GENERAL RELATIVITY HOMEWORK – WEEK 1

Exercise 1. Consider the motion $\mathbf{r}(t) = (x(t), y(t), z(t))$ of a non-relativistic object of mass m in the Earth's gravitational field, governed by the action:

$$S = m \int dt \left(\frac{1}{2} (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - gz \right) , \qquad (1)$$

assuming a constant free-fall acceleration g.

Find the object's trajectory, as a function of its initial position $\mathbf{r_1}$ at time t_1 and its final position $\mathbf{r_2}$ at time t_2 . Find the value of the action $S(t_2, \mathbf{r_2}; t_1, \mathbf{r_1})$ for this trajectory. Verify that the derivatives $\partial S/\partial \mathbf{r_2}$ and $-\partial S/\partial t_2$ coincide with the momentum $\mathbf{p} = m\dot{\mathbf{r}}$ and energy $E = m(\frac{1}{2}\dot{\mathbf{r}}^2 + gz)$ at time t_2 .

Exercise 2. Consider some charge density $\rho(\mathbf{r})$ and $\mathbf{j}(\mathbf{r})$. Assume that these are stationary, *i.e.* t-independent (note that this requires \mathbf{j} to have vanishing divergence $\nabla \cdot \mathbf{j} = 0$). Under these assumptions, write integral formulas for the following fields as functions of position \mathbf{r} :

- 1. The electric (also called scalar) potential $\phi(\mathbf{r})$.
- 2. The magnetic (also called vector) potential $\mathbf{A}(\mathbf{r})$.
- 3. The electric field $\mathbf{E}(\mathbf{r})$.
- 4. The magnetic field $\mathbf{B}(\mathbf{r})$.