Geometry and Borel Summability of Exact WKB Solutions

Nikita Nikolaev
LEVERHULME TRUST

11 April 2023
Invitation to Recursion, Resurgence and Combinatorics
Okinawa Institute of Science and Technology (OIST)
Okinawa, Japan

§0. Setting

- Start with singularly perturbed linear ODE in a domain $\mathrm{X} \subset \mathbb{C}_{x}$:

$$
\left(\hbar \partial_{x}\right)^{n} \psi+p_{1}\left(\hbar \partial_{x}\right)^{n-1} \psi+\ldots=\left(\sum_{k=0}^{n} p_{n-k} \hbar^{k} \partial_{x}^{k}\right) \psi(x, \hbar)=0
$$

where $p_{k}(x, \hbar) \in \mathcal{O}_{\mathbf{X}}[\hbar]$ or $\mathcal{O}_{\mathbf{X}}(\mathrm{D})[\hbar]$

§0. Setting

- Start with singularly perturbed linear ODE in a domain $\mathrm{X} \subset \mathbb{C}_{x}$:

$$
\left(\hbar \partial_{x}\right)^{n} \psi+p_{1}\left(\hbar \partial_{x}\right)^{n-1} \psi+\ldots=\left(\sum_{k=0}^{n} p_{n-k} \hbar^{k} \partial_{x}^{k}\right) \psi(x, \hbar)=0
$$

where $p_{k}(x, \hbar) \in \mathcal{O}_{\mathbf{X}}[\hbar]$ or $\mathcal{O}_{\mathbf{X}}(\mathrm{D})[\hbar]$

- Examples:
(1) $\left(\hbar^{2} \partial_{x}^{2}+q(x, \hbar)\right) \psi=0$
(2) $\left(\hbar^{3} \partial_{x}^{3}+3 \hbar \partial_{x}+2 i x\right) \psi=0$
Schrödinger equation
Berk-Nevins-Roberts equation

§0. Setting

- Start with singularly perturbed linear ODE in a domain $\mathrm{X} \subset \mathbb{C}_{x}$:

$$
\left(\hbar \partial_{x}\right)^{n} \psi+p_{1}\left(\hbar \partial_{x}\right)^{n-1} \psi+\ldots=\left(\sum_{k=0}^{n} p_{n-k} \hbar^{k} \partial_{x}^{k}\right) \psi(x, \hbar)=0
$$

where $p_{k}(x, \hbar) \in \mathcal{O}_{\mathbf{X}}[\hbar]$ or $\mathcal{O}_{\mathbf{X}}(\mathrm{D})[\hbar]$

- Examples:

$$
\begin{array}{ll}
\text { (1) }\left(\hbar^{2} \partial_{x}^{2}+q(x, \hbar)\right) \psi=0 & \text { Schrödinger equation } \\
\text { (2) }\left(\hbar^{3} \partial_{x}^{3}+3 \hbar \partial_{x}+2 i x\right) \psi=0 & \text { Berk-Nevins-Roberts equation }
\end{array}
$$

- More generally: \hbar-differential operator on a line bundle \mathcal{L} over a curve (X, D):

$$
P: \mathcal{L} \rightarrow \mathcal{L} \otimes \operatorname{Sym}^{n} \Omega_{\mathrm{X}, \mathrm{D}}^{1}[\hbar] \quad \text { such that }\left.\quad P\right|_{\hbar=0}(f e)=\left.f P\right|_{\hbar=0}(e)
$$

§0. Setting

- Start with singularly perturbed linear ODE in a domain $\mathrm{X} \subset \mathbb{C}_{x}$:

$$
\left(\hbar \partial_{x}\right)^{n} \psi+p_{1}\left(\hbar \partial_{x}\right)^{n-1} \psi+\ldots=\left(\sum_{k=0}^{n} p_{n-k} \hbar^{k} \partial_{x}^{k}\right) \psi(x, \hbar)=0
$$

where $p_{k}(x, \hbar) \in \mathcal{O}_{\mathbf{X}}[\hbar]$ or $\mathcal{O}_{\mathbf{X}}(\mathrm{D})[\hbar]$

- Examples:

$$
\begin{array}{ll}
\text { (1) }\left(\hbar^{2} \partial_{x}^{2}+q(x, \hbar)\right) \psi=0 & \text { Schrödinger equation } \\
\text { (2) }\left(\hbar^{3} \partial_{x}^{3}+3 \hbar \partial_{x}+2 i x\right) \psi=0 & \text { Berk-Nevins-Roberts equation }
\end{array}
$$

- More generally: \hbar-differential operator on a line bundle \mathcal{L} over a curve (X, D):

$$
P: \mathcal{L} \rightarrow \mathcal{L} \otimes \operatorname{Sym}^{n} \Omega_{\mathrm{X}, \mathrm{D}}^{1}[\hbar] \quad \text { such that }\left.\quad P\right|_{\hbar=0}(f e)=\left.f P\right|_{\hbar=0}(e)
$$

- Even more generally: \hbar-connection on a vector bundle \mathcal{E} over a curve (X, D):

$$
\nabla: \mathcal{E} \rightarrow \mathcal{E} \otimes \Omega_{\mathrm{X}, \mathrm{D}}^{1}[\hbar] \quad \text { such that } \quad \nabla(f e)=f \nabla e+\hbar \mathrm{d} f \otimes e
$$

§0. Setting

- Start with singularly perturbed linear ODE in a domain $\mathrm{X} \subset \mathbb{C}_{x}$:

$$
\left(\hbar \partial_{x}\right)^{n} \psi+p_{1}\left(\hbar \partial_{x}\right)^{n-1} \psi+\ldots=\left(\sum_{k=0}^{n} p_{n-k} \hbar^{k} \partial_{x}^{k}\right) \psi(x, \hbar)=0
$$

where $p_{k}(x, \hbar) \in \mathcal{O}_{\mathbf{X}}[\hbar]$ or $\mathcal{O}_{\mathbf{X}}(\mathrm{D})[\hbar]$

- Examples:

$$
\begin{array}{ll}
\text { (1) }\left(\hbar^{2} \partial_{x}^{2}+q(x, \hbar)\right) \psi=0 & \text { Schrödinger equation } \\
\text { (2) }\left(\hbar^{3} \partial_{x}^{3}+3 \hbar \partial_{x}+2 i x\right) \psi=0 & \text { Berk-Nevins-Roberts equation }
\end{array}
$$

- More generally: \hbar-differential operator on a line bundle \mathcal{L} over a curve (X, D):

$$
P: \mathcal{L} \rightarrow \mathcal{L} \otimes \operatorname{Sym}^{n} \Omega_{\mathrm{X}, \mathrm{D}}^{1}[\hbar] \quad \text { such that }\left.\quad P\right|_{\hbar=0}(f e)=\left.f P\right|_{\hbar=0}(e)
$$

- Even more generally: \hbar-connection on a vector bundle \mathcal{E} over a curve (X, D):

$$
\nabla: \mathcal{E} \rightarrow \mathcal{E} \otimes \Omega_{\mathrm{X}, \mathrm{D}}^{1}[\hbar] \quad \text { such that } \quad \nabla(f e)=f \nabla e+\hbar \mathrm{d} f \otimes e
$$

- WKB method: solve ($\boldsymbol{\star})$ using the WKB ansatz $\quad \psi(x, \hbar)=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} s(x, \hbar) \mathrm{d} x\right)$

§0. Setting

- Start with singularly perturbed linear ODE in a domain $\mathrm{X} \subset \mathbb{C}_{x}$:

$$
\left(\hbar \partial_{x}\right)^{n} \psi+p_{1}\left(\hbar \partial_{x}\right)^{n-1} \psi+\ldots=\left(\sum_{k=0}^{n} p_{n-k} \hbar^{k} \partial_{x}^{k}\right) \psi(x, \hbar)=0
$$

where $p_{k}(x, \hbar) \in \mathcal{O}_{\mathbf{X}}[\hbar]$ or $\mathcal{O}_{\mathbf{X}}(\mathrm{D})[\hbar]$

- Examples:

> (1) $\left(\hbar^{2} \partial_{x}^{2}+q(x, \hbar)\right) \psi=0$
> (2) $\left(\hbar^{3} \partial_{x}^{3}+3 \hbar \partial_{x}+2 i x\right) \psi=0$

Schrödinger equation

Berk-Nevins-Roberts equation

- More generally: \hbar-differential operator on a line bundle \mathcal{L} over a curve (X, D):

$$
P: \mathcal{L} \rightarrow \mathcal{L} \otimes \operatorname{Sym}^{n} \Omega_{\mathrm{X}, \mathrm{D}}^{1}[\hbar] \quad \text { such that }\left.\quad P\right|_{\hbar=0}(f e)=\left.f P\right|_{\hbar=0}(e)
$$

- Even more generally: \hbar-connection on a vector bundle \mathcal{E} over a curve (X, D):

$$
\nabla: \mathcal{E} \rightarrow \mathcal{E} \otimes \Omega_{\mathrm{X}, \mathrm{D}}^{1}[\hbar] \quad \text { such that } \quad \nabla(f e)=f \nabla e+\hbar \mathrm{d} f \otimes e
$$

- WKB method: solve ($\boldsymbol{\star})$ using the WKB ansatz $\quad \psi(x, \hbar)=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} s(x, \hbar) \mathrm{d} x\right)$

Two Questions Addressed Today

(1) When does the WKB method lead to solutions of (\star) with good asymptotics as $\hbar \rightarrow 0$?
(2) What is the WKB method for P and ∇ ?

§1.1. Formal WKB Method (Quick Reminder)

- Plug the WKB ansatz into $(\boldsymbol{\star})$ to get a nonlinear ODE of order $n-1$:

$$
\left(\hbar \partial_{x}\right)^{n-1} s+s^{n}+\ldots=0 ; \quad \text { explicitly: } \quad \sum_{k=1}^{n} p_{k}\left(\hbar \partial_{x}+s\right)^{k-1} s=0
$$

§1.1. Formal WKB Method (Quick Reminder)

- Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n-1$:

$$
\left(\hbar \partial_{x}\right)^{n-1} s+s^{n}+\ldots=0 ; \quad \text { explicitly: } \quad \sum_{k=1}^{n} p_{k}\left(\hbar \partial_{x}+s\right)^{k-1} s=0
$$

- Examples: (1) $\hbar \partial_{x} s+s^{2}+q=0 \quad\left(\hbar \partial_{x}+s\right) s+q=0$
(2) $\hbar^{2} \partial_{x}^{2} s+3 s \hbar \partial_{x} s+s^{3}+3 s+2 i x=0 \quad / / \quad\left(\hbar \partial_{x}+s\right)^{2} s+3 s+2 i x=0$

§1.1. Formal WKB Method (Quick Reminder)

- Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n-1$:

$$
\left(\hbar \partial_{x}\right)^{n-1} s+s^{n}+\ldots=0 ; \quad \text { explicitly: } \quad \sum_{k=1}^{n} p_{k}\left(\hbar \partial_{x}+s\right)^{k-1} s=0
$$

- Examples: (1) $\hbar \partial_{x} s+s^{2}+q=0 \quad\left(\hbar \partial_{x}+s\right) s+q=0$
(2) $\hbar^{2} \partial_{x}^{2} s+3 s \hbar \partial_{x} s+s^{3}+3 s+2 i x=0 \quad / / \quad\left(\hbar \partial_{x}+s\right)^{2} s+3 s+2 i x=0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_{0} is chosen generically, there are n formal solutions

$$
\widehat{s}_{i}(x, \hbar)=\sum_{k=0}^{\infty} s_{i}^{(k)}(x) \hbar^{k} \in \mathcal{O}_{X, x_{0}} \llbracket \hbar \rrbracket \quad i=1, \ldots, n
$$

uniquely and recursively determined by leading-orders $s_{i}^{(0)}=\lambda_{i}(x)$ that are roots of

$$
\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}=0 \quad \text { where } \quad a_{k}(x):=p_{k}(x, 0)
$$

§1.1. Formal WKB Method (Quick Reminder)

- Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n-1$:

$$
\left(\hbar \partial_{x}\right)^{n-1} s+s^{n}+\ldots=0 ; \quad \text { explicitly: } \quad \sum_{k=1}^{n} p_{k}\left(\hbar \partial_{x}+s\right)^{k-1} s=0
$$

- Examples: (1) $\hbar \partial_{x} s+s^{2}+q=0 \quad\left(\hbar \partial_{x}+s\right) s+q=0$
(2) $\hbar^{2} \partial_{x}^{2} s+3 s \hbar \partial_{x} s+s^{3}+3 s+2 i x=0 \quad / / \quad\left(\hbar \partial_{x}+s\right)^{2} s+3 s+2 i x=0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_{0} is chosen generically, there are n formal solutions

$$
\widehat{s}_{i}(x, \hbar)=\sum_{k=0}^{\infty} s_{i}^{(k)}(x) \hbar^{k} \in \mathcal{O}_{\mathbf{X}, x_{0}} \llbracket \hbar \rrbracket \quad i=1, \ldots, n
$$

uniquely and recursively determined by leading-orders $s_{i}^{(0)}=\lambda_{i}(x)$ that are roots of

$$
\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}=0 \quad \text { where } \quad a_{k}(x):=p_{k}(x, 0)
$$

and therefore n unique formal $\boldsymbol{W} K \boldsymbol{B}$ solutions normalised at x_{0} :

$$
\widehat{\psi}_{i}(x, \hbar)=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} \widehat{s}_{i}(x, \hbar) \mathrm{d} x\right)=e^{\int_{x_{0}}^{x} \lambda_{i} / \hbar} \sum_{k=0}^{\infty} \psi_{i}^{(k)} \hbar^{k}
$$

§1.1. Formal WKB Method (Quick Reminder)

- Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n-1$:

$$
\left(\hbar \partial_{x}\right)^{n-1} s+s^{n}+\ldots=0 ; \quad \text { explicitly: } \quad \sum_{k=1}^{n} p_{k}\left(\hbar \partial_{x}+s\right)^{k-1} s=0
$$

- Examples: (1) $\hbar \partial_{x} s+s^{2}+q=0 \quad\left(\hbar \partial_{x}+s\right) s+q=0$
(2) $\hbar^{2} \partial_{x}^{2} s+3 s \hbar \partial_{x} s+s^{3}+3 s+2 i x=0 \quad / / \quad\left(\hbar \partial_{x}+s\right)^{2} s+3 s+2 i x=0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_{0} is chosen generically, there are n formal solutions

$$
\widehat{s}_{i}(x, \hbar)=\sum_{k=0}^{\infty} s_{i}^{(k)}(x) \hbar^{k} \in \mathcal{O}_{\mathbf{X}, x_{0}} \llbracket \hbar \rrbracket \quad i=1, \ldots, n
$$

uniquely and recursively determined by leading-orders $s_{i}^{(0)}=\lambda_{i}(x)$ that are roots of

$$
\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}=0 \quad \text { where } \quad a_{k}(x):=p_{k}(x, 0)
$$

and therefore n unique formal WKB solutions normalised at x_{0} :

$$
\widehat{\psi}_{i}(x, \hbar)=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} \widehat{s}_{i}(x, \hbar) \mathrm{d} x\right)=e^{\int_{x_{0}}^{x} \lambda_{i} / \hbar} \sum_{k=0}^{\infty} \psi_{i}^{(k)} \hbar^{k}
$$

- "Generically" := away from turning points $:=$ zeros of the discriminant of ($\boldsymbol{\oplus}$)

§1.1. Formal WKB Method (Quick Reminder)

- Plug the WKB ansatz into (\star) to get a nonlinear ODE of order $n-1$:

$$
\left(\hbar \partial_{x}\right)^{n-1} s+s^{n}+\ldots=0 ; \quad \text { explicitly: } \quad \sum_{k=1}^{n} p_{k}\left(\hbar \partial_{x}+s\right)^{k-1} s=0
$$

- Examples: (1) $\hbar \partial_{x} s+s^{2}+q=0 \quad\left(\hbar \partial_{x}+s\right) s+q=0$
(2) $\hbar^{2} \partial_{x}^{2} s+3 s \hbar \partial_{x} s+s^{3}+3 s+2 i x=0 \quad / / \quad\left(\hbar \partial_{x}+s\right)^{2} s+3 s+2 i x=0$

Formal Existence and Uniqueness Theorem [classical]

If the basepoint x_{0} is chosen generically, there are n formal solutions

$$
\widehat{s}_{i}(x, \hbar)=\sum_{k=0}^{\infty} s_{i}^{(k)}(x) \hbar^{k} \in \mathcal{O}_{X, x_{0}} \llbracket \hbar \rrbracket \quad i=1, \ldots, n
$$

uniquely and recursively determined by leading-orders $s_{i}^{(0)}=\lambda_{i}(x)$ that are roots of

$$
\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}=0 \quad \text { where } \quad a_{k}(x):=p_{k}(x, 0)
$$

and therefore n unique formal $\boldsymbol{W} K \boldsymbol{B}$ solutions normalised at x_{0} :

$$
\widehat{\psi}_{i}(x, \hbar)=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} \widehat{s}_{i}(x, \hbar) \mathrm{d} x\right)=e^{\int_{x_{0}}^{x} \lambda_{i} / \hbar} \sum_{k=0}^{\infty} \psi_{i}^{(k)} \hbar^{k}
$$

- "Generically":= away from turning points $:=$ zeros of the discriminant of ($\boldsymbol{\oplus}$)
- $\widehat{\psi}_{k}$ is very computable but almost always divergent!

§1.2. Exact WKB Method (Quick Reminder and Main Results)

Q: Can $\widehat{\psi_{i}}$ be upgraded to a holomorphic solution ψ_{i} ?
i.e.: is $\widehat{\psi_{i}}$ the asymptotic/perturbative expansion as $\hbar \rightarrow 0$ of a holomorphic ψ_{i} ?

§1.2. Exact WKB Method (Quick Reminder and Main Results)

Q: Can $\widehat{\psi_{i}}$ be upgraded to a holomorphic solution ψ_{i} ?
i.e.: is $\widehat{\psi_{i}}$ the asymptotic/perturbative expansion as $\hbar \rightarrow 0$ of a holomorphic ψ_{i} ?

A: Yes! [Asymptotic Existence Theorem]

§1.2. Exact WKB Method (Quick Reminder and Main Results)

Q: Can $\widehat{\psi_{i}}$ be upgraded to a holomorphic solution ψ_{i} ?
i.e.: is $\widehat{\psi_{i}}$ the asymptotic/perturbative expansion as $\hbar \rightarrow 0$ of a holomorphic ψ_{i} ?

A: Yes! [Asymptotic Existence Theorem]
BUT: such ψ_{i} is highly non-unique and not constructive

§1.2. Exact WKB Method (Quick Reminder and Main Results)

Q: Can $\widehat{\psi_{i}}$ be upgraded to a holomorphic solution ψ_{i} ?
i.e.: is $\widehat{\psi_{i}}$ the asymptotic/perturbative expansion as $\hbar \rightarrow 0$ of a holomorphic ψ_{i} ?

A: Yes! [Asymptotic Existence Theorem]
BUT: such ψ_{i} is highly non-unique and not constructive
BETTER Q: Can $\widehat{\psi}_{i}$ be upgraded to a holomorphic solution ψ_{i} in a canonical way?
i.e.: is $\widehat{\psi}_{i}$ Borel-summable to a holomorphic solution ψ_{i} ?

§1.2. Exact WKB Method (Quick Reminder and Main Results)

Q: Can $\widehat{\psi_{i}}$ be upgraded to a holomorphic solution ψ_{i} ?
i.e.: is $\widehat{\psi_{i}}$ the asymptotic/perturbative expansion as $\hbar \rightarrow 0$ of a holomorphic ψ_{i} ?

A: Yes! [Asymptotic Existence Theorem]
BUT: such ψ_{i} is highly non-unique and not constructive
BETTER Q: Can $\widehat{\psi}_{i}$ be upgraded to a holomorphic solution ψ_{i} in a canonical way?
i.e.: is $\widehat{\psi}_{i}$ Borel-summable to a holomorphic solution ψ_{i} ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_{1}, \ldots, \lambda_{n}$

§1.2. Exact WKB Method (Quick Reminder and Main Results)

Q: Can $\widehat{\psi_{i}}$ be upgraded to a holomorphic solution ψ_{i} ?
i.e.: is $\widehat{\psi_{i}}$ the asymptotic/perturbative expansion as $\hbar \rightarrow 0$ of a holomorphic ψ_{i} ?

A: Yes! [Asymptotic Existence Theorem]
BUT: such ψ_{i} is highly non-unique and not constructive
BETTER Q: Can $\widehat{\psi}_{i}$ be upgraded to a holomorphic solution ψ_{i} in a canonical way?
i.e.: is $\widehat{\psi}_{i}$ Borel-summable to a holomorphic solution ψ_{i} ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_{1}, \ldots, \lambda_{n}$

Main Results [N] (rough statement)

(1) Formal WKB solutions $\widehat{\psi}_{1}, \ldots, \widehat{\psi}_{n}$ are Borel-summable away from relevant Stokes lines.

§1.2. Exact WKB Method (Quick Reminder and Main Results)

Q: Can $\widehat{\psi_{i}}$ be upgraded to a holomorphic solution ψ_{i} ?
i.e.: is $\widehat{\psi}_{i}$ the asymptotic/perturbative expansion as $\hbar \rightarrow 0$ of a holomorphic ψ_{i} ?

A: Yes! [Asymptotic Existence Theorem]
BUT: such ψ_{i} is highly non-unique and not constructive
BETTER Q: Can $\widehat{\psi}_{i}$ be upgraded to a holomorphic solution ψ_{i} in a canonical way?
i.e.: is $\widehat{\psi}_{i}$ Borel-summable to a holomorphic solution ψ_{i} ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_{1}, \ldots, \lambda_{n}$

Main Results [N] (rough statement)

(1) Formal WKB solutions $\hat{\psi}_{1}, \ldots, \widehat{\psi}_{n}$ are Borel-summable away from relevant Stokes lines.
(2) Their Borel resummations $\psi_{1}, \ldots, \psi_{n}$ are uniquely determined by an asymptotic condition, and therefore have an invariant geometric meaning for a differential operator P on a line bundle \mathcal{L} over (X, D).

§1.2. Exact WKB Method (Quick Reminder and Main Results)

Q: Can $\widehat{\psi_{i}}$ be upgraded to a holomorphic solution ψ_{i} ?
i.e.: is $\widehat{\psi}_{i}$ the asymptotic/perturbative expansion as $\hbar \rightarrow 0$ of a holomorphic ψ_{i} ?

A: Yes! [Asymptotic Existence Theorem]
BUT: such ψ_{i} is highly non-unique and not constructive
BETTER Q: Can $\widehat{\psi}_{i}$ be upgraded to a holomorphic solution ψ_{i} in a canonical way?
i.e.: is $\widehat{\psi}_{i}$ Borel-summable to a holomorphic solution ψ_{i} ?

A: Yes! But highly sensitive to the semi-global geometry determined by $\lambda_{1}, \ldots, \lambda_{n}$

Main Results [N] (rough statement)

(1) Formal WKB solutions $\hat{\psi}_{1}, \ldots, \widehat{\psi}_{n}$ are Borel-summable away from relevant Stokes lines.
(2) Their Borel resummations $\psi_{1}, \ldots, \psi_{n}$ are uniquely determined by an asymptotic condition, and therefore have an invariant geometric meaning for a differential operator P on a line bundle \mathcal{L} over (X, D).
3 Geometrically, the WKB method is a method to search for an invariant splitting of an oper structure on (\mathcal{E}, ∇), so exact WKB solutions make sense for connections.

§2.1. WKB Trajectories and Stokes Lines

- WKB trajectory of type $\boldsymbol{i j}$ emanating from x_{0} is locally given by

$$
\Gamma_{i j}\left(x_{0}\right): \operatorname{Im}\left(\int_{x_{0}}^{x}\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x\right)=0 \text { and } \operatorname{Re}\left(\int_{x_{0}}^{x}\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x\right) \geqslant 0
$$

§2.1. WKB Trajectories and Stokes Lines

- WKB trajectory of type $i \boldsymbol{j}$ emanating from x_{0} is locally given by

$$
\underbrace{\Gamma_{i y}\left(x_{0}\right)}_{x_{0}\left(x_{0}\right): \operatorname{Im}\left(\int_{x_{0}}^{x}\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x\right)=0 \text { and } \operatorname{Re}\left(\int_{x_{0}}^{x}\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x\right) \geqslant 0}
$$

- Natural flow time parameter: $t(x):=\int_{x_{0}}^{x(t)}\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$

§2.1. WKB Trajectories and Stokes Lines

- WKB trajectory of type $i \boldsymbol{j}$ emanating from x_{0} is locally given by

$$
\Gamma_{x_{0}\left(x_{0}\right): \operatorname{Im}\left(\int_{x_{0}}^{x}\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x\right)=0 \text { and } \operatorname{Re}\left(\int_{x_{0}}^{x}\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x\right) \geqslant 0}^{\Gamma_{i y}\left(x_{0}\right)}
$$

- Natural flow time parameter: $t(x):=\int_{x_{0}}^{x(t)}\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$

- $\Gamma_{i j}\left(x_{0}\right)$ is nonsingular if it is infinitely long and encounters no turning points
- $\Gamma_{i j}\left(x_{0}\right)$ is singular if it flows into a turning point

§2.1. WKB Trajectories and Stokes Lines

- A Stokes line of type $i j$ on X is a maximal singular WKB trajectory of type $i j$
- Stokes 'graph' or network $:=$ collection of all Stokes lines on X

§2.1. WKB Trajectories and Stokes Lines

- A Stokes line of type $i j$ on X is a maximal singular WKB trajectory of type $i j$
- Stokes 'graph' or network $:=$ collection of all Stokes lines on X

§2.1. WKB Trajectories and Stokes Lines

- A Stokes line of type $i j$ on X is a maximal singular WKB trajectory of type $i j$
- Stokes 'graph' or network $:=$ collection of all Stokes lines on X

§2.2. WKB Trajectories and Stokes Lines: Invariant Description

- WKB trajectories of type $i j$ are leaves of \mathbb{R}_{+}-foliation of the differential $\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$

§2.2. WKB Trajectories and Stokes Lines: Invariant Description

- WKB trajectories of type $i j$ are leaves of \mathbb{R}_{+}-foliation of the differential $\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$
- The characteristic equation $\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}=0(\boldsymbol{\oplus})$ is a spectral curve:

equipped with canonical differential

$$
\lambda \in \mathrm{H}_{\Sigma}^{0}\left(\Omega_{\Sigma, \tilde{\mathrm{D}}}^{1}\right)
$$

§2.2. WKB Trajectories and Stokes Lines: Invariant Description

- WKB trajectories of type $i j$ are leaves of \mathbb{R}_{+}-foliation of the differential $\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$
- The characteristic equation $\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}=0(\boldsymbol{\oplus})$ is a spectral curve:

equipped with canonical differential

$$
\lambda \in \mathrm{H}_{\Sigma}^{0}\left(\Omega_{\Sigma, \tilde{\mathrm{D}}}^{1}\right)
$$

- $\lambda_{i} \mathrm{~d} x$ is the local expression for λ on sheet i of Σ

§2.2. WKB Trajectories and Stokes Lines: Invariant Description

- WKB trajectories of type $i j$ are leaves of \mathbb{R}_{+}-foliation of the differential $\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$
- The characteristic equation $\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}=0(\boldsymbol{\oplus})$ is a spectral curve:

equipped with canonical differential

$$
\lambda \in \mathrm{H}_{\Sigma}^{0}\left(\Omega_{\Sigma, \tilde{\mathrm{D}}}^{1}\right)
$$

- $\lambda_{i} \mathrm{~d} x$ is the local expression for λ on sheet i of Σ
- Lemma: $\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$ are local expressions for adjoint canonical differential ad λ on

adjoint spectral

§2.2. WKB Trajectories and Stokes Lines: Invariant Description

- WKB trajectories of type $i j$ are leaves of \mathbb{R}_{+}-foliation of the differential $\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$
- The characteristic equation $\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}=0(\boldsymbol{\oplus})$ is a spectral curve:

equipped with canonical differential

$$
\lambda \in \mathrm{H}_{\Sigma}^{0}\left(\Omega_{\Sigma, \tilde{\mathrm{D}}}^{1}\right)
$$

- $\lambda_{i} \mathrm{~d} x$ is the local expression for λ on sheet i of Σ
- Lemma: $\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$ are local expressions for adjoint canonical differential $\operatorname{ad} \lambda$ on

$$
\operatorname{ad} \lambda:=\pi_{1}^{*} \lambda-\pi_{2}^{*} \lambda
$$

- turning points $:=$ ramification locus of $\operatorname{ad} \pi: \operatorname{ad} \Sigma \longrightarrow X$
- WKB trajectories $:=$ leaves of \mathbb{R}_{+}-foliation of ad λ on ad Σ
- Stokes lines $:=$ maximal singular WKB trajectories on ad Σ
- Stokes graph $:=$ collection of all Stokes lines on ad Σ

§2.2. WKB Trajectories and Stokes Lines: Invariant Description

- WKB trajectories of type $i j$ are leaves of \mathbb{R}_{+}-foliation of the differential $\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$
- The characteristic equation $\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}=0(\boldsymbol{\oplus})$ is a spectral curve:

equipped with canonical differential $\lambda \in \mathrm{H}_{\Sigma}^{0}\left(\Omega_{\Sigma, \tilde{\mathrm{D}}}^{1}\right)$
- $\lambda_{i} \mathrm{~d} x$ is the local expression for λ on sheet i of Σ
- Lemma: $\left(\lambda_{i}-\lambda_{j}\right) \mathrm{d} x$ are local expressions for adjoint canonical differential $\operatorname{ad} \lambda$ on

$$
\operatorname{ad} \lambda:=\pi_{1}^{*} \lambda-\pi_{2}^{*} \lambda
$$

- turning points $:=$ ramification locus of ad $\pi: \operatorname{ad} \Sigma \longrightarrow X$
- WKB trajectories $:=$ leaves of \mathbb{R}_{+}-foliation of ad λ on ad Σ
- Stokes lines $:=$ maximal singular WKB trajectories on ad Σ
- Stokes graph $:=$ collection of all Stokes lines on ad Σ
- Stokes network on X is the projection of the Stokes graph under $\operatorname{ad} \pi: \operatorname{ad} \Sigma \longrightarrow X$
§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Fix $x_{0} \in \mathrm{X}$ ordinary point $:=$ neither a turning point nor a pole

Definition ($n=2$)

The WKB flow of $\boldsymbol{x}_{\mathbf{0}}$ of type \boldsymbol{i} is nonsingular if the WKB trajectory $\Gamma_{i j}\left(x_{0}\right)$ is nonsingular.

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Fix $x_{0} \in \mathrm{X}$ ordinary point $:=$ neither a turning point nor a pole

Definition ($n=2$)

The WKB flow of x_{0} of type \boldsymbol{i} is nonsingular if the WKB trajectory $\Gamma_{i j}\left(x_{0}\right)$ is nonsingular.

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition ($n \geqslant 3$)

The WKB flow of x_{0} of type i is nonsingular if

- each WKB trajectory $\Gamma_{i 1}\left(x_{0}\right), \Gamma_{i 2}\left(x_{0}\right), \ldots, \Gamma_{i n}\left(x_{0}\right)$ is nonsingular

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition ($n \geqslant 3$)

The WKB flow of x_{0} of type i is nonsingular if

- each WKB trajectory $\Gamma_{i 1}\left(x_{0}\right), \Gamma_{i 2}\left(x_{0}\right), \ldots, \Gamma_{i n}\left(x_{0}\right)$ is nonsingular
- Whenever $\Gamma_{i j}\left(x_{0}\right)$ intersects a singular trajectory of type $i k$, let $x_{1} \in \mathrm{X}$ be an intersection point, and assume $\Gamma_{j k}\left(x_{1}\right)$ encounters no turning points

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition ($n \geqslant 3$)

The WKB flow of x_{0} of type i is nonsingular if

- each WKB trajectory $\Gamma_{i 1}\left(x_{0}\right), \Gamma_{i 2}\left(x_{0}\right), \ldots, \Gamma_{i n}\left(x_{0}\right)$ is nonsingular
- Whenever $\Gamma_{i j}\left(x_{0}\right)$ intersects a singular trajectory of type $i k$, let $x_{1} \in \mathrm{X}$ be an intersection point, and assume $\Gamma_{j k}\left(x_{1}\right)$ encounters no turning points
- Repeat for $\Gamma_{k j}\left(x_{1}\right)$

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition ($n \geqslant 3$)

The WKB flow of x_{0} of type i is nonsingular if

- each WKB trajectory $\Gamma_{i 1}\left(x_{0}\right), \Gamma_{i 2}\left(x_{0}\right), \ldots, \Gamma_{i n}\left(x_{0}\right)$ is nonsingular
- Whenever $\Gamma_{i j}\left(x_{0}\right)$ intersects a singular trajectory of type $i k$, let $x_{1} \in \mathrm{X}$ be an intersection point, and assume $\Gamma_{j k}\left(x_{1}\right)$ encounters no turning points
- Repeat for $\Gamma_{k j}\left(x_{1}\right)$
- This process terminates at a finite number of iterations

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Definition ($n \geqslant 3$)

The WKB flow of x_{0} of type i is nonsingular if

- each WKB trajectory $\Gamma_{i 1}\left(x_{0}\right), \Gamma_{i 2}\left(x_{0}\right), \ldots, \Gamma_{i n}\left(x_{0}\right)$ is nonsingular
- Whenever $\Gamma_{i j}\left(x_{0}\right)$ intersects a singular trajectory of type $i k$, let $x_{1} \in \mathrm{X}$ be an intersection point, and assume $\Gamma_{j k}\left(x_{1}\right)$ encounters no turning points
- Repeat for $\Gamma_{k j}\left(x_{1}\right)$
- This process terminates at a finite number of iterations

- Complete Stokes network $:=$ locus of all points on X with singular WKB flow

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Example (BNR): $\left(\hbar^{3} \partial_{x}^{3}+3 \hbar \partial_{x}+2 i x\right) \psi=0$

§2.3. WKB Trajectories and Stokes Lines: Nonsingular WKB Flow

Example (BNR): $\left(\hbar^{3} \partial_{x}^{3}+3 \hbar \partial_{x}+2 i x\right) \psi=0$

§3. Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)
Fix $x_{0} \in \mathrm{X}$ ordinary point and λ_{i} leading-order characteristic root near x_{0}.

§3. Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_{0} \in \mathrm{X}$ ordinary point and λ_{i} leading-order characteristic root near x_{0}.
Assume that the WKB flow of x_{0} of type i is nonsingular.

§3. Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_{0} \in \mathrm{X}$ ordinary point and λ_{i} leading-order characteristic root near x_{0}.
Assume that the WKB flow of x_{0} of type i is nonsingular.
Then the formal WKB solution

$$
\widehat{\psi}_{i}(x, \hbar)=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} \widehat{s}_{i}(x, \hbar) \mathrm{d} x\right)=e^{\int_{x_{0}}^{x} \lambda_{i} / \hbar} \sum_{k=0}^{\infty} \psi_{i}^{(k)}(x) \hbar^{k}
$$

is uniformly Borel summable near x_{0} :

$$
\psi_{i}(x, \hbar):=\Sigma\left[\widehat{\psi}_{i}\right](x, \hbar)=e^{\int_{x_{0}}^{x} \lambda_{i} / \hbar} \Sigma\left(\sum_{k=0}^{\infty} \psi_{i}^{(k)}(x) \hbar^{k}\right)
$$

§3. Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_{0} \in \mathrm{X}$ ordinary point and λ_{i} leading-order characteristic root near x_{0}.
Assume that the WKB flow of x_{0} of type i is nonsingular.
Then the formal WKB solution

$$
\widehat{\psi}_{i}(x, \hbar)=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} \widehat{s}_{i}(x, \hbar) \mathrm{d} x\right)=e^{\int_{x_{0}}^{x} \lambda_{i} / \hbar} \sum_{k=0}^{\infty} \psi_{i}^{(k)}(x) \hbar^{k}
$$

is uniformly Borel summable near x_{0} :

$$
\psi_{i}(x, \hbar):=\Sigma\left[\widehat{\psi}_{i}\right](x, \hbar)=e^{\int_{x_{0}}^{x} \lambda_{i} / \hbar} \Sigma\left(\sum_{k=0}^{\infty} \psi_{i}^{(k)}(x) \hbar^{k}\right)
$$

In fact, ψ_{i} is the unique solution for x near x_{0} which is asymptotically smooth with factorial growth uniformly as $\hbar \rightarrow 0$ with $\operatorname{Re}(\hbar)>0$ and uniformly in x, and satisfies

$$
\psi_{i}\left(x_{0}, \hbar\right)=1 \quad \text { and } \quad æ\left(\psi_{i}(x, \hbar)\right)=\widehat{\psi}_{i}(x, \hbar) \quad \text { as } \hbar \rightarrow 0 \text { with } \operatorname{Re}(\hbar)>0
$$

§3. Borel Summability of WKB Solutions

Theorem [N] (Existence and Uniqueness of Exact WKB Solutions)

Fix $x_{0} \in \mathrm{X}$ ordinary point and λ_{i} leading-order characteristic root near x_{0}. Assume that the WKB flow of x_{0} of type i is nonsingular. Then the formal WKB solution

$$
\widehat{\psi}_{i}(x, \hbar)=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} \widehat{s}_{i}(x, \hbar) \mathrm{d} x\right)=e^{\int_{x_{0}}^{x} \lambda_{i} / \hbar} \sum_{k=0}^{\infty} \psi_{i}^{(k)}(x) \hbar^{k}
$$

is uniformly Borel summable near x_{0} :

$$
\psi_{i}(x, \hbar):=\Sigma\left[\widehat{\psi}_{i}\right](x, \hbar)=e^{\int_{x_{0}}^{x} \lambda_{i} / \hbar} \Sigma\left(\sum_{k=0}^{\infty} \psi_{i}^{(k)}(x) \hbar^{k}\right)
$$

In fact, ψ_{i} is the unique solution for x near x_{0} which is asymptotically smooth with factorial growth uniformly as $\hbar \rightarrow 0$ with $\operatorname{Re}(\hbar)>0$ and uniformly in x, and satisfies

$$
\psi_{i}\left(x_{0}, \hbar\right)=1 \quad \text { and } \quad æ\left(\psi_{i}(x, \hbar)\right)=\widehat{\psi}_{i}(x, \hbar) \quad \text { as } \hbar \rightarrow 0 \text { with } \operatorname{Re}(\hbar)>0
$$

Corollary

Uniqueness yields a notion of exact WKB flat sections of \mathcal{L} for P on (X, D).

§3.1. Proof Outline $(n=2)$

Focus on the Riccati equation $\hbar \partial_{x} s+s^{2}+p_{1} s+p_{2}=0$

§3.1. Proof Outline $(n=2)$

Focus on the Riccati equation $\hbar \partial_{x} s+s^{2}+p_{1} s+p_{2}=0$

Lemma

The Borel transform of \widehat{s}_{i} is uniformly convergent near x_{0} :

$$
\widehat{\boldsymbol{\sigma}}_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{\xi}):=\mathfrak{B}\left[\widehat{s}_{i}\right]=\mathfrak{B}\left[\lambda_{i}+\sum_{k=1}^{\infty} s_{i}^{(k)}(x) \hbar^{k}\right]=\sum_{k=0}^{\infty} \frac{1}{k!} s_{i}^{(k+1)}(x) \xi^{k} \in \mathcal{O}_{\mathrm{X}, x_{0}}\{\xi\}
$$

§3.1. Proof Outline $(n=2)$

Focus on the Riccati equation $\hbar \partial_{x} s+s^{2}+p_{1} s+p_{2}=0$

Lemma

The Borel transform of $\widehat{\boldsymbol{s}}_{\boldsymbol{i}}$ is uniformly convergent near x_{0} :

$$
\widehat{\boldsymbol{\sigma}}_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{\xi}):=\mathfrak{B}\left[\widehat{s}_{i}\right]=\mathfrak{B}\left[\lambda_{i}+\sum_{k=1}^{\infty} s_{i}^{(k)}(x) \hbar^{k}\right]=\sum_{k=0}^{\infty} \frac{1}{k!} s_{i}^{(k+1)}(x) \xi^{k} \in \mathcal{O}_{\mathrm{X}, x_{0}}\{\xi\}
$$

Goal

Construct the analytic continuation σ_{i} of $\widehat{\sigma}_{i}$ for all $\xi \in \mathbb{R}_{+}$and define

$$
\begin{aligned}
& \boldsymbol{s}_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{\hbar}):=\lambda_{i}+\mathfrak{L}\left[\sigma_{i}\right]=\lambda_{i}(x)+\int_{0}^{+\infty} e^{-\xi / \hbar} \sigma_{i}(x, \xi) \mathrm{d} \xi \\
& \boldsymbol{\psi}_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{\hbar}):=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} s_{i}\left(x^{\prime}, \hbar\right) \mathrm{d} x^{\prime}\right)
\end{aligned}
$$

§3.1. Proof Outline $(n=2)$

Focus on the Riccati equation $\hbar \partial_{x} s+s^{2}+p_{1} s+p_{2}=0$

Lemma

The Borel transform of $\widehat{\boldsymbol{s}}_{\boldsymbol{i}}$ is uniformly convergent near x_{0} :

$$
\widehat{\boldsymbol{\sigma}}_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{\xi}):=\mathfrak{B}\left[\widehat{s}_{i}\right]=\mathfrak{B}\left[\lambda_{i}+\sum_{k=1}^{\infty} s_{i}^{(k)}(x) \hbar^{k}\right]=\sum_{k=0}^{\infty} \frac{1}{k!} s_{i}^{(k+1)}(x) \xi^{k} \in \mathcal{O}_{\mathrm{X}, x_{0}}\{\xi\}
$$

Goal

Construct the analytic continuation σ_{i} of $\widehat{\sigma}_{i}$ for all $\xi \in \mathbb{R}_{+}$and define

$$
\begin{aligned}
& s_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{\hbar}):=\lambda_{i}+\mathfrak{L}\left[\sigma_{i}\right]=\lambda_{i}(x)+\int_{0}^{+\infty} e^{-\xi / \hbar} \sigma_{i}(x, \xi) \mathrm{d} \xi \\
& \boldsymbol{\psi}_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{\hbar}):=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} s_{i}\left(x^{\prime}, \hbar\right) \mathrm{d} x^{\prime}\right)
\end{aligned}
$$

Recall: uniform summability $\Longrightarrow \Sigma\left[\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} \widehat{s} \mathrm{~d} x / \hbar\right)\right]=\exp \left(\frac{1}{\hbar} \int_{x_{0}}^{x} \Sigma[\widehat{s}] \mathrm{d} x\right)$

§3.1. Proof Outline $(n=2)$

To construct the analytic continuation σ_{i}, argue as follows.

§3.1. Proof Outline $(n=2)$

To construct the analytic continuation σ_{i}, argue as follows.
(1) Simplify by linearising the Riccati equation around λ_{i} :

$$
\text { Let } s=\lambda_{i}+S \quad \Longrightarrow \quad \hbar \partial_{x} S+\left(\lambda_{i}-\lambda_{j}\right) S=\hbar A_{0}+\hbar A_{1} S-S^{2}
$$

§3.1. Proof Outline $(n=2)$

To construct the analytic continuation σ_{i}, argue as follows.
(1) Simplify by linearising the Riccati equation around λ_{i} :

$$
\text { Let } s=\lambda_{i}+S \quad \Longrightarrow \quad \hbar \partial_{x} S+\left(\lambda_{i}-\lambda_{j}\right) S=\hbar A_{0}+\hbar A_{1} S-S^{2}
$$

(2) Apply the Borel transform:

$$
\text { Let } \sigma=\mathfrak{B}[S] \quad \Longrightarrow \quad \partial_{x} \sigma+\left(\lambda_{i}-\lambda_{j}\right) \partial_{\xi} \sigma=\alpha_{0}+a_{1} \sigma+\alpha_{1} * \sigma-\partial_{\xi} \sigma^{* 2}
$$

§3.1. Proof Outline $(n=2)$

To construct the analytic continuation σ_{i}, argue as follows.
(1) Simplify by linearising the Riccati equation around λ_{i} :

$$
\text { Let } s=\lambda_{i}+S \quad \Longrightarrow \quad \hbar \partial_{x} S+\left(\lambda_{i}-\lambda_{j}\right) S=\hbar A_{0}+\hbar A_{1} S-S^{2}
$$

(2) Apply the Borel transform:

Let $\sigma=\mathfrak{B}[S] \quad \Longrightarrow \quad \partial_{x} \sigma+\left(\lambda_{i}-\lambda_{j}\right) \partial_{\xi} \sigma=\alpha_{0}+a_{1} \sigma+\alpha_{1} * \sigma-\partial_{\xi} \sigma^{* 2}$
(3) Rewrite as an integral equation:

$$
\sigma(x, \xi)=a_{0}-\int_{0}^{\xi} \text { (righthand side) }\left.\right|_{(x(t), \xi-t)} ^{x_{0}} \mathrm{~d} t \quad \text { where } \quad t=\int_{x_{0}}^{x(t)} \lambda_{i j} \mathrm{~d} x
$$

§3.1. Proof Outline $(n=2)$

To construct the analytic continuation σ_{i}, argue as follows.
(1) Simplify by linearising the Riccati equation around λ_{i} :

$$
\text { Let } s=\lambda_{i}+S \quad \Longrightarrow \quad \hbar \partial_{x} S+\left(\lambda_{i}-\lambda_{j}\right) S=\hbar A_{0}+\hbar A_{1} S-S^{2}
$$

(2) Apply the Borel transform:

$$
\text { Let } \sigma=\mathfrak{B}[S] \quad \Longrightarrow \quad \partial_{x} \sigma+\left(\lambda_{i}-\lambda_{j}\right) \partial_{\xi} \sigma=\alpha_{0}+a_{1} \sigma+\alpha_{1} * \sigma-\partial_{\xi} \sigma^{* 2}
$$

(3) Rewrite as an integral equation:

$$
\sigma(x, \xi)=a_{0}-\int_{0}^{\xi} \text { (righthand side) }\left.\right|_{(x(t), \xi-t)} ^{x_{0}} \mathrm{~d} t \quad \text { where } \quad t=\int_{x_{0}}^{x(t)} \lambda_{i j} \mathrm{~d} x
$$

(4) Construct σ_{i} using the method of successive approximations: define $\left\{\tau_{k}(x, \xi)\right\}$ by

$$
\tau_{0}:=a_{0}, \quad \tau_{1}:=-\int_{0}^{\xi}\left(\alpha_{0}+a_{1} \tau_{0}\right) \mathrm{d} t, \quad \tau_{2}:=-\int_{0}^{\xi}\left(a_{1} \tau_{1}+\alpha_{1} * \tau_{0}\right) \mathrm{d} t
$$

§3.1. Proof Outline $(n=2)$

To construct the analytic continuation σ_{i}, argue as follows.
(1) Simplify by linearising the Riccati equation around λ_{i} :

$$
\text { Let } s=\lambda_{i}+S \quad \Longrightarrow \quad \hbar \partial_{x} S+\left(\lambda_{i}-\lambda_{j}\right) S=\hbar A_{0}+\hbar A_{1} S-S^{2}
$$

(2) Apply the Borel transform:

$$
\text { Let } \sigma=\mathfrak{B}[S] \quad \Longrightarrow \quad \partial_{x} \sigma+\left(\lambda_{i}-\lambda_{j}\right) \partial_{\xi} \sigma=\alpha_{0}+a_{1} \sigma+\alpha_{1} * \sigma-\partial_{\xi} \sigma^{* 2}
$$

(3) Rewrite as an integral equation:

$$
\sigma(x, \xi)=a_{0}-\int_{0}^{\xi} \text { (righthand side) }\left.\right|_{(\boldsymbol{x}(\boldsymbol{t}), \xi-t)} ^{x_{0}} \mathrm{~d} t \quad \text { where } \quad t=\int_{x_{0}}^{\boldsymbol{x}(\boldsymbol{t})} \lambda_{i j} \mathrm{~d} x
$$

(4) Construct σ_{i} using the method of successive approximations: define $\left\{\tau_{k}(x, \xi)\right\}$ by

$$
\tau_{0}:=a_{0}, \quad \tau_{1}:=-\int_{0}^{\xi}\left(\alpha_{0}+a_{1} \tau_{0}\right) \mathrm{d} t, \quad \tau_{2}:=-\int_{0}^{\xi}\left(a_{1} \tau_{1}+\alpha_{1} * \tau_{0}\right) \mathrm{d} t
$$

(5) Lemma: $\boldsymbol{\sigma}_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{\xi}):=\sum_{k=0}^{\infty} \tau_{k}(x, \xi)$ is uniformly convergent for all $\xi \in \mathbb{R}_{+}$, of exponential type, and $\widehat{\sigma}_{i}$ is its Taylor series at $\xi=0$

§3.2. Proof Outline $(n \geqslant 3)$

skip!

Focus on the equation $\left(\hbar \partial_{x}\right)^{n-1} s+s^{n}+\ldots=0 \quad(\downarrow) \quad$ and argue as follows.
(1) Rewrite as a nonlinear system: put $y_{1}=s, y_{2}=\hbar \partial_{x} y, \ldots$, and consider

$$
\hbar \partial_{x} y=F(x, \hbar, y)
$$

Example (BNR): $\quad\left(\hbar^{3} \partial_{x}^{3}+3 \hbar \partial_{x}+2 i x\right) \psi=0$
$\rightsquigarrow \quad \hbar^{2} \partial_{x}^{2} s+3 s \hbar \partial_{x} s+s^{3}+3 s+2 i x=0$
$\rightsquigarrow \quad \hbar \partial_{x}\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=F(x, y)=-\left[\begin{array}{c}y_{1}^{2}-y_{2} \\ y_{1} y_{2}+3 y_{1}+2 i x\end{array}\right]$
$\rightsquigarrow \quad$ leading-order solution $y_{i}^{(0)}=\left[\begin{array}{c}\lambda_{i} \\ \lambda_{i}^{2}\end{array}\right]$
$\rightsquigarrow \quad$ leading-order Jacobian at $y_{i}^{(0)}$ is $J_{i}=-\left.\frac{\partial F}{\partial y}\right|_{y=y_{i}^{(0)}}=\left[\begin{array}{cc}2 \lambda_{i} & -1 \\ \lambda_{i}^{2}+3 & \lambda_{i}\end{array}\right]$
$\rightsquigarrow \quad J_{i}$ is diagonalisable to $\Lambda_{i}:=\left[\begin{array}{ll}\lambda_{i}-\lambda_{j} & \\ & \lambda_{i}-\lambda_{k}\end{array}\right]$
(2) Linearise around the leading-order solution $y_{i}^{(0)}$ and apply a gauge transformation G to diagonalise the Jacobian J_{i} :

$$
\text { Let } y=y_{i}^{(0)}+G S \quad \Longrightarrow \quad \hbar \partial_{x} S+\Lambda_{i} S=\hbar A_{0}+\hbar A_{1} S+
$$

§3.2. Proof Outline $(n \geqslant 3)$
 skip!

(3) Apply the Borel transform:

$$
\text { Let } \sigma=\mathfrak{B}[S] \quad \Longrightarrow \quad \partial_{x} \sigma+\Lambda_{i} \partial_{\xi} \sigma=\alpha_{0}+a_{1} \sigma+\alpha_{1} * \sigma+\cdots
$$

(4) Rewrite as a system of integral equations: $j=1, \ldots, n-1$

$$
\sigma^{j}(x, \xi)=a_{0}^{j}-\int_{0}^{\xi} \text { (righthand side) }\left.\right|_{\left(x^{j}(t), \xi-t\right)} \mathrm{d} t \quad \text { where } \quad t=\int_{x_{0}}^{x^{j}(t)} \lambda_{i j} \mathrm{~d} x
$$

(5) Construct σ_{i} using the method of successive approximations: define $\left\{\tau_{k}(x, \xi)\right\}$ by

$$
\tau_{0}:=a_{0}, \quad \tau_{1}:=-\int_{0}^{\xi}\left(\alpha_{0}+a_{1} \tau_{0}\right) \mathrm{d} t, \quad \tau_{2}:=-\int_{0}^{\xi}\left(a_{1} \tau_{1}+\alpha_{1} * \tau_{0}\right) \mathrm{d} t
$$

(6 Lemma 1: $\sigma_{i}(x, \xi):=\sum_{k=0}^{\infty} \tau_{k}(x, \xi)$ is uniformly convergent near $\xi=0$, and $\widehat{\sigma}_{i}$ is its Taylor series at $\xi=0$

§3.2. Proof Outline $(n \geqslant 3)$
 skip!

(6) To analytically continue σ to all $\xi \in \mathbb{R}_{+}$, carefully examine cross-terms starting in τ_{2} :

$$
\left.\begin{array}{rl}
\tau_{2}:=- & \int_{0}^{\xi}(\underbrace{a_{1} \tau_{1}}+\alpha_{1} * \tau_{0}) \mathrm{d} t \\
\vdots \\
a_{11}^{j} \tau_{1}^{1}+\ldots+a_{1 n}^{j} \tau_{1}^{n} \\
\vdots
\end{array}\right] \rightsquigarrow \int_{0}^{\xi} \int_{0}^{\xi-t} \tau\left(\left(x^{j}(t)\right)^{k}(u), \xi-t-u\right) \mathrm{d} u \mathrm{~d} t .
$$

(7) Lemma 2: thanks to the assumption that the (complete) WKB flow is nonsingular, $\sigma(x, \xi)$ admits analytic continuation to $\xi \in \mathbb{R}_{+}$of exponential type

§4. The WKB Method: Invariant Formulation

The Geometric WKB Problem

§4. The WKB Method: Invariant Formulation

The Geometric WKB Problem
0 GIVEN: (\mathcal{E}, ∇) an oper:

§4. The WKB Method: Invariant Formulation

The Geometric WKB Problem

0 GIVEN: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0$ FIND: a ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$.

§4. The WKB Method: Invariant Formulation

The Geometric WKB Problem
0 Given: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0$
FIND: a ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$.
The Geometric WKB Method
(1) Fix a reference pair $\left(W_{0}, \nabla_{0}\right)$ where

- $W_{0}: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$;
- $\nabla_{0}=\nabla^{\prime} \oplus \nabla^{\prime \prime}$ any block-diagonal connection on $\mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$.

§4. The WKB Method: Invariant Formulation

The Geometric WKB Problem

0 Given: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0$
FIND: a ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$.

The Geometric WKB Method

(1) Fix a reference pair $\left(W_{0}, \nabla_{0}\right)$ where

- $W_{0}: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$;
- $\nabla_{0}=\nabla^{\prime} \oplus \nabla^{\prime \prime}$ any block-diagonal connection on $\mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$.
(2) Write $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$ as $S \oplus \mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$
\left[\begin{array}{cc}
\mathrm{id} & W \\
0 & W
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{id} & S \\
0 & \mathrm{id}
\end{array}\right]: \begin{gathered}
\mathcal{E}^{\prime}=\mathcal{E}^{\prime} \\
\stackrel{\mathcal{E}^{\prime \prime}}{\rightleftharpoons} \mathcal{E}^{\prime \prime}
\end{gathered}
$$

§4. The WKB Method: Invariant Formulation

The Geometric WKB Problem

0 Given: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0$
FIND: a ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$.

The Geometric WKB Method

(1) Fix a reference pair $\left(W_{0}, \nabla_{0}\right)$ where

- $W_{0}: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$;
- $\nabla_{0}=\nabla^{\prime} \oplus \nabla^{\prime \prime}$ any block-diagonal connection on $\mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$.
(2) Write $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$ as $S \oplus \mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$
\left[\begin{array}{cc}
\mathrm{id} & W \\
0 & W
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{id} & S \\
0 & \mathrm{id}
\end{array}\right]: \begin{gathered}
\mathcal{E}^{\prime}=\mathcal{E}^{\prime} \\
\stackrel{\mathcal{E}^{\prime \prime}}{\rightleftharpoons} \mathcal{E}^{\prime \prime}
\end{gathered}
$$

(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$

§4. The WKB Method: Invariant Formulation

The Geometric WKB Problem

0 Given: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0$
FIND: a ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$.

The Geometric WKB Method

(1) Fix a reference pair $\left(W_{0}, \nabla_{0}\right)$ where

- $W_{0}: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$;
- $\nabla_{0}=\nabla^{\prime} \oplus \nabla^{\prime \prime}$ any block-diagonal connection on $\mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$.
(2) Write $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$ as $S \oplus \mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$
\left[\begin{array}{cc}
\mathrm{id} & W \\
0 & W
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{id} & S \\
0 & \text { id }
\end{array}\right]: \begin{gathered}
\mathcal{E}^{\prime}=\stackrel{\mathcal{E}^{\prime}}{\oplus} \\
\mathcal{E}^{\prime \prime} \xlongequal{\oplus} \mathcal{E}^{\prime \prime}
\end{gathered}
$$

(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$
(4) Then W is a ∇-invariant splitting $\Leftrightarrow S$ satisfies the geometric Riccati equation:

$$
\operatorname{ad}_{\nabla_{0}} S-\phi_{11} S+S \phi_{21} S-\phi_{12}+S \phi_{22}=0
$$

Its exact solutions yield exact $W K B$ flat sections for (\mathcal{E}, ∇)

§4. The WKB Method: Invariant Formulation

The Geometric WKB Problem

0 Given: (\mathcal{E}, ∇) an oper: $0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0$
FIND: a ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$.

The Geometric WKB Method

(1) Fix a reference pair $\left(W_{0}, \nabla_{0}\right)$ where

- $W_{0}: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$ any reference splitting, so $\mathcal{E} \xrightarrow{\sim} \mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$;
- $\nabla_{0}=\nabla^{\prime} \oplus \nabla^{\prime \prime}$ any block-diagonal connection on $\mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$.
(2) Write $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$ as $S \oplus \mathrm{id}$ and solve for S by searching for a unipotent gauge transformation

$$
\left[\begin{array}{cc}
i d & W \\
0 &
\end{array}\right]=\left[\begin{array}{cc}
\text { id } & S \\
0 & \text { id }
\end{array}\right]: \begin{gathered}
\mathcal{E}^{\prime}=\mathcal{E}^{\prime} \\
\underset{\mathcal{E}^{\prime \prime}}{\oplus} \mathcal{E}^{\prime \prime}
\end{gathered}
$$

(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$
(4) Then W is a ∇-invariant splitting $\Leftrightarrow S$ satisfies the geometric Riccati equation:

$$
\operatorname{ad}_{\nabla_{0}} S-\phi_{11} S+S \phi_{21} S-\phi_{12}+S \phi_{22}=0
$$

Its exact solutions yield exact $W K B$ flat sections for (\mathcal{E}, ∇) Remark: $\stackrel{?}{\Longrightarrow} \quad S \in \mathcal{E} x t_{\chi}^{1}\left(\mathcal{E}^{\prime \prime}, \mathcal{E}^{\prime}\right) \quad \stackrel{?}{\Longrightarrow} \quad$ cohomological WKB method?

§4. The WKB Method: Invariant Formulation

Traditional Point of View:
(0) $\hbar^{2} \partial_{x}^{2} \psi+q \psi=0$
(1) $\psi=\exp \left(\int s \mathrm{~d} x / \hbar\right)$
(2) $\hbar \partial_{x} s+s^{2}+q=0$

Geometric Point of View:
0 Given: (\mathcal{E}, ∇) oper:

$$
0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0
$$

FIND: ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$
(1) Fix reference pair $\left(W_{0}, \nabla_{0}\right)$
(2) Search for $\left[\begin{array}{cc}\mathrm{id} & \\ 0 & W\end{array}\right]=\left[\begin{array}{cc}\mathrm{id} & S \\ 0 & \mathrm{id}\end{array}\right]: \begin{aligned} & \mathcal{E}^{\prime}=\overline{\mathcal{E}^{\prime}} \\ & \oplus \\ & \mathcal{E}^{\prime \prime}=\mathcal{E}^{\prime \prime}\end{aligned}$
(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$
(4) $\operatorname{ad}_{\nabla_{0}} S-\phi_{11} S+S \phi_{21} S-\phi_{12}+S \phi_{22}=0$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:
(0) $\hbar^{2} \partial_{x}^{2} \psi+q \psi=0$
(1) $\psi=\exp \left(\int s \mathrm{~d} x / \hbar\right)$
(2) $\hbar \partial_{x} s+s^{2}+q=0$

Geometric Point of View:
0 Given: (\mathcal{E}, ∇) oper:

$$
0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0
$$

FIND: ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$
(1) Fix reference pair $\left(W_{0}, \nabla_{0}\right)$
(2) Search for $\left[\begin{array}{cc}\text { id } & W \\ 0 & \end{array}\right]=\left[\begin{array}{cc}\text { id } & S \\ 0 & \text { id }\end{array}\right]: \begin{aligned} & \mathcal{E}^{\prime}= \\ & \mathcal{E}^{\prime}= \\ & \mathcal{E}^{\prime} \\ & \oplus\end{aligned}$
(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$
(4) $\operatorname{ad}_{\nabla_{0}} S-\phi_{11} S+S \phi_{21} S-\phi_{12}+S \phi_{22}=0$

- Schrödinger equation $=2$-nd order \hbar-differential operator on $\mathcal{L}:=\omega_{\mathrm{X}}^{-1 / 2}$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:
(0) $\hbar^{2} \partial_{x}^{2} \psi+q \psi=0$
(1) $\psi=\exp \left(\int s \mathrm{~d} x / \hbar\right)$
(2) $\hbar \partial_{x} s+s^{2}+q=0$

Geometric Point of View:
0 GIVEN: (\mathcal{E}, ∇) oper:

$$
0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0
$$

FIND: ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$
(1) Fix reference pair $\left(W_{0}, \nabla_{0}\right)$
(2) Search for $\left[\begin{array}{cc}\mathrm{id} & W \\ 0 & W\end{array}\right]=\left[\begin{array}{cc}\mathrm{id} & S \\ 0 & \mathrm{id}\end{array}\right]: \begin{gathered}\mathcal{E}^{\prime}=\mathcal{E}^{\prime} \\ \mathcal{E}^{\prime \prime}=\mathcal{E}^{\prime \prime}\end{gathered}$
(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$
(4) $\operatorname{ad}_{\nabla_{0}} S-\phi_{11} S+S \phi_{21} S-\phi_{12}+S \phi_{22}=0$

- Schrödinger equation $=2$-nd order \hbar-differential operator on $\mathcal{L}:=\omega_{\mathrm{X}}^{-1 / 2}$
- Equivalently, \hbar-connection ∇ on the 1 -jet bundle $\mathcal{E}:=\mathcal{J}^{1} \mathcal{L}$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:
(0) $\hbar^{2} \partial_{x}^{2} \psi+q \psi=0$
(1) $\psi=\exp \left(\int s \mathrm{~d} x / \hbar\right)$
(2) $\hbar \partial_{x} s+s^{2}+q=0$

Geometric Point of View:
0 Given: (\mathcal{E}, ∇) oper:

$$
0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0
$$

FIND: ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$
(1) Fix reference pair $\left(W_{0}, \nabla_{0}\right)$
(2) Search for $\left[\begin{array}{cc}\mathrm{id} & W \\ 0 & W\end{array}\right]=\left[\begin{array}{cc}\mathrm{id} & S \\ 0 & \mathrm{id}\end{array}\right]: \begin{gathered}\mathcal{E}^{\prime}=\mathcal{E}^{\prime} \\ \mathcal{E}^{\prime \prime}=\mathcal{E}^{\prime \prime}\end{gathered}$
(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$
(4) $\operatorname{ad}_{\nabla_{0}} S-\phi_{11} S+S \phi_{21} S-\phi_{12}+S \phi_{22}=0$

- Schrödinger equation $=2$-nd order \hbar-differential operator on $\mathcal{L}:=\omega_{\mathrm{X}}^{-1 / 2}$
- Equivalently, \hbar-connection ∇ on the 1 -jet bundle $\mathcal{E}:=\mathcal{J}^{1} \mathcal{L}$
- Oper structure $=$ jet sequence:
$0 \longrightarrow \omega_{\mathrm{x}} \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:
(0) $\hbar^{2} \partial_{x}^{2} \psi+q \psi=0$
(1) $\psi=\exp \left(\int s \mathrm{~d} x / \hbar\right)$
(2) $\hbar \partial_{x} s+s^{2}+q=0$

Geometric Point of View:
0 Given: (\mathcal{E}, ∇) oper:

$$
0 \rightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \rightarrow 0
$$

FIND: ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$
(1) Fix reference pair $\left(W_{0}, \nabla_{0}\right)$
(2) Search for $\left[\begin{array}{cc}\mathrm{id} & \\ 0 & W\end{array}\right]=\left[\begin{array}{cc}\mathrm{id} & S \\ 0 & \mathrm{id}\end{array}\right]: \begin{gathered}\mathcal{E}^{\prime}=\mathcal{E}^{\prime} \\ \mathcal{E}^{\prime \prime}=\mathcal{E}^{\prime \prime}\end{gathered}$
(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$
(4) $\operatorname{ad}_{\nabla_{0}} S-\phi_{11} S+S \phi_{21} S-\phi_{12}+S \phi_{22}=0$

- Schrödinger equation $=2$-nd order \hbar-differential operator on $\mathcal{L}:=\omega_{\mathrm{X}}^{-1 / 2}$
- Equivalently, \hbar-connection ∇ on the 1 -jet bundle $\mathcal{E}:=\mathcal{J}^{1} \mathcal{L}$
- Oper structure $=$ jet sequence: $0 \longrightarrow \omega_{\mathrm{X}} \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_{0} is given by choice of coordinate x because

$$
\mathcal{E} \xrightarrow[x]{\sim}\left\langle\mathrm{d} x \otimes \mathrm{~d} x^{-1 / 2}\right\rangle \oplus\left\langle\mathrm{d} x^{-1 / 2}\right\rangle=\mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime} \quad \text { and } \quad S=s(x, \hbar) \mathrm{d} x
$$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:

(0) $\hbar^{2} \partial_{x}^{2} \psi+q \psi=0$
(1) $\psi=\exp \left(\int s \mathrm{~d} x / \hbar\right)$
(2) $\hbar \partial_{x} s+s^{2}+q=0$

Geometric Point of View:
0 Given: (\mathcal{E}, ∇) oper:

$$
0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0
$$

FIND: ∇-invariant splitting $W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}$
(1) Fix reference pair $\left(W_{0}, \nabla_{0}\right)$
(2) Search for $\left[\begin{array}{cc}\mathrm{id} & W \\ 0 & \end{array}\right]=\left[\begin{array}{cc}\mathrm{id} & S \\ 0 & \mathrm{id}\end{array}\right]: \begin{aligned} & \mathcal{E}^{\prime}=\mathcal{E}^{\prime} \\ & \mathcal{E}^{\prime \prime}=\mathcal{E}^{\prime \prime}\end{aligned}$
(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$
(4) $\operatorname{ad}_{\nabla_{0}} S-\phi_{11} S+S \phi_{21} S-\phi_{12}+S \phi_{22}=0$

- Schrödinger equation $=2$-nd order \hbar-differential operator on $\mathcal{L}:=\omega_{\mathrm{X}}^{-1 / 2}$
- Equivalently, \hbar-connection ∇ on the 1 -jet bundle $\mathcal{E}:=\mathcal{J}^{1} \mathcal{L}$
- Oper structure $=$ jet sequence: $0 \longrightarrow \omega_{\mathrm{X}} \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_{0} is given by choice of coordinate x because

$$
\mathcal{E} \xrightarrow[x]{\sim}\left\langle\mathrm{d} x \otimes \mathrm{~d} x^{-1 / 2}\right\rangle \oplus\left\langle\mathrm{d} x^{-1 / 2}\right\rangle=\mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime} \quad \text { and } \quad S=s(x, \hbar) \mathrm{d} x
$$

- Reference connection $\nabla_{0}=\hbar \mathrm{d}$, then $\nabla \underset{\text { loc }}{ } \hbar \mathrm{d}-\left[\begin{array}{rr}0 & -q \\ 1 & 0\end{array}\right] \mathrm{d} x=\nabla_{0}-\phi$

§4. The WKB Method: Invariant Formulation

Traditional Point of View:

(0) $\hbar^{2} \partial_{x}^{2} \psi+q \psi=0$
(1) $\psi=\exp \left(\int s \mathrm{~d} x / \hbar\right)$
(2) $\hbar \partial_{x} s+s^{2}+q=0$

Geometric Point of View:
0 Given: (\mathcal{E}, ∇) oper:

$$
0 \longrightarrow \mathcal{E}^{\prime} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}^{\prime \prime} \longrightarrow 0
$$

$$
\underline{\text { FIND: }} \nabla \text {-invariant splitting } W: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}
$$

(1) Fix reference pair $\left(W_{0}, \nabla_{0}\right)$
(2) Search for $\left[\begin{array}{cc}\mathrm{id} & \\ 0 & W\end{array}\right]=\left[\begin{array}{cc}\mathrm{id} & S \\ 0 & \mathrm{id}\end{array}\right]: \begin{gathered}\mathcal{E}^{\prime}=\mathcal{E}^{\prime} \\ \mathcal{E}^{\prime \prime}=\mathcal{E}^{\prime \prime}\end{gathered}$
(3) Write $\nabla=\nabla_{0}-\phi \quad$ where $\quad \phi=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]$
(4) $\operatorname{ad}_{\nabla_{0}} S-\phi_{11} S+S \phi_{21} S-\phi_{12}+S \phi_{22}=0$

- Schrödinger equation $=2$-nd order \hbar-differential operator on $\mathcal{L}:=\omega_{\mathrm{X}}^{-1 / 2}$
- Equivalently, \hbar-connection ∇ on the 1 -jet bundle $\mathcal{E}:=\mathcal{J}^{1} \mathcal{L}$
- Oper structure $=$ jet sequence: $\quad 0 \longrightarrow \omega_{\mathrm{X}} \otimes \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$
- Reference splitting W_{0} is given by choice of coordinate x because

$$
\mathcal{E} \xrightarrow[x]{\sim}\left\langle\mathrm{d} x \otimes \mathrm{~d} x^{-1 / 2}\right\rangle \oplus\left\langle\mathrm{d} x^{-1 / 2}\right\rangle=\mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime} \quad \text { and } \quad S=s(x, \hbar) \mathrm{d} x
$$

- Reference connection $\nabla_{0}=\hbar \mathrm{d}$, then $\nabla \underset{\text { 오 }}{ } \hbar \mathrm{d}-\left[\begin{array}{rr}0 & -q \\ 1 & 0\end{array}\right] \mathrm{d} x=\nabla_{0}-\phi$
- Riccati equation: $\hbar \partial_{x} s+s^{2}+q=0$
ii. Thank you for your attention!

