ON LARGE DEVIATIONS OF SLEs,
REAL RATIONAL FUNCTIONS, AND

ZETA-REGULARIZED DETERMINANTS OF LAPLACIANS

Eveliina Peltola

Aalto University, Department of Mathematics and Systems Analysis,

University of Bonn IAM) & Hausdorff Center for Math (HCM)

Jury 2023 @ OIST CFTPRGR WoRrksHoP

JoinT work wiTH Yilin Wang (IHES)
[ J
it A

FINNISH CENTRE OF EXCELLENCE ACADEMY
2022-2029 OF FINLAND

Deutsche .
Forschungsgemeinschaft




WHAT IS THIS TALK ALL ABOUT?

1.

Schramm-Loewner evolution (SLE,): random planar curves

2. Large deviations and Loewner energy: concentration phenomenon

3. Loewner energy / potential in terms of known quantities:

(zeta-regularized) determinants of Laplace-Beltrami operators
Interpretation of minima?

» semiclassical Virasoro conformal blocks in CFT

> Calogero-Moser systems [Alberts, Byun, Kang, Makarov 22]
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Schramm-Loewner evolution (SLE,): random planar curves

2. Large deviations and Loewner energy: concentration phenomenon

3. Loewner energy / potential in terms of known quantities:

(zeta-regularized) determinants of Laplace-Beltrami operators

Interpretation of minima?
» semiclassical Virasoro conformal blocks in CFT
> Calogero-Moser systems [Alberts, Byun, Kang, Makarov 22]

Classification of minimizers? (not in this talk?)

» real rational functions with prescribed critical points
> Shapiro-Shapiro conjecture [B. & M. Shapiro '95]
Numerous further connections (not in this talk):

> Partition function of Coulomb gas on Jordan loop
[Johansson "21; Wiegmann, Zabrodin "21]

> Kaihler potential of WP metric on univ. Teich. space [Wang '19]

> Renormalized volume in hyperbolic 3-space
[Bridgeman, Bromberg, Vargas-Pallete, Wang '23+]

> Connections to function theory... [Bishop '19]
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SCALING LIMITS OF CRITICAL INTERFACES — SLEK CURVES

» k > 0 labels universality class (e.g. k = 3 for Ising model)
» convergence weakly for probability measures on curves

d
2 el

.. . 6—0 .
(critical) interface — Schramm-Loewner evolution, SLE,

Usual proof strategy:
1. tightness (e.g. control via crossing estimates, RSW etc.)
[Aizenman & Burchard 99, Kemppainen & Smirnov 17, ...]
2. identification of the limit (e.g. via discrete holomorphic observable)

[Kenyon ‘00, Chelkak & Smirnov '01-11, ...]

— conformal invariance



LOEWNER EVOLUTION OF CURVES / SLIT DOMAINS

IOR Thm. [Loewner 23]
Any simple chordal curve 7

(more generally, a locally growing family of hulls)

can be encoded into a Loewner evolution
of conformal maps
g: : H\ n[0, ] —» H which solve the ODE

8t

0:81(2) = 80(2) = z,

2
&) - W@’

where W is a (continuous) real-valued function.

.
(

e (Here, we have chosen the capacity parameterization.)
Wi = g:(n(1)) on R

T Loewner driving function W: [0,0) - R




SCHRAMM-LLOEWNER EVOLUTION, SLE,  @er’s assumE « < 8/3)

y’((z)\/: Thm. [Schramm '00]
d! one-parameter family (SLE;).>0
of probability measures on chordal curves

with conformal invariance
and domain Markov property

g - HA\Y[0,1] - H

{
N

W =g (") = \/;Bt

Loewner driving process: Brownian motion B of “speed” k >0 4



MuLTIPLE (CHORDAL) SLE, (LET'S ASSUME K < 8/3)

» family of random chordal curves
(¥fs-- vy I (Dsxy, ..., Xon)

» connectivities encoded in
planar pairings «

of curve endpoints {{xa;, x5, }}j=1..§

» re-sampling symmetry (~ Markov chain)

Conditionally on N —1 of the curves, the remaining one is
the chordal SLE, in the random domain where it can live.

cf. many works: Cardy '03; Bauer, Bernard & Kytolda '05;
Dubédat '06-'07; Kozdron & Lawler '07; Lawler 09;
Kytold & P. '16; Miller & Sheffield '16; P. & Wu '19;

Miller, Sheffield & Werner '20; Beffara, P. & Wu 21, ...



MuLTIPLE (CHORDAL) SLE, (LET'S ASSUME K < 8/3)

> family of random chordal curves (v{,...,v})
in (D;xy, ..., Xw)
> connectivities encoded in planar pairings

@ of curve endpoints {{x;, xp,}};=1,..5

> re-sampling symmetry (~» Markov chain)

Thm. [Lawler, Schramm & Werner 03, ..., Beffara, P. & Wu 21]
For any fixed connectivity @ of 2N points,
there exists a unique N-SLE, probability measure Pﬁ.
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in (D;xy, ..., Xw)
> connectivities encoded in planar pairings
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For any fixed connectivity @ of 2N points,
there exists a unique N-SLE, probability measure Pﬁ.

dP, (C(K)
— =exp|—
® dpPYy 2

v

I1<i<!

00)] K K ]'P(Y
m' p(D;yl,..,,yN)), Pﬁ, = B

. . . . . . 1
> m'°P: combinatorial expression involving Brownian loop measure u D”"":

mP (DY, ..y = fmax (#{chords Y} hit by £} -1, 0) dy[Do"p(t’)

> c(k) = W < 0: parameter (central charge) depending on «



LLARGE DEVIATIONS OF SLE,
AS K — 0+




LLARGE DEVIATIONS FOR BROWNIAN MOTION

» Let’s consider given continuous function W: [0,T] - R
s.t. Wp = 0. Idea:

. 0
“P[ Brownian path vkBjor stays close to Wjo 7] X exp( = 2

— exponential concentration phenomenon
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LLARGE DEVIATIONS FOR BROWNIAN MOTION

. 0 T ’9
“P[ Brownian path WB[(),T] stays close to W 7] S exp( — w )

Thm. [Schilder '66] (Large Deviation Principle for BM)

Fix T > 0. The random path WB[(),T] satisfies LDP in C°[0, T']
2
with sup-norm, with good rate function It(W) := % fOT (%W,) dt

lim sup KlOgP[\/;B[()’T] eC] £ - v&nfc Ir(W) for any closed set C
€

k—0+

lim inf KlOgP[\/EB[()’T] € 0] > — inf Ip(W) for any open set O
k—0+ WeoO

> finite time-window T
» C°10,T] = {W: [0,T] = R continuous, Wy = 0}

> topology: [|[Wllw := sup W
t € [0,T]



LLARGE DEVIATIONS OF CHORDAL SLE, AS kK — 0+

» Let’s consider given smooth curve 7 in (D, x,y). Idea:

— 0+ exp(_%f]))”

“P[SLE, curve stays close to 1] =S

» Decay rate: Loewner energy of the curve n
defined as the Dirichlet energy of its driver W:

00 2
I =5 [ (W) dt € [0, +c0]
[Dubédat '05; Friz & Shekhar °17; Wang '19; Bishop 19, ...]
Thm. [Wang 19; P. & Wang 23]

The family of laws (P),., of SLE, curves y* satisfies LDP:

(for Hausdorff distance, with good rate function /)

limsup xlogP“[y* € C] < — inf I(1) for any closed set C

k—0+ nec

liminf «logP“[y* € O] > — inf I(1) for any open set O
k—0+ neo



LLARGE DEVIATIONS OF MULTICHORDAL SLE, As k — 0+

» Let’s consider given smooth curves 7 := (71,...,ny). Idea:
— 0+ [(T_]) )
exp( - —=

“P[SLE, curves stay close to 7] S

» Decay rate: I(ij) > 0, Loewner energy of the multichord 7

Thm. [P. & Wang 23]

The family of laws (P),., of SLE, curves ¥ satisfies LDP:

(for Hausdorff distance, with good rate function /)

limsup xlogP“[¥* € C]

k—0+

IA

- jnfC 1(77) for any closed set C
i€

lim(i)nf klogP“[¥ € 0] > - jnfo () for any open set O
k—0+ ne

Proof idea: Schilder thm for BM, Varadhan’s lemma + careful analysis

10



INTRINSIC OBJECT: LOEWNER POTENTIAL
» Multi-chord Loewner energy of curves i := (1i,...,17n):

Ip() = 12(Hp[@) - il;f Hp(¥))

» Loewner potential Hp(77) of curves 77 := (11,...,0n):

N N
1 1
Ho@) = 5 ) Iomy) + mp™@) ~ 5 > 1og Po(xa. %)
J=1 J=1

v

Ip() = 3 Jy (W de S

one-curve Loewner energy

v

s . 2, lOOp -
interaction™ m,"(77)
Brownian loop measure term

PD(xaj, x;,j) boundary Poisson kernel '
Xajs Xb; endpoints of curve n;

v

\{

1



LLOEWNER POTENTIAL

IN ANOTHER FORM

11



LLOEWNER POTENTIAL — MORE INTUITIVE FORMULA
As H(7) is a bit complicated, let’s write it differently:

Thm. [P. & Wang 23]
For any smooth 7 in bounded smooth domain (D; xy, ..., X2n),

N
Hp() = logdet;Ap — Z logdet /Ac — glogn
ee C

Proof idea: Both sides have the same conformal covariance; use Polyakov-Alvarez
anomaly formula (for domains with corners) [Aldana, Kirsten, Rowlett 20]

» logdet; A zeta-regularized determinant %
of Laplacian A with Dirichlet b.c.

» sum over connected components C of D\ |J;n;

> %logﬂ ~ 0.5724 universal constant '

> motivated by loop case & rel. to geometry: [Wang '19]

NB: Also makes sense on Riemannian surfaces (depends on metric). 19



POTENTIAL/ENERGY MINIMA

CoNFORMAL BLOCKS IN CFT ?

12



REcALL: MULTIPLE (CHORDAL) SLE, (LET'S ASSUME K < 8/3)

> family of random chordal curves (v{,...,v})
in (D;xy, ..., Xw)
> connectivities encoded in planar pairings

@ of curve endpoints {{x;, xp,}};=1,..5

> re-sampling symmetry (~» Markov chain)
Thm. [Lawler, Schramm & Werner 03, ..., Beffara, P. & Wu 21]

For any fixed connectivity @ of 2N points,
there exists a unique N-SLE, probability measure Pﬁ.

> describe interaction of curves by “(pure) partition function” (total mass)

N

6-k

Zu(D3 31, x) 1= [Pol(Ds 1, 2an) || Pt ) %
j=1

> Loewner driving process in D = H for curve yi:

AW, = vk dB; + k91 1og Z,(W,, 81(x2), 8(Xs), . . ., g(Xan)) dt
> CFT: [Cardy '84; Bauer-Bernard '02] “insert” fields ®;3(x;) = BPZ equations

13



“SLE(k) FIELD @19 OF WEIGHT hy g = 62—K"

“insert” @2 at points x; < xg < -+ < xgy [Cardy '84; Bauer-Bernard '02]

gt

¢

)
N

0 W,

th = \/E dBt + Kal log Z(Y(Wta gt(x2)7 gl(x:)))’ ) gt(-XZN)) dt

» parameter k > 0, central charge ¢ = %((SK -8)(6-x) =13-6(F+ %)
» singular vector (L_g — ngl) V12

> (together with translation invariance) gives rise to PDE system V i

Kk &% ( 2 0 2h19(k)
+Z .

xj—xiéxj (xj—xi)z

2 9x2 ) (@12(x1) -+ Pr2(x2n)) = 0

Z(x1,X2,...,X2N)

14



MINIMA = SEMICLASSICAL VIRASORO CONFORMAL BLOCKS

» Fix domain data D = H and x; < --- < xgy and connectivity «

> Set U(x1, ..., xon) := 121nf5 Hp,y, . oy (¥) (Minimum potential)

Thm. [P. & Wang 23]

1 2 6 .
E(BJZ/I(xl,...,XZN)Z—Z aiu(xly~-~,x2N)=Z vj

X C—x)2
i#j Xi = X i#j (xi x,)

Proof: Study U & use self-similarity of Loewner flow of geodesic multichords

» “Semiclassical limit” of Belavin-Polyakov-Zamolodchikov PDEs
in conformal field theory (on €, from Virasoro symmetry)

» Appears also in the physics literature, e.g. [Teschner '11]
and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]

15
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» Fix domain data D = H and x; < --- < xgy and connectivity «

> Set U(x1, ..., xon) := 121nf5 Hp,y, . oy (¥) (Minimum potential)

Thm. [P. & Wang 23]
2

Xi — Xj

6

(x; = x;)?

1
E(BJZ/I(xl,...,XZN)Z—Z V]

i#j

aiu(xl,--.,xzzv)=z

i#]
Proof: Study U & use self-similarity of Loewner flow of geodesic multichords

» “Semiclassical limit” of Belavin-Polyakov-Zamolodchikov PDEs
in conformal field theory (on €, from Virasoro symmetry)
» Appears also in the physics literature, e.g. [Teschner '11]
and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]
» Rigorously: SLE partition functions Z*, s.t. —klog Z* =3 U
» [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]

also point out relation to Painlevé VI and AGT correspondence 5



POTENTIAL MINIMIZERS
—— OPTIMAL CURVES

SHAPIRO CONJECTURE (special case)

15



POTENTIAL MINIMIZERS —> (GEODESIC MULTICHORDS

Easy observation. SLE, with x = 0 is just the hyperbolic geodesic.

Lemma. Any minimizer of H(#) is a geodesic multichord.

il :=@,...,nn) is a geodesic multichord if
for each j€({1,2,..., N}, the chord 5; is
hyperbolic geodesic in its own component.

Question: How many minimizers are there?

Key: Classify geodesic multichords!

16



POTENTIAL MINIMIZERS —> (GEODESIC MULTICHORDS

Easy observation. SLE, with x = 0 is just the hyperbolic geodesic.

Lemma. ;7 — H(7}) is lower semicontinuous (for Hausdorff metric) and
has compact sublevel sets. In particular, minimizers of H(i) exist.

Lemma. Any minimizer of H(#) is a geodesic multichord.

il :=@,...,nn) is a geodesic multichord if
for each j€({1,2,..., N}, the chord 5; is
hyperbolic geodesic in its own component.

Question: How many minimizers are there?

Key: Classify geodesic multichords!

16



GEODESIC MULTICHORDS = REAL RATIONAL FUNCTIONS

Lemma. Any minimizer of H(7) is a geodesic multichord*.

Proposition. Let 77 be a geodesic multichord in H. The union of 7,
its complex conjugate 7%, and the real line is the real locus of a
rational function of degree N + 1 with critical points {xi, ..., xoy}.

<m\ e
el

A

¥ j, n; is hyperbolic geodesic in its own component

17



GEODESIC MULTICHORDS = REAL RATIONAL FUNCTIONS

Lemma. Any minimizer of H(7) is a geodesic multichord*.

Proposition. Let 77 be a geodesic multichord in H. The union of 7,
its complex conjugate 7%, and the real line is the real locus of a
rational function of degree N + 1 with critical points {xi, ..., xoy}.

K¢

AV
v

¥ j, n; is hyperbolic geodesic in its own component

17



POTENTIAL MINIMIZERS — SHAPIRO CONJECTURE

Thm. [P. & Wang 23]

» Each minimizer gives rise to unique* rational function
on C U {oo} of degree N + 1 with 2N critical points on R.

» ! potential minimizer for each connectivity a.

» In particular, 9 exactly* ﬁ(zle\/) rational functions

of deg. N +1 with given 2N critical points on R.

* (up to post-composition by Mobius map)

Proof: Explicit construction & upper bound result [Goldberg 91]

» special case of Shapiro conjecture [B. & M. Shapiro 93]
» first proven: [Eremenko & Gabrielov ‘00]
» general case: [Mukhin, Tarasov & Varchenko '09; Levinson & Purbhoo 21]

Cor. (Shapiro conjecture) 7
If all critical points of rational function are o

‘s . . T
real, then it’s a real rational function*.

18



THANKS!




