On large deviations of SLEs,
 REAL RATIONAL FUNCTIONS, AND
 ZETA-REGULARIZED DETERMINANTS OF LAPLACIANS

Eveliina Peltola

Aalto University, Department of Mathematics and Systems Analysis, University of Bonn (IAM) \& Hausdorff Center for Math (HCM)

July 2023 @ OIST CFTPRGR Workshop
Joint work with Yilin Wang (IHES)

DFG
Deutsche

What is this talk all about?

1. Schramm-Loewner evolution $\left(\mathrm{SLE}_{K}\right)$: random planar curves
2. Large deviations and Loewner energy: concentration phenomenon
3. Loewner energy / potential in terms of known quantities: (zeta-regularized) determinants of Laplace-Beltrami operators
4. Interpretation of minima?

- semiclassical Virasoro conformal blocks in CFT
- Calogero-Moser systems [Alberts, Byun, Kang, Makarov '22]

What is this talk all about?

1. Schramm-Loewner evolution $\left(\mathrm{SLE}_{K}\right)$: random planar curves
2. Large deviations and Loewner energy: concentration phenomenon
3. Loewner energy / potential in terms of known quantities: (zeta-regularized) determinants of Laplace-Beltrami operators
4. Interpretation of minima?

- semiclassical Virasoro conformal blocks in CFT
- Calogero-Moser systems [Alberts, Byun, Kang, Makarov '22]

5. Classification of minimizers? (not in this talk?)

- real rational functions with prescribed critical points
- Shapiro-Shapiro conjecture [B. \& M. Shapiro '95]

6. Numerous further connections (not in this talk):

- Partition function of Coulomb gas on Jordan loop [Johansson '21; Wiegmann, Zabrodin '21]
- Kähler potential of WP metric on univ. Teich. space [Wang '19]
- Renormalized volume in hyperbolic 3-space [Bridgeman, Bromberg, Vargas-Pallete, Wang '23+]
- Connections to function theory... [Bishop '19]

What is SLE_{κ} ?

Universal 2D random path

Scaling limits of critical interfaces - SLE $_{\kappa}$ CURVES

- $\kappa>0$ labels universality class (e.g. $\kappa=3$ for Ising model)
- convergence weakly for probability measures on curves

(critical) interface $\xrightarrow{\delta \rightarrow 0}$ Schramm-Loewner evolution, SLE $_{\kappa}$
Usual proof strategy:

1. tightness (e.g. control via crossing estimates, RSW etc.)
[Aizenman \& Burchard '99, Kemppainen \& Smirnov '17, ...]
2. identification of the limit (e.g. via discrete holomorphic observable)
[Kenyon '00, Chelkak \& Smirnov '01-'11, ...]

LOEWNER EVOLUTION OF CURVES / SLIT DOMAINS

Thm. [Loewner '23]
Any simple chordal curve η
(more generally, a locally growing family of hulls)
can be encoded into a Loewner evolution
of conformal maps
$g_{t}: \mathbb{H} \backslash \eta[0, t] \rightarrow \mathbb{H}$ which solve the ODE

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-W(t)}, \quad g_{0}(z)=z
$$

where W is a (continuous) real-valued function.

(Here, we have chosen the capacity parameterization.)
$W_{t}=g_{t}(\eta(t))$ on \mathbb{R}
\uparrow Loewner driving function $W:[0, \infty) \rightarrow \mathbb{R}$

Schramm-Loewner evolution, SLE $_{\kappa}$

Thm. [Schramm '00]
\exists ! one-parameter family $\left(\mathrm{SLE}_{K}\right)_{\kappa \geq 0}$ of probability measures on chordal curves with conformal invariance
and domain Markov property

$$
g_{t}: \mathbb{H} \backslash \gamma^{k}[0, t] \rightarrow \mathbb{H}
$$

$W_{t}=g_{t}\left(\gamma^{\kappa}(t)\right)=\sqrt{\kappa} B_{t}$

Loewner driving process: Brownian motion B of "speed" $\kappa \geq 0$

Multiple (chordal) SLE_{κ}

- family of random chordal curves $\left(\gamma_{1}^{K}, \ldots, \gamma_{N}^{K}\right)$ in $\left(D ; x_{1}, \ldots, x_{2 N}\right)$
- connectivities encoded in
planar pairings α of curve endpoints $\left\{\left\{x_{a_{j}}, x_{b_{j}}\right\}\right\}_{j=1, \ldots, N}$
- re-sampling symmetry (\rightsquigarrow Markov chain)

Conditionally on $N-1$ of the curves, the remaining one is the chordal SLE_{κ} in the random domain where it can live.
cf. many works: Cardy '03; Bauer, Bernard \& Kytölä '05;
Dubédat '06-'07; Kozdron \& Lawler '07; Lawler '09;
Kytölä \& P. '16; Miller \& Sheffield '16; P. \& Wu '19;
Miller, Sheffield \& Werner '20; Beffara, P. \& Wu '21, ...

Multiple (chordal) SLE $_{\kappa}$

- family of random chordal curves $\left(\gamma_{1}^{\kappa}, \ldots, \gamma_{N}^{\kappa}\right)$ in $\left(D ; x_{1}, \ldots, x_{2 N}\right)$
- connectivities encoded in planar pairings α of curve endpoints $\left\{\left\{x_{a_{j}}, x_{b_{j}}\right\}\right\}_{j=1, \ldots, N}$
- re-sampling symmetry ($n \rightarrow$ Markov chain)

Thm. [Lawler, Schramm \& Werner '03, ..., Beffara, P. \& Wu '21]
For any fixed connectivity α of $2 N$ points, there exists a unique N-SLE ${ }_{\kappa}$ probability measure $\mathbb{P}_{\alpha}^{\#}$.

Multiple (chordal) SLE $_{\kappa}$

- family of random chordal curves $\left(\gamma_{1}^{\kappa}, \ldots, \gamma_{N}^{\kappa}\right)$ in $\left(D ; x_{1}, \ldots, x_{2 N}\right)$
- connectivities encoded in planar pairings α of curve endpoints $\left\{\left\{x_{a_{j}}, x_{b_{j}}\right\}_{j=1, \ldots, N}\right.$
- re-sampling symmetry ($n \rightarrow$ Markov chain)

Thm. [Lawler, Schramm \& Werner '03, ..., Beffara, P. \& Wu '21]
For any fixed connectivity α of $2 N$ points, there exists a unique N-SLE ${ }_{\kappa}$ probability measure $\mathbb{P}_{\alpha}^{\#}$.

$$
\frac{\mathrm{dP}_{\alpha}}{\underset{1 \leq i \leq N}{\otimes} \mathrm{dP}_{\text {SLE }}^{(i)}}:=\exp \left(\frac{c(\kappa)}{2} m^{\text {loop }}\left(D ; \gamma_{1}^{\kappa}, \ldots, \gamma_{N}^{\kappa}\right)\right), \quad \mathbb{P}_{\alpha}^{\#}=\frac{\mathbb{P}_{\alpha}}{\left|\mathbb{P}_{\alpha}\right|}
$$

- $m^{\text {loop }}$: combinatorial expression involving Brownian loop measure $\mu_{D}^{\text {loop }}$:

$$
m^{\text {loop }}\left(D ; \gamma_{1}^{\kappa}, \ldots, \gamma_{N}^{\kappa}\right)=\int \max \left(\#\left\{\text { chords } \gamma_{j}^{\kappa} \text { hit by } \ell\right\}-1,0\right) \mathrm{d} \mu_{D}^{\text {loop }}(\ell)
$$

- $c(\kappa)=\frac{(3 \kappa-8)(6-\kappa)}{2 \kappa}<0$: parameter (central charge) depending on κ

Large deviations of SLE_{K}

$$
\text { AS } \kappa \rightarrow 0+
$$

Large deviations for Brownian motion

- Let's consider given continuous function $W:[0, T] \rightarrow \mathbb{R}$
s.t. $W_{0}=0$. Idea:
" $\mathbb{P}\left[\right.$ Brownian path $\sqrt{\kappa} B_{[0, T]}$ stays close to $\left.W_{[0, T]}\right] \stackrel{\kappa}{\approx} 0+\exp \left(-\frac{I_{T}(W)}{\kappa}\right) "$

\Longrightarrow exponential concentration phenomenon

Large deviations for Brownian motion

- Let's consider given continuous function $W:[0, T] \rightarrow \mathbb{R}$
s.t. $W_{0}=0$. Idea:
" $\mathbb{P}\left[\right.$ Brownian path $\sqrt{\kappa} B_{[0, T]}$ stays close to $\left.W_{[0, T]}\right] \stackrel{\kappa}{\approx}{ }^{0+} \exp \left(-\frac{I_{T}(W)}{\kappa}\right) "$

\Longrightarrow exponential concentration phenomenon

Large deviations for Brownian motion

- Let's consider given continuous function $W:[0, T] \rightarrow \mathbb{R}$
s.t. $W_{0}=0$. Idea:
$" \mathbb{P}\left[\right.$ Brownian path $\sqrt{\kappa} B_{[0, T]}$ stays close to $\left.W_{[0, T]}\right] \stackrel{\kappa}{\approx} 0+\exp \left(-\frac{I_{T}(W)}{\kappa}\right) "$

\Longrightarrow exponential concentration phenomenon

Large deviations for Brownian motion

- Let's consider given continuous function $W:[0, T] \rightarrow \mathbb{R}$
s.t. $W_{0}=0$. Idea:
$" \mathbb{P}\left[\right.$ Brownian path $\sqrt{\kappa} B_{[0, T]}$ stays close to $\left.W_{[0, T]}\right] \stackrel{\kappa}{\approx} 0+\exp \left(-\frac{I_{T}(W)}{\kappa}\right) "$

\Longrightarrow exponential concentration phenomenon

Large deviations for Brownian motion

- Let's consider given continuous function $W:[0, T] \rightarrow \mathbb{R}$
s.t. $W_{0}=0$. Idea:
" $\mathbb{P}\left[\right.$ Brownian path $\sqrt{\kappa} B_{[0, T]}$ stays close to $\left.W_{[0, T]}\right] \stackrel{\kappa}{\approx} 0+\quad \exp \left(-\frac{I_{T}(W)}{\kappa}\right) "$

\Longrightarrow exponential concentration phenomenon

Large deviations for Brownian motion

" $\mathbb{P}\left[\right.$ Brownian path $\sqrt{\kappa} B_{[0, T]}$ stays close to $\left.W_{[0, T]}\right] \stackrel{\kappa \rightarrow}{\approx} 0+\exp \left(-\frac{I_{T}(W)}{\kappa}\right) "$
Thm. [Schilder '66]
(Large Deviation Principle for BM)
Fix $T>0$. The random path $\sqrt{\kappa} B_{[0, T]}$ satisfies LDP in $C^{0}[0, T]$ with sup-norm, with good rate function $I_{T}(W):=\frac{1}{2} \int_{0}^{T}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} W_{t}\right)^{2} \mathrm{~d} t$
$\limsup _{\kappa \rightarrow 0+} \kappa \log \mathbb{P}\left[\sqrt{\kappa} B_{[0, T]} \in C\right] \leq-\inf _{W \in C} I_{T}(W) \quad$ for any closed set C
$\liminf _{\kappa \rightarrow 0+} \kappa \log \mathbb{P}\left[\sqrt{\kappa} B_{[0, T]} \in O\right] \geq-\inf _{W \in O} I_{T}(W)$ for any open set O

- finite time-window T
- $C^{0}[0, T]=\left\{W:[0, T] \rightarrow \mathbb{R}\right.$ continuous, $\left.W_{0}=0\right\}$
- topology: $\|W\|_{\infty}:=\sup _{t \in[0, T]}\left|W_{t}\right|$ $t \in[0, T]$

Large deviations of chordal SLE $_{K}$

AS $\kappa \rightarrow 0+$

- Let's consider given smooth curve η in (D, x, y). Idea:

$$
" \mathbb{P}\left[\operatorname{SLE}_{\kappa} \text { curve stays close to } \eta\right] \stackrel{\kappa \rightarrow 0+}{\approx} \exp \left(-\frac{I(\eta)}{\kappa}\right) "
$$

- Decay rate: Loewner energy of the curve η
defined as the Dirichlet energy of its driver W :
$I(\eta):=\frac{1}{2} \int_{0}^{\infty}\left(\frac{\mathrm{d}}{\mathrm{d} t} W_{t}\right)^{2} \mathrm{~d} t \quad \in \quad[0,+\infty]$
[Dubédat '05; Friz \& Shekhar '17; Wang '19; Bishop '19, ...]

Thm. [Wang '19; P. \& Wang '23]
The family of laws $\left(\mathbb{P}^{\kappa}\right)_{\kappa>0}$ of SLE $_{\kappa}$ curves γ^{κ} satisfies LDP:
(for Hausdorff distance, with good rate function I)
$\begin{array}{ll}\limsup _{\kappa \rightarrow 0+} \kappa \log \mathbb{P}^{\kappa}\left[\gamma^{\kappa} \in C\right] \leq-\inf _{\eta \in C} I(\eta) & \text { for any closed set } C \\ \liminf _{\kappa \rightarrow 0+} \kappa \log \mathbb{P}^{k}\left[\gamma^{\kappa} \in O\right] \geq-\inf _{\eta \in O} I(\eta) & \text { for any open set } O\end{array}$

Large deviations of multichordal SLE $_{\kappa} \quad$ as $\kappa \rightarrow 0+$

- Let's consider given smooth curves $\bar{\eta}:=\left(\eta_{1}, \ldots, \eta_{N}\right)$. Idea:

$$
" \mathbb{P}\left[\operatorname{SLE}_{\kappa} \text { curves stay close to } \bar{\eta}\right] \stackrel{\kappa \rightarrow 0+}{\approx} \exp \left(-\frac{I(\bar{\eta})}{\kappa}\right) "
$$

- Decay rate: $I(\bar{\eta}) \geq 0$, Loewner energy of the multichord $\bar{\eta}$

Thm. [P. \& Wang '23]
The family of laws $\left(\mathbb{P}^{\kappa}\right)_{\kappa>0}$ of SLE $_{\kappa}$ curves $\bar{\gamma}^{\kappa}$ satisfies LDP:
(for Hausdorff distance, with good rate function I)

$$
\limsup _{\kappa \rightarrow 0+} \kappa \log \mathbb{P}^{\kappa}\left[\bar{\gamma}^{\kappa} \in C\right] \leq-\inf _{\bar{\eta} \in C} I(\bar{\eta}) \quad \text { for any closed set } C
$$

$$
\liminf _{\kappa \rightarrow 0+} \kappa \log \mathbb{P}^{k}\left[\bar{\gamma}^{\kappa} \in O\right] \geq-\inf _{\bar{\eta} \in O} I(\bar{\eta}) \quad \text { for any open set } O
$$

Proof idea: Schilder thm for BM, Varadhan's lemma + careful analysis

Intrinsic object: Loewner potential

- Multi-chord Loewner energy of curves $\bar{\eta}:=\left(\eta_{1}, \ldots, \eta_{N}\right)$:

$$
I_{D}(\bar{\eta}):=12\left(\mathcal{H}_{D}(\bar{\eta})-\inf _{\bar{\gamma}} \mathcal{H}_{D}(\bar{\gamma})\right)
$$

- Loewner potential $\mathcal{H}_{D}(\bar{\eta})$ of curves $\bar{\eta}:=\left(\eta_{1}, \ldots, \eta_{N}\right)$:

$$
\mathcal{H}_{D}(\bar{\eta}):=\frac{1}{12} \sum_{j=1}^{N} I_{D}\left(\eta_{j}\right)+m_{D}^{\mathrm{loop}}(\bar{\eta})-\frac{1}{4} \sum_{j=1}^{N} \log P_{D}\left(x_{a_{j}}, x_{b_{j}}\right)
$$

- $I_{D}(\eta):=\frac{1}{2} \int_{0}^{\infty}\left(\frac{\mathrm{d}}{\mathrm{d} t} W_{t}\right)^{2} \mathrm{~d} t$
one-curve Loewner energy
- "interaction": $m_{D}^{\text {loop }}(\bar{\eta})$

Brownian loop measure term

- $P_{D}\left(x_{a_{j}}, x_{b_{j}}\right)$ boundary Poisson kernel
- $x_{a_{j}}, x_{b_{j}}$ endpoints of curve η_{j}

Loewner potential

LOEWNER POTENTIAL - MORE INTUITIVE FORMULA

As $\mathcal{H}(\bar{\eta})$ is a bit complicated, let's write it differently:
Thm. [P. \& Wang '23]
For any smooth $\bar{\eta}$ in bounded smooth domain ($D ; x_{1}, \ldots, x_{2 N}$),

$$
\mathcal{H}_{D}(\bar{\eta})=\log \operatorname{det}_{\zeta} \Delta_{D}-\sum_{\text {c.c. } C} \log \operatorname{det}_{\zeta} \Delta_{C}-\frac{N}{2} \log \pi
$$

Proof idea: Both sides have the same conformal covariance; use Polyakov-Alvarez anomaly formula (for domains with corners) [Aldana, Kirsten, Rowlett '20]

- $\log \operatorname{det}_{\zeta} \Delta$ zeta-regularized determinant of Laplacian Δ with Dirichlet b.c.
- sum over connected components C of $D \backslash \bigcup_{i} \eta_{i}$
- $\frac{1}{2} \log \pi \approx 0.5724$ universal constant
- motivated by loop case \& rel. to geometry: [Wang 19]

NB: Also makes sense on Riemannian surfaces (depends on metric).

Potential/energy minima

Conformal blocks in CFT ?

Recall: multiple (chordal) SLE_{κ}

- family of random chordal curves $\left(\gamma_{1}^{\kappa}, \ldots, \gamma_{N}^{K}\right)$ in $\left(D ; x_{1}, \ldots, x_{2 N}\right)$
- connectivities encoded in planar pairings α of curve endpoints $\left\{\left\{x_{a_{j}}, x_{b_{j}}\right\}\right\}_{j=1, \ldots, N}$
- re-sampling symmetry ($n \rightarrow$ Markov chain)

Thm. [Lawler, Schramm \& Werner '03, ..., Beffara, P. \& Wu '21]
For any fixed connectivity α of $2 N$ points,
there exists a unique N-SLE ${ }_{\kappa}$ probability measure $\mathbb{P}_{\alpha}^{\#}$.

- describe interaction of curves by "(pure) partition function" (total mass)

$$
\mathcal{Z}_{\alpha}\left(D ; x_{1}, \ldots, x_{2 N}\right):=\left|\mathbb{P}_{\alpha}\right|\left(D ; x_{1}, \ldots, x_{2 N}\right) \prod_{j=1}^{N} P_{D}\left(x_{a_{j}}, x_{b_{j}}\right)^{\frac{6-\kappa}{2 k}}
$$

- Loewner driving process in $D=\mathbb{H}$ for curve γ_{1}^{κ} :

$$
\mathrm{d} W_{t}=\sqrt{\kappa} \mathrm{d} B_{t}+\kappa \partial_{1} \log \mathcal{Z}_{\alpha}\left(W_{t}, g_{t}\left(x_{2}\right), g_{t}\left(x_{3}\right), \ldots, g_{t}\left(x_{2 N}\right)\right) \mathrm{d} t
$$

- CFT: [Cardy '84; Bauer-Bernard '02] "insert" fields $\Phi_{1,2}\left(x_{j}\right) \Longrightarrow$ BPZ equations

" $\operatorname{SLE}(\kappa)$ FIELD $\Phi_{1,2}$ " of weight $h_{1,2}=\frac{6-\kappa}{2 \kappa}$

"insert" $\Phi_{1,2}$ at points $x_{1}<x_{2}<\cdots<x_{2 N}$ [Cardy '84; Bauer-Bernard '02]

- parameter $\kappa>0$, central charge $c=\frac{1}{2 \kappa}(3 \kappa-8)(6-\kappa)=13-6\left(\frac{\kappa}{4}+\frac{4}{\kappa}\right)$
- singular vector $\left(L_{-2}-\frac{3}{2\left(2 h_{1,2}+1\right)} L_{-1}^{2}\right) v_{1,2}$
- (together with translation invariance) gives rise to PDE system $\forall i$

$$
\left\{\frac{\kappa}{2} \frac{\partial^{2}}{\partial x_{i}^{2}}+\sum_{j=1}^{n}\left(\frac{2}{x_{j}-x_{i}} \frac{\partial}{\partial x_{j}}-\frac{2 h_{1,2}(\kappa)}{\left(x_{j}-x_{i}\right)^{2}}\right)\right\} \underbrace{\left\langle\Phi_{1,2}\left(x_{1}\right) \cdots \Phi_{1,2}\left(x_{2 N}\right)\right\rangle}_{\mathcal{Z}\left(x_{1}, x_{2}, \ldots, x_{2 N}\right)}=0
$$

Minima \Longrightarrow Semiclassical Virasoro conformal blocks

- Fix domain data $D=\mathbb{H}$ and $x_{1}<\cdots<x_{2 N}$ and connectivity α
- Set $\mathcal{U}\left(x_{1}, \ldots, x_{2 N}\right):=12 \inf _{\bar{\gamma}} \mathcal{H}_{\mathbb{H} ; x_{1}, \ldots, x_{2 N}}(\bar{\gamma})$ (minimum potential)

Thm. [P. \& Wang '23]

$$
\frac{1}{2}\left(\partial_{j} \mathcal{U}\left(x_{1}, \ldots, x_{2 N}\right)^{2}-\sum_{i \neq j} \frac{2}{x_{i}-x_{j}} \partial_{i} \mathcal{U}\left(x_{1}, \ldots, x_{2 N}\right)=\sum_{i \neq j} \frac{6}{\left(x_{i}-x_{j}\right)^{2}} \quad \forall j\right.
$$

Proof: Study \mathcal{U} \& use self-similarity of Loewner flow of geodesic multichords

- "Semiclassical limit" of Belavin-Polyakov-Zamolodchikov PDEs in conformal field theory (on $\widehat{\mathbb{C}}$, from Virasoro symmetry)
- Appears also in the physics literature, e.g. [Teschner '11] and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]

Minima \Longrightarrow SEmiclassical Virasoro conformal blocks

- Fix domain data $D=\mathbb{H}$ and $x_{1}<\cdots<x_{2 N}$ and connectivity α
- Set $\mathcal{U}\left(x_{1}, \ldots, x_{2 N}\right):=12 \inf _{\bar{\gamma}} \mathcal{H}_{\mathbb{H} ; x_{1}, \ldots, x_{2 N}}(\bar{\gamma})$ (minimum potential)

Thm. [P. \& Wang '23]

$$
\frac{1}{2}\left(\partial_{j} \mathcal{U}\left(x_{1}, \ldots, x_{2 N}\right)^{2}-\sum_{i \neq j} \frac{2}{x_{i}-x_{j}} \partial_{i} \mathcal{U}\left(x_{1}, \ldots, x_{2 N}\right)=\sum_{i \neq j} \frac{6}{\left(x_{i}-x_{j}\right)^{2}} \quad \forall j\right.
$$

Proof: Study $\mathcal{U} \&$ use self-similarity of Loewner flow of geodesic multichords

- "Semiclassical limit" of Belavin-Polyakov-Zamolodchikov PDEs in conformal field theory (on $\widehat{\mathbb{C}}$, from Virasoro symmetry)
- Appears also in the physics literature, e.g. [Teschner '11] and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]
- Rigorously: SLE partition functions \mathcal{Z}^{κ}, s.t. $-\kappa \log \mathcal{Z}^{\kappa} \xrightarrow{\kappa \rightarrow 0} \mathcal{U}$
- [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]
also point out relation to Painlevé VI and AGT correspondence

Potential minimizers \Longrightarrow OPTIMAL CURVES

Shapiro conjecture (special case)

Potential minimizers \Longrightarrow Geodesic multichords

Easy observation. SLE $_{\kappa}$ with $\kappa=0$ is just the hyperbolic geodesic.

Lemma. Any minimizer of $\mathcal{H}(\bar{\eta})$ is a geodesic multichord.
$\bar{\eta}:=\left(\eta_{1}, \ldots, \eta_{N}\right)$ is a geodesic multichord if for each $j \in\{1,2, \ldots, N\}$, the chord η_{j} is hyperbolic geodesic in its own component.

Question: How many minimizers are there?
Key: Classify geodesic multichords!

Potential minimizers \Longrightarrow Geodesic multichords

Easy observation. SLE $_{\kappa}$ with $\kappa=0$ is just the hyperbolic geodesic.
Lemma. $\bar{\eta} \mapsto \mathcal{H}(\bar{\eta})$ is lower semicontinuous (for Hausdorff metric) and has compact sublevel sets. In particular, minimizers of $\mathcal{H}(\bar{\eta})$ exist.

Lemma. Any minimizer of $\mathcal{H}(\bar{\eta})$ is a geodesic multichord.
$\bar{\eta}:=\left(\eta_{1}, \ldots, \eta_{N}\right)$ is a geodesic multichord if for each $j \in\{1,2, \ldots, N\}$, the chord η_{j} is hyperbolic geodesic in its own component.

Question: How many minimizers are there?
Key: Classify geodesic multichords!

Geodesic multichords \Longrightarrow Real rational functions

Lemma. Any minimizer of $\mathcal{H}(\bar{\eta})$ is a geodesic multichord*.
Proposition. Let $\bar{\eta}$ be a geodesic multichord in \mathbb{H}. The union of $\bar{\eta}$, its complex conjugate $\bar{\eta}^{*}$, and the real line is the real locus of a rational function of degree $N+1$ with critical points $\left\{x_{1}, \ldots, x_{2 N}\right\}$.

$\forall j, \eta_{j}$ is hyperbolic geodesic in its own component

Geodesic multichords \Longrightarrow Real rational functions

Lemma. Any minimizer of $\mathcal{H}(\bar{\eta})$ is a geodesic multichord*.
Proposition. Let $\bar{\eta}$ be a geodesic multichord in \mathbb{H}. The union of $\bar{\eta}$, its complex conjugate $\bar{\eta}^{*}$, and the real line is the real locus of a rational function of degree $N+1$ with critical points $\left\{x_{1}, \ldots, x_{2 N}\right\}$.

$\forall j, \eta_{j}$ is hyperbolic geodesic in its own component

Potential minimizers \Longrightarrow Shapiro conjecture

Thm. [P. \& Wang '23]

- Each minimizer gives rise to unique^ rational function on $\mathbb{C} \cup\{\infty\}$ of degree $N+1$ with $2 N$ critical points on \mathbb{R}.
- ヨ! potential minimizer for each connectivity α.
- In particular, \exists exactly $\frac{1}{N+1}\binom{2 N}{N}$ rational functions of deg. $N+1$ with given $2 N$ critical points on \mathbb{R}.

$$
\star \text { (up to post-composition by Möbius map) }
$$

Proof: Explicit construction \& upper bound result [Goldberg '91]
Cor. (Shapiro conjecture)
If all critical points of rational function are real, then it's a real rational function*.

- special case of Shapiro conjecture [B. \& M. Shapiro '95]
- first proven: [Eremenko \& Gabrielov '00]

- general case: [Mukhin, Tarasov \& Varchenko '09; Levinson \& Purbhoo '21]

Thanks!

