On large deviations of SLEs, real rational functions, and zeta-regularized determinants of Laplacians

Eveliina Peltola

Aalto University, Department of Mathematics and Systems Analysis, University of Bonn (IAM) & Hausdorff Center for Math (HCM)

JULY 2023 @ OIST CFTPRGR WORKSHOP

Joint work with Yilin Wang (IHES)

WHAT IS THIS TALK ALL ABOUT?

- 1. Schramm-Loewner evolution (SLE_{κ}): random planar curves
- 2. Large deviations and Loewner energy: concentration phenomenon
- 3. Loewner energy / potential in terms of known quantities: (zeta-regularized) determinants of Laplace-Beltrami operators
- 4. Interpretation of minima?
 - semiclassical Virasoro conformal blocks in CFT
 - ► Calogero-Moser systems [Alberts, Byun, Kang, Makarov '22]

WHAT IS THIS TALK ALL ABOUT?

- 1. Schramm-Loewner evolution (SLE_{κ}): random planar curves
- 2. Large deviations and Loewner energy: concentration phenomenon
- 3. Loewner energy / potential in terms of known quantities: (zeta-regularized) determinants of Laplace-Beltrami operators
- 4. Interpretation of minima?
 - semiclassical Virasoro conformal blocks in CFT
 - ► Calogero-Moser systems [Alberts, Byun, Kang, Makarov '22]
- 5. Classification of minimizers? (not in this talk?)real rational functions with prescribed critical points
 - ► Shapiro-Shapiro conjecture [B. & M. Shapiro '95]
- 6. Numerous further connections (not in this talk):
 - ► Partition function of Coulomb gas on Jordan loop [Johansson '21; Wiegmann, Zabrodin '21]
 - ► Kähler potential of WP metric on univ. Teich. space [Wang '19]
 - Renormalized volume in hyperbolic 3-space
 [Bridgeman, Bromberg, Vargas-Pallete, Wang '23+]
 - Connections to function theory... [Bishop '19]

What is SLE_{κ} ?

Universal 2D random path

1

Scaling limits of critical interfaces — SLE_{κ} curves

 $\kappa > 0$ labels universality class

- (e.g. $\kappa = 3$ for Ising model)
- convergence weakly for probability measures on curves

(critical) interface $\stackrel{\delta \to 0}{\longrightarrow}$ Schramm-Loewner evolution, SLE_K

Usual proof strategy:

1. tightness (e.g. control via crossing estimates, RSW etc.)

[Aizenman & Burchard '99, Kemppainen & Smirnov '17, ...]

2. identification of the limit (e.g. via discrete holomorphic observable)

[Kenyon '00, Chelkak & Smirnov '01-'11, ...]

Loewner evolution of curves / slit domains

Thm. [Loewner '23]

Any simple chordal curve η

(more generally, a *locally growing* family of hulls)

can be encoded into a Loewner evolution

of conformal maps

 $g_t: \mathbb{H} \setminus \eta[0,t] \to \mathbb{H}$ which solve the ODE

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W(t)}, \qquad g_0(z) = z,$$

where W is a (continuous) real-valued function.

(Here, we have chosen the capacity parameterization.)

$$W_t = g_t(\eta(t))$$
 on \mathbb{R}

 $^{\uparrow}$ Loewner driving function $W: [0, \infty) \to \mathbb{R}$

Schramm-Loewner evolution, SLE_{κ}

(LET'S ASSUME $\kappa < 8/3$)

Thm. [Schramm '00]

 \exists ! one-parameter family (SLE_{κ}) $_{\kappa \geq 0}$ of probability measures on chordal curves with **conformal invariance** and **domain Markov property**

$$g_t : \mathbb{H} \setminus \gamma^{\kappa}[0, t] \to \mathbb{H}$$

$$W_t = g_t(\gamma^{\kappa}(t)) = \sqrt{\kappa}B_t$$

Loewner driving process: Brownian motion B of "speed" $\kappa \ge 0$

MULTIPLE (CHORDAL) SLE_K

(Let's assume $\kappa < 8/3$)

- ► family of random chordal curves $(\gamma_1^k, ..., \gamma_N^k)$ in $(D; x_1, ..., x_{2N})$
- ► connectivities encoded in planar pairings α of curve endpoints $\{\{x_{a_i}, x_{b_i}\}\}_{j=1,...,N}$
- ► re-sampling symmetry (>>> Markov chain)

Conditionally on N-1 of the curves, the remaining one is the chordal SLE_K in the random domain where it can live.

cf. many works: Cardy '03; Bauer, Bernard & Kytölä '05; Dubédat '06-'07; Kozdron & Lawler '07; Lawler '09; Kytölä & P. '16; Miller & Sheffield '16; P. & Wu '19; Miller, Sheffield & Werner '20; Beffara, P. & Wu '21, ...

MULTIPLE (CHORDAL) SLE,

(LET'S ASSUME $\kappa < 8/3$)

- ► family of random chordal curves $(\gamma_1^{\kappa}, ..., \gamma_N^{\kappa})$ in $(D; x_1, ..., x_{2N})$
- connectivities encoded in planar pairings α of curve endpoints $\{\{x_{a_j}, x_{b_j}\}\}_{j=1,\dots,N}$
- ► re-sampling symmetry (>>> Markov chain)

Thm. [Lawler, Schramm & Werner '03, ..., Beffara, P. & Wu '21] For any fixed connectivity α of 2N points, there exists a unique N-SLE_{κ} probability measure $\mathbb{P}_{\alpha}^{\#}$.

MULTIPLE (CHORDAL) SLE,

(LET'S ASSUME $\kappa < 8/3$)

- ► family of random chordal curves $(\gamma_1^{\kappa}, ..., \gamma_N^{\kappa})$ in $(D; x_1, ..., x_{2N})$
- connectivities encoded in planar pairings α of curve endpoints $\{\{x_{a_j}, x_{b_j}\}\}_{j=1,\dots,N}$

<u>Thm.</u> [Lawler, Schramm & Werner '03, ..., Beffara, P. & Wu '21] For any fixed connectivity α of 2N points, there exists a unique N-SLE_{κ} probability measure $\mathbb{P}_{\alpha}^{\#}$.

$$\frac{\mathrm{d}\mathbb{P}_{\alpha}}{\underset{1\leqslant i,j}{\otimes}\mathrm{d}\mathrm{P}_{\mathrm{SLE}}^{(i)}} := \exp\left(\frac{c(\kappa)}{2}m^{\mathrm{loop}}(D;\gamma_{1}^{\kappa},\ldots,\gamma_{N}^{\kappa})\right), \qquad \mathbb{P}_{\alpha}^{\#} = \frac{\mathbb{P}_{\alpha}}{|\mathbb{P}_{\alpha}|}$$

▶ m^{loop} : combinatorial expression involving Brownian loop measure μ_D^{loop} :

$$m^{\text{loop}}(D; \gamma_1^{\kappa}, \dots, \gamma_N^{\kappa}) = \int \max \left(\#\{\text{chords } \gamma_j^{\kappa} \text{ hit by } \ell\} - 1, 0 \right) d\mu_D^{\text{loop}}(\ell)$$

 $c(\kappa) = \frac{(3\kappa - 8)(6 - \kappa)}{2\kappa} < 0$: parameter (central charge) depending on κ

Large deviations of SLE_{κ} As $\kappa \to 0+$

Let's consider given continuous function $W: [0, T] \to \mathbb{R}$ s.t. $W_0 = 0$. Idea:

Let's consider given continuous function $W: [0, T] \to \mathbb{R}$ s.t. $W_0 = 0$. Idea:

Let's consider given continuous function $W: [0, T] \to \mathbb{R}$ s.t. $W_0 = 0$. Idea:

Let's consider given continuous function $W: [0, T] \to \mathbb{R}$ s.t. $W_0 = 0$. Idea:

Let's consider given continuous function $W: [0,T] \to \mathbb{R}$ s.t. $W_0 = 0$. Idea:

"P[Brownian path $\sqrt{\kappa}B_{[0,T]}$ stays close to $W_{[0,T]}$] $\stackrel{\kappa \to 0+}{\approx} \exp\left(-\frac{I_T(W)}{\kappa}\right)$ "

Thm. [Schilder '66] (Large Deviation Principle for BM)

Fix T > 0. The random path $\sqrt{\kappa}B_{[0,T]}$ satisfies LDP in $C^0[0,T]$ with sup-norm, with good rate function $I_T(W) := \frac{1}{2} \int_0^T \left(\frac{\mathrm{d}}{\mathrm{d}t}W_t\right)^2 \mathrm{d}t$

 $\limsup_{\kappa \to 0+} \kappa \log \mathbb{P}\left[\sqrt{\kappa} B_{[0,T]} \in C\right] \leq -\inf_{W \in C} I_T(W) \quad \text{for any closed set } C$

$$\liminf_{\kappa \to 0+} \kappa \log \mathbb{P}\left[\sqrt{\kappa} B_{[0,T]} \in O\right] \ge -\inf_{W \in O} I_T(W) \quad \text{for any open set } O$$

- ▶ finite time-window T
- ► $C^0[0,T] = \{W : [0,T] \to \mathbb{R} \text{ continuous}, \ W_0 = 0\}$
- ► topology: $||W||_{\infty} := \sup_{t \in [0,T]} |W_t|$

Let's consider given smooth curve η in (D, x, y). Idea:

"P[SLE_{$$\kappa$$} curve stays close to η] $\stackrel{\kappa \to 0+}{\approx} \exp\left(-\frac{I(\eta)}{\kappa}\right)$ "

▶ Decay rate: Loewner energy of the curve η

defined as the Dirichlet energy of its driver W:

$$I(\eta) := \frac{1}{2} \int_0^\infty \left(\frac{\mathrm{d}}{\mathrm{d}t} W_t \right)^2 \mathrm{d}t \quad \in \quad [0, +\infty]$$

[Dubédat '05; Friz & Shekhar '17; Wang '19; Bishop '19, ...]

Thm. [Wang '19; P. & Wang '23]

The family of laws $(\mathbb{P}^{\kappa})_{\kappa>0}$ of SLE_{κ} curves γ^{κ} satisfies LDP:

(for Hausdorff distance, with good rate function I)

$$\limsup_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\gamma^{\kappa} \in C] \leq -\inf_{\eta \in C} I(\eta) \quad \text{for any closed set } C$$
$$\liminf_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\gamma^{\kappa} \in O] \geq -\inf_{\eta \in O} I(\eta) \quad \text{for any open set } O$$

Large deviations of multichordal SLE_{κ} as $\kappa \to 0+$

Let's consider given smooth curves $\bar{\eta} := (\eta_1, \dots, \eta_N)$. Idea:

"P[SLE_{$$\kappa$$} curves stay close to $\bar{\eta}$] $\stackrel{\kappa \to 0+}{\approx} \exp\left(-\frac{I(\bar{\eta})}{\kappa}\right)$ "

▶ Decay rate: $I(\bar{\eta}) \ge 0$, **Loewner energy** of the multichord $\bar{\eta}$

Thm. [P. & Wang '23]

The family of laws $(\mathbb{P}^{\kappa})_{\kappa>0}$ of SLE_{κ} curves $\bar{\gamma}^{\kappa}$ satisfies LDP:

(for Hausdorff distance, with good rate function I)

$$\limsup_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in C] \leq -\inf_{\bar{\eta} \in C} I(\bar{\eta}) \qquad \text{for any closed set } C$$

$$\liminf_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in O] \ge -\inf_{\bar{\eta} \in O} I(\bar{\eta}) \quad \text{for any open set } O$$

Intrinsic object: Loewner Potential

▶ Multi-chord Loewner energy of curves $\bar{\eta} := (\eta_1, ..., \eta_N)$:

$$I_D(\bar{\eta}) := 12 \left(\mathcal{H}_D(\bar{\eta}) - \inf_{\bar{\gamma}} \mathcal{H}_D(\bar{\gamma}) \right)$$

▶ Loewner potential $\mathcal{H}_D(\bar{\eta})$ of curves $\bar{\eta} := (\eta_1, \dots, \eta_N)$:

$$\mathcal{H}_D(\bar{\eta}) := \frac{1}{12} \sum_{i=1}^N I_D(\eta_i) + m_D^{\text{loop}}(\bar{\eta}) - \frac{1}{4} \sum_{i=1}^N \log P_D(x_{a_i}, x_{b_i})$$

- ► $I_D(\eta) := \frac{1}{2} \int_0^\infty (\frac{\mathrm{d}}{\mathrm{d}t} W_t)^2 \mathrm{d}t$ one-curve Loewner energy
- "interaction": $m_D^{\text{loop}}(\bar{\eta})$ Brownian loop measure term
- ▶ $P_D(x_{a_i}, x_{b_i})$ boundary Poisson kernel
- x_{a_i}, x_{b_i} endpoints of curve η_i

LOEWNER POTENTIAL

IN ANOTHER FORM

Loewner Potential – more intuitive formula

As $\mathcal{H}(\bar{\eta})$ is a bit complicated, let's write it differently:

Thm. [P. & Wang '23]

For any smooth $\bar{\eta}$ in bounded smooth domain $(D; x_1, \ldots, x_{2N})$,

$$\mathcal{H}_D(\bar{\eta}) = \log \det_{\zeta} \Delta_D - \sum_{\text{c.c. } C} \log \det_{\zeta} \Delta_C - \frac{N}{2} \log \pi$$

Proof idea: Both sides have the same conformal covariance; use Polyakov-Alvarez anomaly formula (for domains with corners) [Aldana, Kirsten, Rowlett '20]

- ▶ $\log \det_{\zeta} \Delta$ zeta-regularized determinant of Laplacian Δ with Dirichlet b.c.
- ▶ sum over *connected components* C of $D \setminus \bigcup_i \eta_i$
- $\frac{1}{2}\log\pi\approx0.5724$ universal constant
- ▶ motivated by loop case & rel. to geometry: [Wang '19]

POTENTIAL/ENERGY MINIMA

CONFORMAL BLOCKS IN CFT?

RECALL: MULTIPLE (CHORDAL) SLE_{κ}

(Let's assume $\kappa < 8/3$)

- ► family of random chordal curves $(\gamma_1^{\kappa}, ..., \gamma_N^{\kappa})$ in $(D; x_1, ..., x_{2N})$
- connectivities encoded in planar pairings α of curve endpoints $\{\{x_{a_j}, x_{b_j}\}\}_{j=1,\dots,N}$
- ► re-sampling symmetry (→ Markov chain)

Thm. [Lawler, Schramm & Werner '03, ..., Beffara, P. & Wu '21] For any fixed connectivity α of 2N points, there exists a unique N-SLE_{κ} probability measure $\mathbb{P}_{\alpha}^{\#}$.

describe interaction of curves by "(pure) partition function" (total mass)

$$\mathbf{Z}_{\alpha}(D; x_1, \dots, x_{2N}) := |\mathbb{P}_{\alpha}|(D; x_1, \dots, x_{2N}) \prod_{j=1}^{N} P_D(x_{a_j}, x_{b_j})^{\frac{6-\kappa}{2\kappa}}$$

- Loewner driving process in $D = \mathbb{H}$ for curve γ_1^{κ} : $dW_t = \sqrt{\kappa} dB_t + \kappa \partial_1 \log \mathcal{Z}_{\alpha}(W_t, g_t(x_2), g_t(x_3), \dots, g_t(x_{2N})) dt$
- ► CFT: [Cardy '84; Bauer-Bernard '02] "insert" fields $\Phi_{1,2}(x_i) \Longrightarrow \text{BPZ}$ equations

"SLE(κ) field $\Phi_{1,2}$ " of weight $h_{1,2} = \frac{6-\kappa}{2\kappa}$

"insert" $\Phi_{1,2}$ at points $x_1 < x_2 < \cdots < x_{2N}$ [Cardy '84; Bauer-Bernard '02]

$$dW_t = \sqrt{\kappa} dB_t + \kappa \partial_1 \log \mathcal{Z}_{\alpha}(W_t, g_t(x_2), g_t(x_3), \dots, g_t(x_{2N})) dt$$

▶ parameter
$$\kappa > 0$$
, central charge $c = \frac{1}{2\kappa} (3\kappa - 8)(6 - \kappa) = 13 - 6(\frac{\kappa}{4} + \frac{4}{\kappa})$
▶ singular vector $(L_{-2} - \frac{3}{2(2h_1 + 1)}L_{-1}^2) v_{1,2}$

• (together with translation invariance) gives rise to PDE system
$$\forall i$$

$$\left\{\frac{\kappa}{2}\frac{\partial^2}{\partial x_i^2} + \sum_{j=1}^n \left(\frac{2}{x_j - x_i}\frac{\partial}{\partial x_j} - \frac{2h_{1,2}(\kappa)}{(x_j - x_i)^2}\right)\right\} \underbrace{\langle \Phi_{1,2}(x_1) \cdots \Phi_{1,2}(x_{2N}) \rangle}_{\mathcal{Z}(x_1, x_2, x_{2N})} = 0$$

Minima Semiclassical Virasoro conformal blocks

- Fix domain data $D = \mathbb{H}$ and $x_1 < \cdots < x_{2N}$ and connectivity α
- ► Set $\mathcal{U}(x_1, ..., x_{2N}) := 12 \inf_{\bar{\gamma}} \mathcal{H}_{\mathbb{H}; x_1, ..., x_{2N}}(\bar{\gamma})$ (minimum potential)

<u>Thm.</u> [P. & Wang '23]

$$\frac{1}{2}(\partial_j \mathcal{U}(x_1,\ldots,x_{2N})^2 - \sum_{i\neq j} \frac{2}{x_i - x_j} \partial_i \mathcal{U}(x_1,\ldots,x_{2N}) = \sum_{i\neq j} \frac{6}{(x_i - x_j)^2} \quad \forall j$$

Proof: Study ${\cal U}$ & use self-similarity of Loewner flow of geodesic multichords

- "Semiclassical limit" of Belavin-Polyakov-Zamolodchikov PDEs in conformal field theory (on $\hat{\mathbb{C}}$, from Virasoro symmetry)
- ► Appears also in the physics literature, e.g. [Teschner '11] and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]

Minima Semiclassical Virasoro conformal blocks

- Fix domain data $D = \mathbb{H}$ and $x_1 < \cdots < x_{2N}$ and connectivity α
- ► Set $\mathcal{U}(x_1, ..., x_{2N}) := 12 \inf_{\bar{\gamma}} \mathcal{H}_{\mathbb{H}; x_1, ..., x_{2N}}(\bar{\gamma})$ (minimum potential)

Thm. [P. & Wang '23]

$$\frac{1}{2}(\partial_j \mathcal{U}(x_1,\ldots,x_{2N})^2 - \sum_{i\neq j} \frac{2}{x_i - x_j} \partial_i \mathcal{U}(x_1,\ldots,x_{2N}) = \sum_{i\neq j} \frac{6}{(x_i - x_j)^2} \quad \forall j$$

Proof: Study *U* & use self-similarity of Loewner flow of geodesic multichords

- "Semiclassical limit" of Belavin-Polyakov-Zamolodchikov PDEs in conformal field theory (on $\hat{\mathbb{C}}$, from Virasoro symmetry)
- ► Appears also in the physics literature, e.g. [Teschner '11] and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]
- ► Rigorously: SLE partition functions \mathcal{Z}^{κ} , s.t. $-\kappa \log \mathcal{Z}^{\kappa} \xrightarrow{\kappa \to 0} \mathcal{U}$
- ► [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14] also point out relation to Painlevé VI and AGT correspondence

POTENTIAL MINIMIZERS OPTIMAL CURVES

SHAPIRO CONJECTURE (special case)

Potential minimizers \implies Geodesic multichords

Easy observation. SLE_{κ} with $\kappa = 0$ is just the *hyperbolic geodesic*.

Lemma. Any minimizer of $\mathcal{H}(\bar{\eta})$ is a geodesic multichord.

 $\bar{\eta} := (\eta_1, \dots, \eta_N)$ is a geodesic multichord if for each $j \in \{1, 2, \dots, N\}$, the chord η_j is hyperbolic geodesic in its own component.

Question: How many minimizers are there?

Key: Classify geodesic multichords!

POTENTIAL MINIMIZERS \implies GEODESIC MULTICHORDS

Easy observation. SLE_{κ} with $\kappa = 0$ is just the *hyperbolic geodesic*.

Lemma. $\bar{\eta} \mapsto \mathcal{H}(\bar{\eta})$ is lower semicontinuous (for Hausdorff metric) and has compact sublevel sets. In particular, minimizers of $\mathcal{H}(\bar{\eta})$ exist.

Lemma. Any minimizer of $\mathcal{H}(\bar{\eta})$ is a geodesic multichord.

 $\bar{\eta} := (\eta_1, \dots, \eta_N)$ is a geodesic multichord if for each $j \in \{1, 2, \dots, N\}$, the chord η_j is hyperbolic geodesic in its own component.

Question: How many minimizers are there?

Key: Classify geodesic multichords!

Geodesic multichords ⇒ Real rational functions

Lemma. Any minimizer of $\mathcal{H}(\bar{\eta})$ is a geodesic multichord*.

Proposition. Let $\bar{\eta}$ be a geodesic multichord in \mathbb{H} . The union of $\bar{\eta}$, its complex conjugate $\bar{\eta}^*$, and the real line is the real locus of a rational function of degree N+1 with critical points $\{x_1, \ldots, x_{2N}\}$.

 $\forall j, \eta_i$ is hyperbolic geodesic in its own component

Geodesic multichords ⇒ Real rational functions

Lemma. Any minimizer of $\mathcal{H}(\bar{\eta})$ is a geodesic multichord*.

Proposition. Let $\bar{\eta}$ be a geodesic multichord in \mathbb{H} . The union of $\bar{\eta}$, its complex conjugate $\bar{\eta}^*$, and the real line is the real locus of a rational function of degree N+1 with critical points $\{x_1, \ldots, x_{2N}\}$.

 $\forall j, \eta_i$ is hyperbolic geodesic in its own component

POTENTIAL MINIMIZERS SHAPIRO CONJECTURE

Thm. [P. & Wang '23]

- ► Each *minimizer* gives rise to unique^{*} *rational function* on $\mathbb{C} \cup \{\infty\}$ of degree N+1 with 2N critical points on \mathbb{R} .
- ▶ $\exists!$ potential minimizer for each connectivity α .
- ▶ In particular, \exists exactly* $\frac{1}{N+1} \binom{2N}{N}$ rational functions of deg. N+1 with given 2N critical points on \mathbb{R} .
 - \star (up to post-composition by Möbius map)

Proof: Explicit construction & upper bound result [Goldberg '91]

Cor. (Shapiro conjecture)

If all critical points of rational function are real, then it's a real rational function*.

- ▶ special case of Shapiro conjecture [B. & M. Shapiro '95]
- first proven: [Eremenko & Gabrielov '00]
- ▶ general case: [Mukhin, Tarasov & Varchenko '09; Levinson & Purbhoo '21]

THANKS!