GENERAL RELATIVITY HOMEWORK – WEEK 1

Exercise 1. Write the product $\epsilon_{ijk}\epsilon_{lmn}$ in terms of Kronecker deltas only. Contract successive pairs of indices to obtain $\epsilon_{ijm}\epsilon_{klm}$, $\epsilon_{ikl}\epsilon_{jkl}$, and $\epsilon_{ijk}\epsilon_{ijk}$.

Exercise 2. Reproduce the derivation of the inverse-matrix formula for 3×3 matrices (note the index positions):

$$(A^{-1})_{ij} = \frac{\epsilon_{jkl}\epsilon_{imn}A_{km}A_{ln}}{2\det A} \ . \tag{1}$$

For $n \times n$ matrices, the 2 in the denominator should become (n-1)!.

Exercise 3. In Gibbs' unholy notation, the Maxwell equations read:

$$\boldsymbol{\nabla} \cdot \mathbf{E} = \rho/\epsilon_0 \; ; \quad \boldsymbol{\nabla} \times \mathbf{E} = -\dot{\mathbf{B}} \; ; \quad \boldsymbol{\nabla} \cdot \mathbf{B} = 0; \quad \boldsymbol{\nabla} \times \mathbf{B} = \mu_0 (\mathbf{j} + \epsilon_0 \dot{\mathbf{E}}) \; . \tag{2}$$

Rewrite these using tensor-index notation. Use $B_{ij} = \epsilon_{ijk}B_k$ instead of B_i for the magnetic field, and show that all factors of ϵ_{ijk} disappear.

Exercise 4. Consider the motion $\mathbf{r}(t) = (x(t), y(t), z(t))$ of a non-relativistic object of mass m in the Earth's gravitational field, governed by the action:

$$S = m \int dt \left(\frac{1}{2} (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - gz \right) , \qquad (3)$$

assuming a constant free-fall acceleration g.

Find the object's trajectory, as a function of its initial position $\mathbf{r_1}$ at time t_1 and its final position $\mathbf{r_2}$ at time t_2 . Find the value of the action $S(t_2, \mathbf{r_2}; t_1, \mathbf{r_1})$ for this trajectory. Verify that the derivatives $\partial S/\partial \mathbf{r_2}$ coincide with the momentum $\mathbf{p} = m\dot{\mathbf{r}}$ at time t_2 . Show also that $-\partial S/\partial t_2$ is the energy $E = m(\frac{1}{2}\dot{\mathbf{r}}^2 + gz)$ at t_2 .