GENERAL RELATIVITY HOMEWORK - WEEK 1

Exercise 1. Write the product $\epsilon_{i j k} \epsilon_{l m n}$ in terms of Kronecker deltas only. Contract successive pairs of indices to obtain $\epsilon_{i j m} \epsilon_{k l m}, \epsilon_{i k l} \epsilon_{j k l}$, and $\epsilon_{i j k} \epsilon_{i j k}$.

Exercise 2. Reproduce the derivation of the inverse-matrix formula for 3×3 matrices (note the index positions):

$$
\begin{equation*}
\left(A^{-1}\right)_{i j}=\frac{\epsilon_{j k l} \epsilon_{i m n} A_{k m} A_{l n}}{2 \operatorname{det} A} . \tag{1}
\end{equation*}
$$

For $n \times n$ matrices, the 2 in the denominator should become $(n-1)$!.
Exercise 3. In Gibbs' unholy notation, the Maxwell equations read:

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{E}=\rho / \epsilon_{0} ; \quad \nabla \times \mathbf{E}=-\dot{\mathbf{B}} ; \quad \nabla \cdot \mathbf{B}=0 ; \quad \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{j}+\epsilon_{0} \dot{\mathbf{E}}\right) \tag{2}
\end{equation*}
$$

Rewrite these using tensor-index notation. Use $B_{i j}=\epsilon_{i j k} B_{k}$ instead of B_{i} for the magnetic field, and show that all factors of $\epsilon_{i j k}$ disappear.

Exercise 4. Consider the motion $\mathbf{r}(t)=(x(t), y(t), z(t))$ of a non-relativistic object of mass m in the Earth's gravitational field, governed by the action:

$$
\begin{equation*}
S=m \int d t\left(\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-g z\right) \tag{3}
\end{equation*}
$$

assuming a constant free-fall acceleration g.
Find the object's trajectory, as a function of its initial position \mathbf{r}_{1} at time t_{1} and its final position $\mathbf{r}_{\mathbf{2}}$ at time t_{2}. Find the value of the action $S\left(t_{2}, \mathbf{r}_{\mathbf{2}} ; t_{1}, \mathbf{r}_{\mathbf{1}}\right)$ for this trajectory. Verify that the derivatives $\partial S / \partial \mathbf{r}_{\mathbf{2}}$ coincide with the momentum $\mathbf{p}=m \dot{\mathbf{r}}$ at time t_{2}. Show also that $-\partial S / \partial t_{2}$ is the energy $E=m\left(\frac{1}{2} \dot{\mathbf{r}}^{2}+g z\right)$ at t_{2}.

