Hamiltonian Paths, Liouville Quantum Gravity and KPZ

Philippe Di Francesco, Bertrand Duplantier*, Olivier Golinelli*, Emmanuel Guitter* IPhT Paris-Saclay University

Nuclear Physics B 987 (2023) 116084 - arXiv:2210.08887 arXiv:2305.02188*

New trends of conformal theory from probability to gravity July 31 - August 4, 2023 - OIST, Okinawa, Japan

1. An enumeration problem that still holds out against combinatorialists (*)

- take an infinite line in the plane carrying a sequence of $2 N$ alternating black and white points,
- connect all black points to white points by N non-crossing arches drawn above and/or below the line,
- call z_{N} the number of different ways to do so. Formula for z_{N} ?
(*) introduced in E.Guitter, C. Kristjansen, J. Nielsen 1999

01

9520
67064
492292
3735112
1029114128
11232077344
121885195276
1315562235264
14130263211680
151103650297320
169450760284100
1781696139565864
18712188311673280
196255662512111248
2055324571848957688
21492328039660580784
224406003100524940624
2339635193868649858744
24358245485706959890508
253252243000921333423544
2629644552626822516031040
27271230872346635464906816
282490299924154166673782584
2922939294579586403144527440
30211949268051816569236796848
311963919128426791258770276024
3218246482008315207478524287044
33169953210523325203868381657400
$34 \quad 1586759491069775179474823509344$

We expect $\quad z_{N} \underset{N \rightarrow \infty}{\sim} \varkappa \frac{\mu^{2 N}}{N^{2-\gamma}} . \quad$ Values of μ, \varkappa, γ ?

From the exact enumeration data, we may extract

$$
\begin{gathered}
\mu^{2}=10.113 \pm 0.001 \\
\gamma=-0.77 \pm 0.01
\end{gathered}
$$

Conjecture (E. Guitter, C. Kristjansen, J. Nielsen 1999)
2. Where bees come to the rescue

Statistical model on the honeycomb lattice

FPL (n) model on the honeycomb lattice

Fully Packed Loops := Loops drawn on the edges of the honeycomb lattice, and which visit all the vertices of the lattice

Assign a weight n to each loop

FPL (n) model on the honeycomb lattice

Honeycomb lattice
= the regular bicubic lattice

bicolored in black and white
all vertices have degree 3

Honeycomb lattice:
the regular bicubic lattice

bicolored in black and white
all vertices have degree 3

$=\operatorname{FPL}(n)$ model on a random bicubic planar map

Taking the $n \rightarrow 0$ limit corresponds to selecting configurations with a single loop visiting all the vertices of the map

Cut the loop at some edge and stretch it into a straight line

Our combinatorial problem is nothing but the problem of a Hamiltonian cycle on a random bicubic map
V. Knizhnik, A. Polyakov, A. Zamolodchikov \& DDK 1988

3. The KPZ relations

Regular lattice

Critical system described by a Conformal Field Theory with central charge c

Correlation function of operators $\Phi_{h_{i}, c}$ with conformal weight h_{i}
$\left\langle\bar{\Phi}_{h_{i}, c}(0) \Phi_{h_{i}, c}(r)\right\rangle \sim$ const. $\frac{1}{r^{4 h_{i}}}$
D. \& Sheffield 2011

Random planar map of fixed area A

Partition function $\mathcal{Z}_{A} \sim$ const. $\mu^{A} A^{\gamma(c)-3}$

$$
\gamma(c)=\frac{1}{12}(c-1-\sqrt{(1-c)(25-c)})
$$

(Unnormalized) correlator

$$
\mathcal{Z}_{A}\left\langle\prod_{i} \Phi_{h_{i}, c}\right\rangle_{A} \sim \text { const. } \mu^{A} A^{\sum_{i}\left\{1-\Delta\left(h_{i}, c\right)\right\}+\gamma(c)-3}
$$

$$
\Delta(h, c)=\frac{\sqrt{1-c+24 h}-\sqrt{1-c}}{\sqrt{25-c}-\sqrt{1-c}}
$$

4. The FPL model on the honeycomb lattice

N. Reshetikhin 1991 / H. Blöte and B. Nienhuis 1994 / M.Batchelor, J. Suzuki and C. Yung 1994 / J. Kondev, J. de Gier, B. Nienhuis 1996 / J. Jacobsen, J. Kondev 1998 /
T. Dupic, B. Estienne and Y. Ikhlef 2016, 2019
$\mathrm{O}(n)$ loop model: weight u per visited vertex

FPL (n) obtained by taking $u \rightarrow \infty$

$c_{\text {FPL }}(n)=c_{\text {dense }}(n)+1 \quad$ H. Blöte and B. Nienhuis 1994
\rightarrow value at $n=2$
Why $c_{\mathrm{FPL}}(2)=2 \quad$ whereas $\quad c_{\text {dense }}(2)=1$?

$c_{\mathrm{FPL}}(n)=c_{\text {dense }}(n)+1$
H. Blöte and B. Nienhuis 1994
\rightarrow value at $n=2$
Why $c_{\mathrm{FPL}}(2)=2 \quad$ whereas $\quad c_{\text {dense }}(2)=1$?

$c_{\text {FPL }}(n)=c_{\text {dense }}(n)+1 \quad$ H. Blöte and B. Nienhuis 1994
\rightarrow value at $n=2$
Why $c_{\mathrm{FPL}}(2)=2 \quad$ whereas $\quad c_{\text {dense }}(2)=1$?

$c_{\mathrm{FPL}}(n)=c_{\text {dense }}(n)+1$
H. Blöte and B. Nienhuis 1994
\rightarrow value at $n=2$
Why $c_{\mathrm{FPL}}(2)=2 \quad$ whereas $\quad c_{\text {dense }}(2)=1$?

$c_{\text {FPL }}(n)=c_{\text {dense }}(n)+1 \quad$ H. Blöte and B. Nienhuis 1994
\rightarrow value at $n=2$
Why $c_{\mathrm{FPL}}(2)=2 \quad$ whereas $\quad c_{\text {dense }}(2)=1$?

$$
A+B+C=\mathbf{0}
$$

\boldsymbol{X} 2-component « height » variable
$c_{\text {FPL }}(n)=c_{\text {dense }}(n)+1 \quad$ H. Blöte and B. Nienhuis 1994
\rightarrow value at $n=2$
Why $c_{\mathrm{FPL}}(2)=2$ whereas $c_{\text {dense }}(2)=1$?

$$
\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C}=\mathbf{0} \text { and } \boldsymbol{A}=\mathbf{0}
$$

$\boldsymbol{X} 1$ component « height » variable

Effective Coulomb Gas description of FPL on honeycomb
J. Kondev, J. de Gier, B. Nienhuis 1996

Coarse grained variable $\boldsymbol{\Psi}(x)=\langle\boldsymbol{X}\rangle$ at position x

$$
\Psi=\psi_{1} \boldsymbol{A}+\psi_{2} \boldsymbol{b}_{\mathbf{2}}
$$

$$
\begin{gathered}
\mathcal{A}_{C G}=\int d^{2} x\left\{\pi g\left(\frac{1}{3}\left(\nabla \psi_{1}\right)^{2}+\left(\nabla \psi_{2}\right)^{2}\right)+\frac{1}{2} \mathrm{i} e_{0} \psi_{2} R\right\} \\
\text { Gaussian free fields }(\nabla \boldsymbol{\Psi})^{2}
\end{gathered}
$$

with $\quad \boldsymbol{\Psi} \in \mathbb{R}^{2} / \mathcal{R}$ where $\mathcal{R}:=\mathbb{Z}(\boldsymbol{A}-\boldsymbol{B})+\mathbb{Z}(\boldsymbol{A}-\boldsymbol{C})$ (repeat lattice)

Effective Coulomb Gas description of FPL on honeycomb

$$
g=\frac{1}{\pi} \arccos \left(-\frac{n}{2}\right), \quad \frac{1}{2} \leq g \leq 1 \quad(\text { for } 0 \leq n \leq 2)
$$

$$
4 \leq \kappa=4 / g \leq 8 \quad e_{0}=1-g\left(e^{4 \mathrm{i} \pi \psi_{2}} \text { is marginal }\right)
$$

$$
\boldsymbol{\Psi}=\psi_{1} \boldsymbol{A}+\psi_{2} \boldsymbol{b}_{\mathbf{2}}
$$

$$
\mathcal{A}_{C G}=\int d^{2} x\left\{\pi g\left(\frac{1}{3}\left(\nabla \psi_{1}\right)^{2}+\left(\nabla \psi_{2}\right)^{2}\right)+\frac{1}{2} \mathrm{i} e_{0} \psi_{2} R\right\}
$$

with $\quad \boldsymbol{\Psi} \in \mathbb{R}^{2} / \mathcal{R}$

$$
c_{\mathrm{FPL}}(n)=c_{\text {dense }}(n)+1=2-6 \frac{(1-g)^{2}}{g}
$$

Effective Coulomb Gas description of FXL on honeycomb dense

$$
\begin{aligned}
& g=\frac{1}{\pi} \arccos \left(-\frac{n}{2}\right), \quad \frac{1}{2} \leq g \leq 1 \quad(\text { for } 0 \leq n \leq 2) \\
& 4 \leq \kappa=4 / g \leq 8 \quad e_{0}=1-g\left(e^{4 i \pi \psi_{2}}\right. \text { is marginal) }
\end{aligned}
$$

$$
\boldsymbol{\Psi}=\psi_{\mathbf{1}} \boldsymbol{A}+\psi_{2} \boldsymbol{b}_{\mathbf{2}}
$$

$$
\mathcal{A}_{C G}=\int d^{2} x\left\{\pi g\left(\frac{1}{3}\left(\mathbb{P}^{2}+\left(\nabla \psi_{2}\right)^{2}\right)+\frac{1}{2} \mathrm{i} e_{0} \psi_{2} R\right\}\right.
$$

$$
\begin{array}{ll}
& \psi_{2} \in \mathbb{R} / \mathbb{Z} \\
\text { with } \quad \mathbf{\Psi}>\mathbb{R}^{2} / \mathcal{R}
\end{array}
$$

Correlation of « magnetic operators »= dislocations

$$
h_{\boldsymbol{M}}=\frac{g}{12} \phi_{1}^{2}+\frac{g}{4}\left(1-\delta_{\phi_{2}, 0}\right)\left(\phi_{2}^{2}-\left(1-g^{-1}\right)^{2}\right) \quad \text { for } \quad \boldsymbol{M}=\phi_{1} \boldsymbol{A}+\phi_{2} \boldsymbol{b}_{\mathbf{2}}
$$

J. Kondev, J. de Gier, B. Nienhuis 1996

$$
n=0(\text { (i.e., } g=1 / 2): \quad h_{M}(n=0)=\frac{1}{24} \phi_{1}^{2}+\frac{1}{8}\left(1-\delta_{\phi_{2}, 0}\right)\left(\phi_{2}^{2}-1\right)
$$

Examples $\quad \boldsymbol{M}=\boldsymbol{B}+2 \boldsymbol{A}=\frac{3}{2} \boldsymbol{A}+\frac{1}{2} \boldsymbol{b}_{\mathbf{2}}$

$$
M=\boldsymbol{A}+2 \boldsymbol{B}=\boldsymbol{b}_{2}
$$

$$
h_{\boldsymbol{A}+2 \boldsymbol{B}}(n=0)=0
$$

$M=3 \boldsymbol{A}$

5. KPZ predictions I: partition function

$$
\begin{aligned}
& \mathcal{Z}_{A} \sim \text { const. } \mu^{A} A^{\gamma(c)-3} \quad \gamma(c)=\frac{1}{12}(c-1-\sqrt{(1-c)(25-c)}) \\
& n=0 \quad \text { (i.e., } g=1 / 2): \quad c_{\mathrm{FPL}}(n=0)=-1
\end{aligned}
$$

$$
A=2 N \quad z_{N}=2 N \times \mathcal{Z}_{2 N} \sim \text { const. } \frac{\mu^{2 N}}{N^{2-\gamma}}
$$

$$
\gamma=\gamma(c=-1)=-\frac{1+\sqrt{13}}{6}
$$

E.Guitter, C. Kristjansen, J. Nielsen 1999
6. Numerics
(Transfer matrix)

vs prediction

$$
2-\gamma=\frac{13+\sqrt{13}}{6}=2.76759
$$

7. KPZ predictions II: correlators

$$
M=2 \boldsymbol{A}+\boldsymbol{B}=\frac{3}{2} \boldsymbol{A}+\frac{1}{2} \boldsymbol{b}_{\mathbf{2}}
$$

$$
\boldsymbol{M}=\boldsymbol{B}=-\frac{1}{2} \boldsymbol{A}+\frac{1}{2} \boldsymbol{b}_{\mathbf{2}}
$$

$$
\begin{array}{lll}
\beta_{z}=2-\gamma, & \beta_{y}=1+2 \Delta_{\frac{3}{2}} \boldsymbol{A}+\frac{1}{2} \boldsymbol{b}_{\boldsymbol{2}}-\gamma, & \beta_{x}=1+2 \Delta_{-\frac{1}{2} \boldsymbol{A}+\frac{1}{2} \boldsymbol{b}_{2}}-\gamma \\
\beta_{w}=1+2 \Delta_{\boldsymbol{A}}-\gamma, & \beta_{v}=1+2 \Delta_{2 \boldsymbol{A}}-\gamma, & \beta_{u}=\Delta_{2 \boldsymbol{A}}+2 \Delta_{\boldsymbol{A}}-\gamma .
\end{array}
$$

$$
\Delta_{M}:=\Delta\left(h_{M},-1\right)=\frac{\sqrt{1+12 h_{M}}-1}{\sqrt{13}-1}
$$

$$
h_{\boldsymbol{M}}=\frac{1}{24} \phi_{1}^{2}+\frac{1}{8}\left(1-\delta_{\phi_{2}, 0}\right)\left(\phi_{2}^{2}-1\right) \quad \text { for } \quad \boldsymbol{M}=\phi_{1} \boldsymbol{A}+\phi_{2} \boldsymbol{b}_{\mathbf{2}}
$$

$$
\begin{array}{lll}
\beta_{z}=2-\gamma, & \beta_{y}=1+2 \Delta_{\frac{3}{2} \boldsymbol{A}+\frac{1}{2} \boldsymbol{b}_{\mathbf{2}}}-\gamma, & \beta_{x}=1+2 \Delta_{-\frac{1}{2} \boldsymbol{A}+\frac{1}{2} \boldsymbol{b}_{\mathbf{2}}}-\gamma \\
\beta_{w}=1+2 \Delta_{\boldsymbol{A}}-\gamma, & \beta_{v}=1+2 \Delta_{2 \boldsymbol{A}}-\gamma, & \beta_{u}=\Delta_{2 \boldsymbol{A}}+2 \Delta_{\boldsymbol{A}}-\gamma
\end{array}
$$

$$
\Delta_{M}:=\Delta\left(h_{M},-1\right)=\frac{\sqrt{1+12 h_{M}}-1}{\sqrt{13}-1}
$$

$$
h_{\boldsymbol{M}}=\frac{1}{24} \phi_{1}^{2}+\frac{1}{8}\left(1-\delta_{\phi_{2}, 0}\right)\left(\phi_{2}^{2}-1\right) \quad \text { for } \quad \boldsymbol{M}=\phi_{1} \boldsymbol{A}+\phi_{2} \boldsymbol{b}_{\mathbf{2}}
$$

$\left.\begin{array}{|c|c|c|}\hline & \text { numerics } & \text { KPZ } \\ \hline \beta_{z} & 2.77 \pm 0.01 & \frac{1}{6}(13+\sqrt{13})=2.76759 \ldots \\ \beta_{y} & 1.90 \pm 0.01 & \frac{1}{6}(7+\sqrt{13})=1.76759 \ldots \\ \beta_{x} & 1.19 \pm 0.01 & 1 \\ \beta_{w} & 1.99 \pm 0.01 & 1+\frac{\sqrt{6}}{\sqrt{13}-1}=1.94010 \ldots \\ \beta_{v} & 2.42 \pm 0.06 & 1+\frac{2 \sqrt{3}}{\sqrt{13}-1}=2.32951 \ldots \\ \beta_{u} & 1.32 \pm 0.02 & \frac{\sqrt{3}+\sqrt{6}-1}{\sqrt{13}-1}=1.22106 \ldots \\ \hline\end{array}\right\}$

	numerics	$(4 / 3)$-corrected KPZ
β_{z}	2.77 ± 0.01	$\frac{1}{6}(13+\sqrt{13})=2.76759 \ldots$
β_{y}	1.90 ± 0.01	$1+\frac{\sqrt{22}}{2(\sqrt{13}-1)}=1.90008 \ldots$
β_{x}	1.19 ± 0.01	$1+\frac{\sqrt{6}}{6(\sqrt{13}-1)}=1.15668 \ldots$
β_{w}	1.99 ± 0.01	$1+\frac{2 \sqrt{15}}{3(\sqrt{13}-1)}=1.99096 \ldots$
β_{v}	2.42 ± 0.06	$1+\frac{2 \sqrt{33}}{3(\sqrt{13}-1)}=2.46983 \ldots$
β_{u}	1.32 ± 0.02	$\frac{2 \sqrt{15}+\sqrt{33}-3}{3(\sqrt{13}-1)}=1.34207 \ldots$

We used two GFFs $\quad \frac{g^{\prime}}{3}\left(\nabla \psi_{1}\right)^{2}+g\left(\nabla \psi_{2}\right)^{2}$

$$
\text { where } \quad g^{\prime}=g=\frac{1}{\pi} \arccos \left(-\frac{n}{2}\right) \quad, \frac{1}{2} \leq g \leq 1
$$

- $g: e^{4 \mathrm{i} \pi \psi_{2}}$ marginal
- what fixes g^{\prime} ?

$$
\begin{array}{ll}
\text { - what fixes } g \text { ? } & g=1 \rightarrow g^{\prime}=g=1 \quad \text { (from 3-color symmetry) } \\
g^{\prime}=\alpha(g) g & g=1 / 2 \rightarrow \alpha(1 / 2)=4 / 3 \rightarrow g^{\prime}=\alpha g=2 / 3 \\
g=2 / 3 \rightarrow \alpha(2 / 3)=9 / 8 \rightarrow g^{\prime}=\alpha g=3 / 4
\end{array}
$$

$\begin{array}{llll}\text { It is tempting to conjecture } \quad g^{\prime}=\frac{1}{2-g} & \left.\frac{4}{\kappa}+\frac{\kappa^{\prime}}{4}=2 \quad \begin{array}{l}\text { (6-vertex model) } \\ \text { I. Kostov } 2000\end{array}\right)\end{array}$

It is tempting to conjecture

$$
g^{\prime}=\frac{1}{2-g} \quad \frac{4}{\kappa}+\frac{\kappa^{\prime}}{4}=2
$$

8. General bicolored maps

4-,5-,6-,7-regular

$$
\begin{aligned}
\gamma=\gamma(-1) & =-\frac{1+\sqrt{13}}{6} \\
c & =-1
\end{aligned}
$$

$\{2,3\}$-, $\{2,4\}$-mixed \& rigid (exact)

$$
\begin{gathered}
\gamma=\gamma(-2)=-1 \\
c=-2
\end{gathered}
$$

9. Long-distance contacts

$$
\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \quad \mathrm{SLE}_{8}
$$

Hausdorff dimension $D=2$

$$
\widetilde{\mathcal{C}}=\mathcal{C}_{1} \cap \mathcal{C}_{2} \quad \mathrm{SLE}_{2}
$$

Hausdorff dimension $\widetilde{D}=5 / 4$

$\mathbb{E}\left|\mathcal{C}_{1} \cap \mathcal{C}_{2}\right| \asymp A^{\widetilde{D} / 2}=A^{1-h_{1 \cap 2}}, \quad h_{1 \cap 2}=3 / 8, \quad A \rightarrow \infty$

Liouville Quantum Gravity

$$
\begin{aligned}
& \gamma_{\mathrm{L}}=\sqrt{2}, \quad c=-2 \\
& \gamma_{\mathrm{L}}=\frac{1}{\sqrt{3}}(\sqrt{13}-1), c=-1
\end{aligned}
$$

$\mathbb{E}_{\mathrm{LQG}}\left|\mathcal{C}_{1} \cap \mathcal{C}_{2}\right| \asymp \mathcal{A}^{\nu}:=\mathcal{A}^{1-\Delta_{1 \cap 2}}$

$$
\begin{aligned}
& \Delta_{1 \cap 2}=\Delta(3 / 8, c=-2)=1 / 2, \\
& \nu=1-\Delta_{1 \cap 2}=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{1 \cap 2}=\Delta(3 / 8, c=-1)=\frac{\sqrt{11}-\sqrt{2}}{\sqrt{26}-\sqrt{2}} \\
& \nu=1-\Delta_{1 \cap 2}=\frac{\sqrt{26}-\sqrt{11}}{\sqrt{26}-\sqrt{2}}=0.483715
\end{aligned}
$$

exponent ν for rigid Hamiltonian cycles on 4-regular bicolored maps

exponent ν for Hamiltonian cycles on 3-regular bicolored maps

Hamiltonian cycles on bicolored maps with mixed valencies 2 and 3

SLE vs fully packed exponents

$$
\kappa=\frac{4 \pi}{\arccos (-n / 2)} \in(4,8] \text { for } n \in[0,2)
$$

$$
\begin{aligned}
& h_{\ell}^{(\kappa)}=\frac{1}{16 \kappa}\left[4 \ell^{2}-(4-\kappa)^{2}\right], \quad \ell \in \mathbb{Z}^{+} \\
& h_{2 k}^{\mathrm{fpl}(n)}=h_{2 k}^{(\kappa)} \\
& h_{2 k-1}^{\mathrm{fpl}(n)}=h_{2 k-1}^{(\kappa)}+\frac{3}{4 \kappa} \quad(\square), \\
& h_{2 k-1}^{\mathrm{fpl}(n)}=h_{2 k-1}^{(\kappa)}+\frac{1}{6+\kappa} \quad(\square), \quad k \in \mathbb{Z}^{+} .
\end{aligned}
$$

(multiple SLEs, arm exponents)

$$
h_{1 \cap 2}:=h_{\ell=4}^{\mathrm{fpl}(0)}=h_{\ell=4}^{(\kappa=8)}=h_{\ell=2}^{(\widetilde{\kappa}=2)}=\frac{3}{8}
$$

Thank you!

On the importance of being bicolored FPL (0) model on cubic planar maps?

$$
\begin{gathered}
\boldsymbol{A}=\mathbf{0} \quad \boldsymbol{C}=-\boldsymbol{B} \\
c_{\text {dense }}(n=0)=-2 \quad \text { B.D., I. Kostov } 1988 \\
z_{N}^{\circ} \sim \text { const. } \frac{\left(\mu^{\circ}\right)^{2 N}}{N^{2-\gamma^{\circ}}} \quad \gamma^{\circ}=\gamma(c=-2)=-1
\end{gathered}
$$

$\underset{\sim \longrightarrow-\boldsymbol{B}}{\boldsymbol{X}-} \quad z_{N}^{\circ}=\sum_{k=0}^{N}\binom{2 N}{2 k} \operatorname{Cat}_{k} \operatorname{Cat}_{N-k}=\operatorname{Cat}_{N} \operatorname{Cat}_{N+1} \sim \operatorname{const} . \frac{4^{2 N}}{N^{3}}$ where $\operatorname{Cat}_{N}=\binom{2 N}{N} /(N+1)$

