GENERAL RELATIVITY HOMEWORK – WEEK 2

Exercise 1. Consider the following equations from electromagnetism, that involve vector products and curls:

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} ; \quad \mathbf{\nabla} \times \mathbf{E} = -\mathbf{B} ; \quad \mathbf{\nabla} \times \mathbf{B} = \mathbf{j} + \mathbf{E} ; \quad \mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) .$$
(1)

- 1. Write eqs. (1) in tensor notation, using the Levi-Civita tensor ϵ_{ijk} .
- 2. Define $B_{ij} = \epsilon_{ijk}B_k$. Invert this relation, i.e. express the original vector B_i in terms of B_{ij} .
- 3. Rewrite eqs. (1), using B_{ij} instead of **B** everywhere. Verify that ϵ_{ijk} no longer appears. This means that EM respects reflection symmetry.

Exercise 2. Recall our definitions vis. a general basis \mathbf{e}_i and its dual basis \mathbf{e}^i :

$$\mathbf{v} = v^i \mathbf{e}_i = v_i \mathbf{e}^i \; ; \tag{2}$$

$$g_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j \; ; \quad g^{ij} = \mathbf{e}^i \cdot \mathbf{e}^j \; ; \quad \mathbf{e}_i \cdot \mathbf{e}^j = \delta_i^j \; . \tag{3}$$

From these definitions, derive the following (closely related) statements:

- 1. Index raising/lowering works as $v_i = g_{ij}v^j$ and $v^i = g^{ij}v_j$.
- 2. g^{ij} is the matrix inverse of g_{ij} .
- 3. g_{ij} , δ_i^j and g^{ij} are all related to each other by index raising/lowering.

Exercise 3. Look up the crystal structure of graphite, i.e. the inter-atomic distances and angles. In terms of the crystal's natural vector basis \mathbf{e}_i (which we sketched on the board in class), compute the elements of the metric g_{ij} and the inverse metric g^{ij} . What are units of these matrix elements?