GENERAL RELATIVITY - FINAL EXAM

Exercise 1. Consider a particle with mass m moving under the influence of gravity alone, in a spatially flat Friedmann universe:

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t)\left(d x^{2}+d y^{2}+d z^{2}\right) . \tag{1}
\end{equation*}
$$

Let τ be the particle's proper time, and $\varepsilon \equiv-m u_{t}=m \frac{d t}{d \tau}$ its energy.

1. Express ε as a function of the scale factor a throughout the motion. As initial data, assume $\varepsilon=\varepsilon_{0}$ at some initial value $a=a_{0}$. Hint: there are two possible methods: either use the geodesic equation, or momentum conservation.
2. What does the dependence $\varepsilon(a)$ become in the limits $\varepsilon \approx m$ and $\varepsilon \gg m$?

Exercise 2. Now, suppose that the stress-energy tensor in the universe (1) takes the form:

$$
\begin{equation*}
T_{t}^{t}=-\rho(t) ; \quad T_{i}^{j}=p(t) \delta_{i}^{j} ; \quad T_{i}^{t}=T_{t}^{i}=0 \tag{2}
\end{equation*}
$$

where ρ is energy density, and p is pressure. We consider two cases:

- Radiation: $p=\rho / 3$, so that $T_{\mu}^{\mu}=0$ (c.f. Exercise 3 in Homework 4).
- Vacuum energy: $p=-\rho$, so that $T_{\mu}^{\nu}=-\rho \delta_{\mu}^{\nu}$.

For each of these two cases:

1. Using the covariant conservation law $\nabla_{\nu} T_{\mu}^{\nu}=0$, find the dependence of ρ on the scale factor a. As initial data, assume $\rho=\rho_{0}$ at some initial value $a=a_{0}$.
2. Using the Einstein equations, find $a(t)$.

One of your answers is directly related to one of the answers in Exercise 1. Explain!
Exercise 3. Now, consider a spatially spherical Friedmann universe:

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t)\left(d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) \tag{3}
\end{equation*}
$$

The stress-energy tensor is again given by (2), where the spatial indices i, j now run over the values (χ, θ, ϕ).

1. Compute the non-vanishing components of the Ricci tensor:

$$
\begin{equation*}
R_{\mu \nu}=\partial_{\rho} \Gamma_{\mu \nu}^{\rho}-\partial_{\nu} \Gamma_{\rho \mu}^{\rho}+\Gamma_{\rho \lambda}^{\rho} \Gamma_{\mu \nu}^{\lambda}-\Gamma_{\nu \lambda}^{\rho} \Gamma_{\mu \rho}^{\lambda} . \tag{4}
\end{equation*}
$$

2. For what values of ρ and p do the Einstein equations admit a static solution $a(t)=$ const? Recall from Exercise 2 that negative p is a possibility!

Exercise 4. Consider the gravitational field of a Schwarzschild black hole:

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+\frac{d r^{2}}{1-2 G M / r}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) . \tag{5}
\end{equation*}
$$

A particle is orbiting the black hole (under the influence of gravity alone) at some radius $r=$ const, in the equatorial plane $\theta=\pi / 2$.

1. Find the time interval Δt for a complete orbit. Hint: to find the trajectory $\phi(t)$, consider the geodesic equation $\Gamma_{\nu \rho}^{\mu} d x^{\nu} d x^{\rho}=0$.
2. Find the proper time interval $\Delta \tau$ for a complete orbit.
3. What is the smallest radius $r_{\text {min }}$ at which such circular orbits are possible?
