GENERAL RELATIVITY HOMEWORK - WEEK 1

Exercise 1. Consider the motion $\mathbf{r}(t)=(x(t), y(t), z(t))$ of a non-relativistic object of mass m in the Earth's gravitational field, governed by the action:

$$
\begin{equation*}
S=m \int d t\left(\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-g z\right) \tag{1}
\end{equation*}
$$

assuming a constant free-fall acceleration g.
Find the object's trajectory, as a function of its initial position \mathbf{r}_{1} at time t_{1} and its final position $\mathbf{r}_{\mathbf{2}}$ at time t_{2}. Find the value of the action $S\left(t_{2}, \mathbf{r}_{\mathbf{2}} ; t_{1}, \mathbf{r}_{\mathbf{1}}\right)$ for this trajectory. Verify that the derivatives $\partial S / \partial \mathbf{r}_{\mathbf{2}}$ and $-\partial S / \partial t_{2}$ coincide with the momentum $\mathbf{p}=m \dot{\mathbf{r}}$ and energy $E=m\left(\frac{1}{2} \dot{\mathbf{r}}^{2}+g z\right)$ at time t_{2}.

Exercise 2. Consider some charge density $\rho(\mathbf{r})$ and $\mathbf{j}(\mathbf{r})$. Assume that these are stationary, i.e. t-independent (note that this requires \mathbf{j} to have vanishing divergence $\boldsymbol{\nabla} \cdot \mathbf{j}=0$). Under these assumptions, write integral formulas for the following fields as functions of position \mathbf{r} :

1. The electric (also called scalar) potential $\phi(\mathbf{r})$.
2. The magnetic (also called vector) potential $\mathbf{A}(\mathbf{r})$.
3. The electric field $\mathbf{E}(\mathbf{r})$.
4. The magnetic field $\mathbf{B}(\mathbf{r})$.
