

Geometry and Borel Summability of Exact WKB Solutions

Nikita Nikolaev

LEVERHULME TRUST_____

11 April 2023

Invitation to Recursion, Resurgence and Combinatorics

Okinawa Institute of Science and Technology (OIST)

Okinawa, Japan

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar \partial_x)^n \psi + p_1(\hbar \partial_x)^{n-1} \psi + \dots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k\right) \psi(x, \hbar) = 0$$
 (**)

where $p_k(x,\hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar \partial_x)^n \psi + p_1(\hbar \partial_x)^{n-1} \psi + \dots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k\right) \psi(x, \hbar) = 0$$
 (**)

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

• Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$ (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ Schrödinger equation Berk-Nevins-Roberts equation

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar \partial_x)^n \psi + p_1 (\hbar \partial_x)^{n-1} \psi + \dots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k \right) \psi(x, \hbar) = 0$$
 (**)

where $p_k(x,\hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

- Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$ Schrödinger equation (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ Berk-Nevins-Roberts equation
- More generally: \hbar -differential operator on a line bundle \mathcal{L} over a curve (X, D):

$$P: \mathcal{L} \to \mathcal{L} \otimes \operatorname{Sym}^n \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar] \qquad \text{such that} \qquad P\big|_{\hbar=0}(fe) = fP\big|_{\hbar=0}(e)$$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar \partial_x)^n \psi + p_1 (\hbar \partial_x)^{n-1} \psi + \dots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k \right) \psi(x, \hbar) = 0$$
 (**)

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

- Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar)) \psi = 0$ Schrödinger equation (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix) \psi = 0$ Berk-Nevins-Roberts equation
- More generally: \hbar -differential operator on a line bundle \mathcal{L} over a curve (X, D):

$$P: \mathcal{L} \to \mathcal{L} \otimes \operatorname{Sym}^n \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar] \qquad \text{such that} \qquad P\big|_{\hbar=0}(fe) = fP\big|_{\hbar=0}(e)$$

• Even more generally: \hbar -connection on a vector bundle \mathcal{E} over a curve (X, D):

$$\nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega^1_{X,D}[\hbar]$$
 such that $\nabla(fe) = f \nabla e + \hbar \, \mathrm{d} f \otimes e$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar \partial_x)^n \psi + p_1 (\hbar \partial_x)^{n-1} \psi + \dots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k \right) \psi(x, \hbar) = 0$$
 (**)

where $p_k(x, \hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

- Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$ Schrödinger equation (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ Berk-Nevins-Roberts equation
- More generally: \hbar -differential operator on a line bundle \mathcal{L} over a curve (X, D):

$$P:\mathcal{L} o \mathcal{L} \otimes \operatorname{Sym}^n \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar] \qquad \text{such that} \qquad P \big|_{\hbar=0}(fe) = fP \big|_{\hbar=0}(e)$$

• Even more generally: \hbar -connection on a vector bundle \mathcal{E} over a curve (X, D):

$$\nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega^1_{X,D}[\hbar]$$
 such that $\nabla(fe) = f \nabla e + \hbar \, \mathrm{d} f \otimes e$

• WKB method: solve (\bigstar) using the WKB ansatz $\psi(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x s(x,\hbar) \, dx\right)$

• Start with singularly perturbed linear ODE in a domain $X \subset \mathbb{C}_x$:

$$(\hbar \partial_x)^n \psi + p_1(\hbar \partial_x)^{n-1} \psi + \dots = \left(\sum_{k=0}^n p_{n-k} \hbar^k \partial_x^k\right) \psi(x, \hbar) = 0$$
 (**)

where $p_k(x,\hbar) \in \mathcal{O}_X[\hbar]$ or $\mathcal{O}_X(D)[\hbar]$

- Examples: (1) $(\hbar^2 \partial_x^2 + q(x, \hbar))\psi = 0$ Schrödinger equation (2) $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$ Berk-Nevins-Roberts equation
- More generally: \hbar -differential operator on a line bundle $\mathcal L$ over a curve (X,D):

$$P:\mathcal{L} \to \mathcal{L} \otimes \operatorname{Sym}^n \Omega^1_{\mathsf{X},\mathsf{D}}[\hbar] \qquad \text{such that} \qquad P\big|_{\hbar=0}(fe) = fP\big|_{\hbar=0}(e)$$

• Even more generally: \hbar -connection on a vector bundle $\mathcal E$ over a curve (X,D):

$$\nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega^1_{X,D}[\hbar]$$
 such that $\nabla(fe) = f \nabla e + \hbar \, \mathrm{d} f \otimes e$

• WKB method: solve (\bigstar) using the WKB ansatz $\psi(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x s(x,\hbar) \, dx\right)$

Two Questions Addressed Today

- **1** When does the WKB method lead to solutions of (\bigstar) with *good* asymptotics as $\hbar \to 0$?
- **2** What is the WKB method for P and ∇ ?

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar \partial_x)^{n-1} s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0$ (\spadesuit)

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar \partial_x)^{n-1} s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0$ (\blacklozenge)

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar \partial_x)^{n-1} s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0$ (\spadesuit)

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen generically, there are n formal solutions

$$\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}\llbracket \hbar \rrbracket \qquad i = 1,\dots, n$$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_n = 0$$
 where $a_k(x) := p_k(x,0)$

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar \partial_x)^{n-1} s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0$ (\spadesuit)

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen generically, there are n formal solutions

$$\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}\llbracket \hbar \rrbracket \qquad i = 1,\dots, n$$

uniquely and recursively determined by leading-orders $s_i^{\scriptscriptstyle(0)}=\lambda_i(x)$ that are roots of

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_n = 0 \qquad \text{where} \qquad a_k(x) := p_k(x, 0)$$

and therefore n unique **formal WKB solutions** normalised at x_0 :

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \, \mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)} \hbar^k$$

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar \partial_x)^{n-1} s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0$ (\spadesuit)

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen generically, there are n formal solutions

$$\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}[\![\hbar]\!] \qquad i = 1,\dots,n$$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$\lambda^{n} + a_{1}\lambda^{n-1} + \ldots + a_{n} = 0$$
 where $a_{k}(x) := p_{k}(x, 0)$

and therefore n unique *formal WKB solutions* normalised at x_0 :

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \, \mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)} \hbar^k$$

• "Generically" := away from *turning points* := zeros of the discriminant of (\spadesuit)

• Plug the WKB ansatz into (\bigstar) to get a nonlinear ODE of order n-1:

$$(\hbar \partial_x)^{n-1} s + s^n + \ldots = 0$$
; explicitly: $\sum_{k=1}^n p_k (\hbar \partial_x + s)^{k-1} s = 0$ (\spadesuit)

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_0 is chosen generically, there are n formal solutions

$$\widehat{s}_i(x,\hbar) = \sum_{k=0}^{\infty} s_i^{(k)}(x)\hbar^k \in \mathcal{O}_{\mathsf{X},x_0}\llbracket \hbar \rrbracket \qquad i = 1,\dots,n$$

uniquely and recursively determined by leading-orders $s_i^{(0)} = \lambda_i(x)$ that are roots of

$$\lambda^n + a_1 \lambda^{n-1} + \ldots + a_n = 0$$
 where $a_k(x) := p_k(x, 0)$

and therefore n unique formal WKB solutions normalised at x_0 :

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \, \mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)} \hbar^k$$

- "Generically" := away from *turning points* := zeros of the discriminant of (\spadesuit)
- $\hat{\psi}_k$ is very computable but almost always divergent!

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ? i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ? i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\widehat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way? i.e.: is $\widehat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way?

i.e.: is $\widehat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Main Results [N] (rough statement)

1 Formal WKB solutions $\widehat{\psi}_1,\ldots,\widehat{\psi}_n$ are Borel-summable away from relevant Stokes lines.

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way?

i.e.: is $\widehat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Main Results [N] (rough statement)

- $oldsymbol{0}$ Formal WKB solutions $\widehat{\psi}_1,\ldots,\widehat{\psi}_n$ are Borel-summable away from relevant Stokes lines.
- 2 Their Borel resummations ψ_1, \dots, ψ_n are uniquely determined by an asymptotic condition, and therefore have an invariant geometric meaning for a differential operator P on a line bundle $\mathcal L$ over (X,D) .

Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i ?

i.e.: is $\widehat{\psi}_i$ the asymptotic/perturbative expansion as $\hbar \to 0$ of a holomorphic ψ_i ?

A: Yes! [Asymptotic Existence Theorem]

BUT: such ψ_i is highly non-unique and not constructive

BETTER Q: Can $\widehat{\psi}_i$ be upgraded to a holomorphic solution ψ_i in a canonical way?

i.e.: is $\widehat{\psi}_i$ Borel-summable to a holomorphic solution ψ_i ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_1, \ldots, \lambda_n$

Main Results [N] (rough statement)

- $oldsymbol{0}$ Formal WKB solutions $\widehat{\psi}_1,\ldots,\widehat{\psi}_n$ are Borel-summable away from relevant Stokes lines.
- 2 Their Borel resummations ψ_1, \dots, ψ_n are uniquely determined by an asymptotic condition, and therefore have an invariant geometric meaning for a differential operator P on a line bundle $\mathcal L$ over (X,D) .
- **3** Geometrically, the WKB method is a method to search for an invariant splitting of an oper structure on (\mathcal{E}, ∇) , so exact WKB solutions make sense for connections.

• WKB trajectory of type ij emanating from x_0 is locally given by

$$\Gamma_{ij}(x_0) : \operatorname{Im}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) = 0 \quad \text{and} \quad \operatorname{Re}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) \geqslant 0$$

$$\Gamma_{ij}(x_0)$$

• WKB trajectory of type ij emanating from x_0 is locally given by

$$\Gamma_{ij}(x_0)$$
 : $\operatorname{Im}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) = 0$ and $\operatorname{Re}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) \geqslant 0$

• Natural flow time parameter: $t(x) := \int_{x_0}^{x(t)} (\lambda_i - \lambda_j) dx$

• WKB trajectory of type ij emanating from x_0 is locally given by

$$\Gamma_{ij}(x_0)$$
 : $\operatorname{Im}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) = 0$ and $\operatorname{Re}\left(\int_{x_0}^x (\lambda_i - \lambda_j) \, \mathrm{d}x\right) \geqslant 0$

• Natural flow time parameter: $t(x) := \int_{x_0}^{x(t)} (\lambda_i - \lambda_j) dx$

- $\Gamma_{ij}(x_0)$ is *nonsingular* if it is infinitely long and encounters no turning points
- $\Gamma_{ij}(x_0)$ is *singular* if it flows into a turning point

- ullet A Stokes line of type ij on X is a maximal singular WKB trajectory of type ij
- Stokes 'graph' or network := collection of all Stokes lines on X

- A Stokes line of type ij on X is a maximal singular WKB trajectory of type ij
- Stokes 'graph' or network := collection of all Stokes lines on X

- ullet A Stokes line of type ij on X is a maximal singular WKB trajectory of type ij
- Stokes 'graph' or network := collection of all Stokes lines on X

• WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i - \lambda_j) dx$

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1\lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) \, \mathrm{d} x$
- The characteristic equation $\lambda^n + a_1\lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

• $\lambda_i dx$ is the local expression for λ on sheet i of Σ

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1\lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

- $\lambda_i dx$ is the local expression for λ on sheet i of Σ
- Lemma: $(\lambda_i \lambda_j) dx$ are local expressions for adjoint canonical differential ad λ on

$$\operatorname{ad} \lambda := \pi_1^* \lambda - \pi_2^* \lambda$$

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1\lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

- $\lambda_i dx$ is the local expression for λ on sheet i of Σ
- Lemma: $(\lambda_i \lambda_j) dx$ are local expressions for adjoint canonical differential $ad \lambda$ on

- *turning points* := ramification locus of ad π : ad $\Sigma \longrightarrow X$
- *WKB trajectories* := leaves of \mathbb{R}_+ -foliation of ad λ on ad Σ
- *Stokes lines* := maximal singular WKB trajectories on ad Σ
- *Stokes graph* := collection of all Stokes lines on $\operatorname{ad} \Sigma$

- WKB trajectories of type ij are leaves of \mathbb{R}_+ -foliation of the differential $(\lambda_i \lambda_j) dx$
- The characteristic equation $\lambda^n + a_1\lambda^{n-1} + \cdots + a_n = 0$ (\spadesuit) is a *spectral curve*:

- $\lambda_i dx$ is the local expression for λ on sheet i of Σ
- Lemma: $(\lambda_i \lambda_j) dx$ are local expressions for adjoint canonical differential ad λ on

- *turning points* := ramification locus of ad π : ad $\Sigma \longrightarrow X$
- *WKB trajectories* := leaves of \mathbb{R}_+ -foliation of ad λ on ad Σ
- *Stokes lines* := maximal singular WKB trajectories on ad Σ
- Stokes graph := collection of all Stokes lines on ad Σ
- Stokes network on X is the projection of the Stokes graph under $\operatorname{ad} \pi : \operatorname{ad} \Sigma \longrightarrow X$

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Fix $x_0 \in X$ *ordinary point* := neither a turning point nor a pole

Definition (n = 2)

The WKB flow of x_0 of type i is nonsingular if the WKB trajectory $\Gamma_{ij}(x_0)$ is nonsingular.

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Fix $x_0 \in X$ *ordinary point* := neither a turning point nor a pole

Definition (n = 2)

The WKB flow of x_0 of type i is nonsingular if the WKB trajectory $\Gamma_{ij}(x_0)$ is nonsingular.

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition $(n \geqslant 3)$

The WKB flow of x_0 of type i is nonsingular if

• each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \dots, \Gamma_{in}(x_0)$ is nonsingular

Definition $(n \geqslant 3)$

The WKB flow of x_0 of type i is nonsingular if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \dots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{jk}(x_1)$ encounters no turning points

Definition $(n \geqslant 3)$

The WKB flow of x_0 of type i is nonsingular if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \dots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{jk}(x_1)$ encounters no turning points
- Repeat for $\Gamma_{kj}(x_1)$

Definition $(n \geqslant 3)$

The WKB flow of x_0 of type i is nonsingular if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \dots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{jk}(x_1)$ encounters no turning points
- Repeat for $\Gamma_{kj}(x_1)$
- This process terminates at a finite number of iterations

Definition ($n \geqslant 3$)

The WKB flow of x_0 of type i is nonsingular if

- each WKB trajectory $\Gamma_{i1}(x_0), \Gamma_{i2}(x_0), \dots, \Gamma_{in}(x_0)$ is nonsingular
- Whenever $\Gamma_{ij}(x_0)$ intersects a singular trajectory of type ik, let $x_1 \in X$ be an intersection point, and assume $\Gamma_{jk}(x_1)$ encounters no turning points
- Repeat for $\Gamma_{kj}(x_1)$
- This process terminates at a finite number of iterations

• Complete Stokes network := locus of all points on X with singular WKB flow

Example (BNR): $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$

Example (BNR): $(\hbar^3 \partial_x^3 + 3\hbar \partial_x + 2ix)\psi = 0$

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 .

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 . Assume that the WKB flow of x_0 of type i is nonsingular.

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 .

Assume that the WKB flow of x_0 of type i is nonsingular.

Then the formal WKB solution

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \, \mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k$$

is uniformly Borel summable near x_0 :

$$\psi_i(x,\hbar) := \Sigma[\widehat{\psi}_i](x,\hbar) = e^{\int_{x_0}^x \lambda_i/\hbar} \Sigma\left(\sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k\right)$$

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 .

Assume that the WKB flow of x_0 of type i is nonsingular.

Then the formal WKB solution

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \, \mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)}(x) \hbar^k$$

is uniformly Borel summable near x_0 :

$$\psi_i(x,\hbar) := \Sigma \big[\widehat{\psi}_i \big](x,\hbar) = e^{\int_{x_0}^x \lambda_i/\hbar} \Sigma \left(\sum_{k=0}^\infty \psi_i^{(k)}(x) \hbar^k \right)$$

In fact, ψ_i is the unique solution for x near x_0 which is asymptotically smooth with factorial growth uniformly as $\hbar \to 0$ with $\mathrm{Re}(\hbar) > 0$ and uniformly in x, and satisfies

$$\psi_i(x_0,\hbar)=1$$
 and $\mathbf{æ}\big(\psi_i(x,\hbar)\big)=\widehat{\psi}_i(x,\hbar)$ as $\hbar\to 0$ with $\mathrm{Re}(\hbar)>0$

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_0 \in X$ ordinary point and λ_i leading-order characteristic root near x_0 .

Assume that the WKB flow of x_0 of type i is nonsingular.

Then the formal WKB solution

$$\widehat{\psi}_i(x,\hbar) = \exp\left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s}_i(x,\hbar) \, \mathrm{d}x\right) = e^{\int_{x_0}^x \lambda_i/\hbar} \sum_{k=0}^\infty \psi_i^{(k)}(x) \hbar^k$$

is uniformly Borel summable near x_0 :

$$\psi_i(x,\hbar) := \Sigma[\widehat{\psi}_i](x,\hbar) = e^{\int_{x_0}^x \lambda_i/\hbar} \Sigma\left(\sum_{k=0}^\infty \psi_i^{(k)}(x)\hbar^k\right)$$

In fact, ψ_i is the unique solution for x near x_0 which is asymptotically smooth with factorial growth uniformly as $\hbar \to 0$ with $\mathrm{Re}(\hbar) > 0$ and uniformly in x, and satisfies

$$\psi_i(x_0,\hbar) = 1$$
 and $\mathbf{æ}(\psi_i(x,\hbar)) = \widehat{\psi}_i(x,\hbar)$ as $\hbar \to 0$ with $\mathrm{Re}(\hbar) > 0$

Corollary

Uniqueness yields a notion of *exact WKB flat sections* of \mathcal{L} for P on (X, D).

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Lemma

The Borel transform of \hat{s}_i is uniformly convergent near x_0 :

$$\widehat{\boldsymbol{\sigma}}_{\boldsymbol{i}}(\boldsymbol{x},\boldsymbol{\xi}) := \mathfrak{B}\big[\widehat{\boldsymbol{s}}_{i}\big] = \mathfrak{B}\left[\lambda_{i} + \sum_{k=1}^{\infty} s_{i}^{(k)}(\boldsymbol{x})\boldsymbol{\hbar}^{k}\right] = \sum_{k=0}^{\infty} \frac{1}{k!} s_{i}^{(k+1)}(\boldsymbol{x})\boldsymbol{\xi}^{k} \in \mathcal{O}_{\mathsf{X},x_{0}}\{\boldsymbol{\xi}\}$$

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Lemma

The Borel transform of \hat{s}_i is uniformly convergent near x_0 :

$$\widehat{\boldsymbol{\sigma}}_{\boldsymbol{i}}(\boldsymbol{x},\boldsymbol{\xi}) := \mathfrak{B}\big[\widehat{s}_{i}\big] = \mathfrak{B}\left[\lambda_{i} + \sum_{k=1}^{\infty} s_{i}^{(k)}(\boldsymbol{x})\hbar^{k}\right] = \sum_{k=0}^{\infty} \frac{1}{k!} s_{i}^{(k+1)}(\boldsymbol{x})\xi^{k} \in \mathcal{O}_{\mathsf{X},x_{0}}\{\xi\}$$

Goal

Construct the analytic continuation σ_i of $\hat{\sigma}_i$ for all $\xi \in \mathbb{R}_+$ and define

$$s_{i}(x,\hbar) := \lambda_{i} + \mathfrak{L}[\sigma_{i}] = \lambda_{i}(x) + \int_{0}^{+\infty} e^{-\xi/\hbar} \sigma_{i}(x,\xi) \,d\xi$$
$$\psi_{i}(x,\hbar) := \exp\left(\frac{1}{\hbar} \int_{x_{0}}^{x} s_{i}(x',\hbar) \,dx'\right)$$

Focus on the Riccati equation $\hbar \partial_x s + s^2 + p_1 s + p_2 = 0$

Lemma

The Borel transform of \hat{s}_i is uniformly convergent near x_0 :

$$\widehat{\boldsymbol{\sigma}}_{\boldsymbol{i}}(\boldsymbol{x},\boldsymbol{\xi}) := \mathfrak{B}\big[\widehat{s}_{i}\big] = \mathfrak{B}\bigg[\lambda_{i} + \sum_{k=1}^{\infty} s_{i}^{(k)}(\boldsymbol{x})\hbar^{k}\bigg] = \sum_{k=0}^{\infty} \frac{1}{k!} s_{i}^{(k+1)}(\boldsymbol{x})\xi^{k} \in \mathcal{O}_{\mathsf{X},x_{0}}\{\xi\}$$

Goal

Construct the analytic continuation σ_i of $\hat{\sigma}_i$ for all $\xi \in \mathbb{R}_+$ and define

$$s_{i}(x,\hbar) := \lambda_{i} + \mathfrak{L}[\sigma_{i}] = \lambda_{i}(x) + \int_{0}^{+\infty} e^{-\xi/\hbar} \sigma_{i}(x,\xi) \,d\xi$$
$$\psi_{i}(x,\hbar) := \exp\left(\frac{1}{\hbar} \int_{x_{0}}^{x} s_{i}(x',\hbar) \,dx'\right)$$

Recall: uniform summability
$$\implies \Sigma \left[\exp \left(\frac{1}{\hbar} \int_{x_0}^x \widehat{s} \, \mathrm{d}x / \hbar \right) \right] = \exp \left(\frac{1}{\hbar} \int_{x_0}^x \Sigma \left[\widehat{s} \right] \, \mathrm{d}x \right)$$

To construct the analytic continuation σ_i , argue as follows.

To construct the analytic continuation σ_i , argue as follows.

1 Simplify by linearising the Riccati equation around λ_i :

Let
$$s = \frac{\lambda_i}{l} + S \implies \hbar \partial_x S + (\frac{\lambda_i}{l} - \frac{\lambda_i}{l})S = \hbar A_0 + \hbar A_1 S - S^2$$

To construct the analytic continuation σ_i , argue as follows.

1 Simplify by linearising the Riccati equation around λ_i :

Let
$$s = \frac{\lambda_i}{l} + S \implies \hbar \partial_x S + (\frac{\lambda_i}{l} - \frac{\lambda_j}{l})S = \hbar A_0 + \hbar A_1 S - S^2$$

2 Apply the Borel transform:

Let
$$\sigma = \mathfrak{B}[S]$$
 \Longrightarrow $\partial_x \sigma + (\lambda_i - \lambda_j)\partial_\xi \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma - \partial_\xi \sigma^{*2}$

To construct the analytic continuation σ_i , argue as follows.

1 Simplify by linearising the Riccati equation around λ_i :

Let
$$s = \frac{\lambda_i}{\delta} + S \implies \hbar \partial_x S + (\frac{\lambda_i}{\delta} - \frac{\lambda_j}{\delta}) S = \hbar A_0 + \hbar A_1 S - S^2$$

2 Apply the Borel transform:

Let
$$\sigma = \mathfrak{B}[S]$$
 \Longrightarrow $\partial_x \sigma + (\lambda_i - \lambda_j)\partial_\xi \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma - \partial_\xi \sigma^{*2}$

3 Rewrite as an integral equation:

$$\sigma(x,\xi) = a_0 - \int_0^{\xi} (\text{righthand side}) \begin{vmatrix} \mathbf{x_0} \\ (\mathbf{x(t)}, \xi - t) \end{vmatrix} dt \quad \text{where} \quad t = \int_{x_0}^{\mathbf{x(t)}} \lambda_{ij} dx$$

To construct the analytic continuation σ_i , argue as follows.

1 Simplify by linearising the Riccati equation around λ_i :

Let
$$s = \lambda_i + S \implies \hbar \partial_x S + (\lambda_i - \lambda_j) S = \hbar A_0 + \hbar A_1 S - S^2$$

2 Apply the Borel transform:

Let
$$\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + (\lambda_i - \lambda_j) \partial_\xi \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma - \partial_\xi \sigma^{*2}$$

3 Rewrite as an integral equation:

$$\sigma(x,\xi) = a_0 - \int_0^{\xi} (\text{righthand side}) \begin{vmatrix} \mathbf{x}_0 \\ (\mathbf{x}(t), \xi - t) \end{vmatrix} dt \quad \text{where} \quad t = \int_{x_0}^{\mathbf{x}(t)} \lambda_{ij} dx$$

4 Construct σ_i using the method of successive approximations: define $\{\tau_k(x,\xi)\}$ by

$$\tau_0 := a_0, \qquad \tau_1 := -\int_0^{\xi} (\alpha_0 + a_1 \tau_0) dt, \qquad \tau_2 := -\int_0^{\xi} (a_1 \tau_1 + \alpha_1 * \tau_0) dt, \qquad \cdots$$

To construct the analytic continuation σ_i , argue as follows.

1 Simplify by linearising the Riccati equation around λ_i :

Let
$$s = \lambda_i + S \implies \hbar \partial_x S + (\lambda_i - \lambda_j) S = \hbar A_0 + \hbar A_1 S - S^2$$

2 Apply the Borel transform:

Let
$$\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + (\lambda_i - \lambda_j) \partial_\xi \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma - \partial_\xi \sigma^{*2}$$

3 Rewrite as an integral equation:

$$\sigma(x,\xi) = a_0 - \int_0^{\xi} \text{(righthand side)} \left| \begin{array}{c} \mathbf{x_0} \\ (\mathbf{x(t)}, \xi - t) \end{array} \right| \, \mathrm{d}t \qquad \text{where} \qquad t = \int_{x_0}^{\mathbf{x(t)}} \lambda_{ij} \, \mathrm{d}x$$

4 Construct σ_i using the method of successive approximations: define $\{\tau_k(x,\xi)\}$ by

$$\tau_0 := a_0, \qquad \tau_1 := -\int_0^{\xi} (\alpha_0 + a_1 \tau_0) dt, \qquad \tau_2 := -\int_0^{\xi} (a_1 \tau_1 + \alpha_1 * \tau_0) dt, \qquad \cdots$$

5 Lemma: $\sigma_i(x, \xi) := \sum_{k=0}^{\infty} \tau_k(x, \xi)$ is uniformly convergent for all $\xi \in \mathbb{R}_+$, of exponential type, and $\widehat{\sigma}_i$ is its Taylor series at $\xi = 0$

§3.2. Proof Outline $(n \ge 3)$ | skip!

Focus on the equation $(\hbar \partial_x)^{n-1} s + s^n + \ldots = 0$ (\blacklozenge) and argue as follows.

1 Rewrite as a nonlinear system: put $y_1 = s$, $y_2 = \hbar \partial_x y$, . . ., and consider

$$\hbar \partial_x y = F(x, \hbar, y)$$

Example (BNR):
$$\left(\hbar^3\partial_x^3 + 3\hbar\partial_x + 2ix\right)\psi = 0$$
 $heading-order solution $y_i^{(0)} = \begin{bmatrix} y_1^2 - y_2 \\ y_1y_2 + 3y_1 + 2ix \end{bmatrix}$
 $heading-order Jacobian at $y_i^{(0)}$ is $J_i = -\frac{\partial F}{\partial y}\Big|_{y=y_i^{(0)}} = \begin{bmatrix} 2\lambda_i & -1 \\ \lambda_i^2 + 3 & \lambda_i \end{bmatrix}$
 J_i is diagonalisable to $\Lambda_i := \begin{bmatrix} \lambda_i - \lambda_j \\ \lambda_i - \lambda_i \end{bmatrix}$$$

2 Linearise around the leading-order solution $y_i^{(0)}$ and apply a gauge transformation G to diagonalise the Jacobian J_i :

Let
$$y = y_i^{(0)} + GS \implies \hbar \partial_x S + \Lambda_i S = \hbar A_0 + \hbar A_1 S + \underbrace{\cdots}_{\text{at least quadratic in } \hbar \text{ or } S}$$

3 Apply the Borel transform:

Let
$$\sigma = \mathfrak{B}[S] \implies \partial_x \sigma + \Lambda_i \partial_{\xi} \sigma = \alpha_0 + a_1 \sigma + \alpha_1 * \sigma + \cdots$$

4 Rewrite as a system of integral equations: j = 1, ..., n-1

$$\sigma^{j}(x,\xi) = a_{0}^{j} - \int_{0}^{\xi} (\text{righthand side}) \Big|_{\left(\boldsymbol{x}^{j}(t), \xi - t\right)} dt \quad \text{where} \quad t = \int_{x_{0}}^{\boldsymbol{x}^{j}(t)} \lambda_{ij} dx$$

6 Construct σ_i using the method of successive approximations: define $\{\tau_k(x,\xi)\}$ by

$$\tau_0 := a_0, \qquad \tau_1 := -\int_0^{\xi} (\alpha_0 + a_1 \tau_0) dt, \qquad \tau_2 := -\int_0^{\xi} (a_1 \tau_1 + \alpha_1 * \tau_0) dt, \qquad \cdots$$

6 Lemma 1: $\sigma_i(x,\xi) := \sum_{k=0}^{\infty} \tau_k(x,\xi)$ is uniformly convergent near $\xi = 0$, and $\widehat{\sigma}_i$ is its Taylor series at $\xi = 0$

§3.2. Proof Outline $(n \geqslant 3)$ | skip!

6 To analytically continue σ to all $\xi \in \mathbb{R}_+$, carefully examine cross-terms starting in τ_2 :

$$\tau_{2} := -\int_{0}^{\xi} \left(\underbrace{a_{1}\tau_{1}}_{+\alpha_{1}} + \alpha_{1} * \tau_{0} \right) dt$$

$$\vdots$$

$$a_{11}^{j}\tau_{1}^{1} + \dots + a_{1n}^{j}\tau_{1}^{n}$$

$$\vdots$$

$$\vdots$$

$$\uparrow_{0}^{\xi} \int_{0}^{\xi-t} \tau \left(\left(x^{j}(t) \right)^{k}(u), \xi - t - u \right) du dt$$

Q Lemma 2: thanks to the assumption that the (complete) WKB flow is nonsingular, $\sigma(x,\xi)$ admits analytic continuation to $\xi \in \mathbb{R}_+$ of exponential type

The Geometric WKB Problem

The Geometric WKB Problem

0 GIVEN: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$

The Geometric WKB Problem

0 <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Problem

0 <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.

The Geometric WKB Problem

⊙ <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- **2** Write $W: \mathcal{E}'' \to \mathcal{E}' \oplus \mathcal{E}''$ as $S \oplus \mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$\begin{bmatrix} \mathrm{id} & W \\ 0 & W \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' & \longrightarrow \mathcal{E}' \\ \oplus & \oplus \\ \mathcal{E}'' & \longrightarrow \mathcal{E}'' \end{bmatrix}$$

The Geometric WKB Problem

⊙ <u>GIVEN</u>: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$ <u>FIND</u>: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- **2** Write $W: \mathcal{E}'' \to \mathcal{E}' \oplus \mathcal{E}''$ as $S \oplus \mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$\begin{bmatrix} \mathrm{id} & W \\ 0 & W \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' & \longrightarrow & \mathcal{E}' \\ \oplus & & \oplus \\ \mathcal{E}'' & \longrightarrow & \mathcal{E}'' \end{array}$$

3 Write $\nabla = \nabla_0 - \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

The Geometric WKB Problem

0 GIVEN: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}'' \longrightarrow 0$ FIND: a ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$.

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- **2** Write $W: \mathcal{E}'' \to \mathcal{E}' \oplus \mathcal{E}''$ as $S \oplus \mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$\begin{bmatrix} \mathrm{id} & W \\ 0 & W \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' & \longrightarrow & \mathcal{E}' \\ \oplus & & \oplus \\ \mathcal{E}'' & \longrightarrow & \mathcal{E}'' \end{array}$$

- **3** Write $\nabla = \nabla_0 \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$
- **4** Then W is a ∇ -invariant splitting $\Leftrightarrow S$ satisfies the **geometric Riccati equation**:

$$\operatorname{ad}_{\nabla_0} S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$$

Its exact solutions yield *exact WKB flat sections* for (\mathcal{E}, ∇)

The Geometric WKB Problem

The Geometric WKB Method

- **1** Fix a reference pair (W_0, ∇_0) where
 - $W_0: \mathcal{E}'' \to \mathcal{E}$ any **reference splitting**, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}' \oplus \mathcal{E}''$;
 - $\nabla_0 = \nabla' \oplus \nabla''$ any block-diagonal connection on $\mathcal{E}' \oplus \mathcal{E}''$.
- **2** Write $W: \mathcal{E}'' \to \mathcal{E}' \oplus \mathcal{E}''$ as $S \oplus \mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$\begin{bmatrix} \mathrm{id} & W \\ 0 & W \end{bmatrix} = \begin{bmatrix} \mathrm{id} & S \\ 0 & \mathrm{id} \end{bmatrix} : \begin{array}{c} \mathcal{E}' & \longrightarrow \mathcal{E}' \\ \oplus & \oplus \\ \mathcal{E}'' & \longrightarrow \mathcal{E}'' \end{array}$$

- **3** Write $\nabla = \nabla_0 \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$
- **4** Then W is a ∇ -invariant splitting $\Leftrightarrow S$ satisfies the **geometric Riccati equation**:

$$\operatorname{ad}_{\nabla_0} S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$$

Its exact solutions yield *exact WKB flat sections* for (\mathcal{E}, ∇)

Remark:
$$\stackrel{?}{\Longrightarrow}$$
 $S \in \mathcal{E}xt^1_X(\mathcal{E}'', \mathcal{E}')$ $\stackrel{?}{\Longrightarrow}$ cohomological WKB method?

Traditional Point of View:

- $\bullet \ \hbar^2 \partial_x^2 \psi + q \psi = 0$
- $\mathbf{1} \ \psi = \exp(\int s \, \mathrm{d}x \, / \hbar)$

Geometric Point of View:

- **O** GIVEN: (\mathcal{E}, ∇) oper:
 - $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$
 - FIND: ∇ -invariant splitting $W: \mathcal{E}'' \to \mathcal{E}$
- **1** Fix reference pair (W_0, ∇_0)
- **2** Search for $\begin{bmatrix} id \\ 0 \end{bmatrix} = \begin{bmatrix} id & S \\ 0 & id \end{bmatrix} : \begin{matrix} \mathcal{E}' \\ \oplus \\ \mathcal{E}'' \end{matrix} \begin{matrix} \mathcal{E}'' \\ \mathcal{E}'' \end{matrix}$
- **3** Write $\nabla = \nabla_0 \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$.

Traditional Point of View:

- $\bullet \ \hbar^2 \partial_x^2 \psi + q \psi = 0$
- $\mathbf{1} \ \psi = \exp(\int s \, \mathrm{d}x / \hbar)$

Geometric Point of View:

O GIVEN: (\mathcal{E}, ∇) oper:

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$$

FIND: ∇ -invariant splitting $W: \mathcal{E}'' \to \mathcal{E}$

- **1** Fix reference pair (W_0, ∇_0)
- **2** Search for $\begin{bmatrix} id \\ 0 \end{bmatrix} = \begin{bmatrix} id & S \\ 0 & id \end{bmatrix} : \begin{matrix} \mathcal{E}' = \mathcal{E}' \\ \oplus \\ \mathcal{E}'' = \mathcal{E}'' \end{matrix}$
- **3** Write $\nabla = \nabla_0 \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$
- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathsf{X}}^{-1/2}$

Traditional Point of View:

- $\bullet \ \hbar^2 \partial_x^2 \psi + q \psi = 0$
- $\mathbf{1} \ \psi = \exp(\int s \, \mathrm{d}x \, / \hbar)$

Geometric Point of View:

O GIVEN: (\mathcal{E}, ∇) oper:

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$$

FIND: ∇ -invariant splitting $W: \mathcal{E}'' \to \mathcal{E}$

- **1** Fix reference pair (W_0, ∇_0)
- **2** Search for $\begin{bmatrix} id \\ 0 \end{bmatrix} = \begin{bmatrix} id & S \\ 0 & id \end{bmatrix} : \begin{matrix} \mathcal{E}' = \mathcal{E}' \\ \oplus \\ \mathcal{E}'' = \mathcal{E}'' \end{matrix}$
- **3** Write $\nabla = \nabla_0 \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$.
- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathsf{x}}^{-1/2}$
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$

Traditional Point of View:

- $\bullet \hbar^2 \partial_x^2 \psi + q \psi = 0$
- $\bullet \psi = \exp(\int s \, \mathrm{d}x / \hbar)$

Geometric Point of View:

O GIVEN: (\mathcal{E}, ∇) oper:

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$$

<u>FIND</u>: ∇ -invariant splitting $W: \mathcal{E}'' \to \mathcal{E}$

- **1** Fix reference pair (W_0, ∇_0)
- **2** Search for $\begin{bmatrix} id \\ 0 \end{bmatrix} = \begin{bmatrix} id & S \\ 0 & id \end{bmatrix} : \begin{matrix} \mathcal{E}' = \mathcal{E}' \\ \oplus \\ \mathcal{E}'' = \mathcal{E}'' \end{matrix}$
- **3** Write $\nabla = \nabla_0 \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$.
- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathbf{v}}^{-1/2}$
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$

Traditional Point of View:

$$\bullet \ \hbar^2 \partial_x^2 \psi + q \psi = 0$$

$$\bullet \psi = \exp(\int s \, \mathrm{d}x / \hbar)$$

Geometric Point of View:

O GIVEN: (\mathcal{E}, ∇) oper:

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$$

FIND: ∇ -invariant splitting $W: \mathcal{E}'' \to \mathcal{E}$

1 Fix reference pair (W_0, ∇_0)

2 Search for
$$\begin{bmatrix} id \\ 0 \end{bmatrix} = \begin{bmatrix} id & S \\ 0 & id \end{bmatrix} : \begin{matrix} \mathcal{E}' & \mathcal{E}' \\ \oplus \\ \mathcal{E}'' & \mathcal{E}'' \end{matrix}$$

3 Write
$$\nabla = \nabla_0 - \phi$$
 where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$

- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathbf{v}}^{-1/2}$
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_0 is given by choice of coordinate x because

$$\mathcal{E} \xrightarrow{\sim} \left\langle \mathrm{d}x \otimes \mathrm{d}x^{-1/2} \right\rangle \oplus \left\langle \mathrm{d}x^{-1/2} \right\rangle = \mathcal{E}' \oplus \mathcal{E}'' \quad \text{and} \quad S = s(x, \hbar) \, \mathrm{d}x$$

Traditional Point of View:

$$\bullet \ \hbar^2 \partial_x^2 \psi + q \psi = 0$$

$$\bullet \psi = \exp(\int s \, \mathrm{d}x / \hbar)$$

Geometric Point of View:

0 GIVEN: (\mathcal{E}, ∇) oper:

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$$

FIND: ∇ -invariant splitting $W: \mathcal{E}'' \to \mathcal{E}$

1 Fix reference pair (W_0, ∇_0)

2 Search for
$$\begin{bmatrix} id \\ 0 \end{bmatrix} = \begin{bmatrix} id & S \\ 0 & id \end{bmatrix} : \begin{matrix} \mathcal{E}' & \longrightarrow \mathcal{E}' \\ \oplus & \oplus \\ \mathcal{E}'' & \longrightarrow \mathcal{E}'' \end{matrix}$$

3 Write
$$\nabla = \nabla_0 - \phi$$
 where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$.

- Schrödinger equation = 2-nd order \hbar -differential operator on $\mathcal{L} := \omega_{\mathbf{x}}^{-1/2}$
- Equivalently, \hbar -connection ∇ on the 1-jet bundle $\mathcal{E} := \mathcal{J}^1 \mathcal{L}$
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_0 is given by choice of coordinate x because

$$\mathcal{E} \xrightarrow{\sim} \left\langle \mathrm{d}x \otimes \mathrm{d}x^{-1/2} \right\rangle \oplus \left\langle \mathrm{d}x^{-1/2} \right\rangle = \mathcal{E}' \oplus \mathcal{E}'' \quad \text{and} \quad S = s(x, \hbar) \, \mathrm{d}x$$

• Reference connection $\nabla_0 = \hbar d$, then $\nabla \equiv \hbar d - \begin{bmatrix} 0 & -q \\ 1 & 0 \end{bmatrix} dx = \nabla_0 - \phi$

Traditional Point of View:

- $\bullet \ \hbar^2 \partial_x^2 \psi + q \psi = 0$
- $\bullet \psi = \exp(\int s \, \mathrm{d}x \, / \hbar)$

Geometric Point of View:

- content four or view.
- **O** GIVEN: (\mathcal{E}, ∇) oper:

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$$

FIND: ∇ -invariant splitting $W : \mathcal{E}'' \to \mathcal{E}$

- **1** Fix reference pair (W_0, ∇_0)
- 2 Search for $\begin{bmatrix} id \\ 0 \end{bmatrix} W = \begin{bmatrix} id & S \\ 0 & id \end{bmatrix} : \begin{matrix} \mathcal{E}' = \mathcal{E}' \\ \oplus \mathcal{E}'' \end{matrix}$
- **3** Write $\nabla = \nabla_0 \phi$ where $\phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$.
- or t differential engages on C . -1/2

4 $\operatorname{ad}_{\nabla_0} S - \phi_{11} S + S \phi_{21} S - \phi_{12} + S \phi_{22} = 0$

- Schrödinger equation = 2-nd order ħ-differential operator on L := ω_X^{-1/2}
 Equivalently, ħ-connection ∇ on the 1-jet bundle E := J¹L
- Oper structure = jet sequence: $0 \longrightarrow \omega_X \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_0 is given by choice of coordinate x because

$$\mathcal{E} \xrightarrow{\sim} \left\langle \mathrm{d}x \otimes \mathrm{d}x^{-1/2} \right\rangle \oplus \left\langle \mathrm{d}x^{-1/2} \right\rangle = \mathcal{E}' \oplus \mathcal{E}'' \quad \text{and} \quad S = s(x, \hbar) \, \mathrm{d}x$$

- Reference connection $\nabla_0 = \hbar d$, then $\nabla \equiv \hbar d \begin{bmatrix} 0 & -q \\ 1 & 0 \end{bmatrix} dx = \nabla_0 \phi$
- Riccati equation: $\hbar \partial_x s + s^2 + q = 0$

" Thank you for your attention! "