_{i}=g_{i j} v^{j}$ and $v^{i}=g^{i j} v_{j}$.
2. $g^{i j}$ is the matrix inverse of $g_{i j}$.
3. $g_{i j}, \delta_{i}^{j}$ and $g^{i j}$ are all related to each other by index raising/lowering.

Exercise 3. Look up the crystal structure of graphite, i.e. the inter-atomic distances and angles. In terms of the crystal's natural vector basis \mathbf{e}_{i} (which we sketched on the board in class), compute the elements of the metric $g_{i j}$ and the inverse metric $g^{i j}$. What are units of these matrix elements?

