Invitation to Resurgence
With a View Towards Geometry

Lecture 1

Nikita Nikolaev

SCAN FOR LECTURE NOTES

4-7 April 2023
Invitation to Recursion, Resurgence and Combinatorics Okinawa Institute of Science and Technology (OIST)
Okinawa, Japan

§0. What is this mini-course about?

divergent series and their analytic meaning

How can we promote formal data to analytic data in a natural way?
Brief Plan for the Course:
(1) Best example: resurgence of the Euler series
(2) Algebras of functions and sectorial neighbourhoods
(3) Asymptotic expansions
(4) Asymptotic expansions with factorial growth
(5) The Borel-Laplace transform
(6) Borel resummation
(7) The Stokes phenomenon and resurgent series

\leftarrow SCAN FOR LECTURE NOTES
alternatively: My Website \rightarrow Notes

§1. Resurgence of the Euler Series

- Problem: find all solutions on the real line of the following ODE

$$
x^{2} f^{\prime}+f=x
$$

§1. Resurgence of the Euler Series

- Problem: find all solutions on the real line of the following ODE

$$
x^{2} f^{\prime}+f=x
$$

- Aside: actually easy to solve using the integrating factor method:

$$
f(x)=C e^{1 / x}+e^{1 / x} \int_{0}^{x} \frac{e^{-1 / u}}{u} \mathrm{~d} u \quad \text { for } x>0, C=\mathrm{const}
$$

§1. Resurgence of the Euler Series

- Problem: find all solutions on the real line of the following ODE

$$
x^{2} f^{\prime}+f=x
$$

- Aside: actually easy to solve using the integrating factor method:

$$
f(x)=C e^{1 / x}+e^{1 / x} \int_{0}^{x} \frac{e^{-1 / u}}{u} \mathrm{~d} u \quad \text { for } x>0, C=\mathrm{const}
$$

- But let's pretend we don't know this, and use the power series method:
power series ansatz $\quad \widehat{f}(x):=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$

§1. Resurgence of the Euler Series

- Problem: find all solutions on the real line of the following ODE

$$
x^{2} f^{\prime}+f=x
$$

- Aside: actually easy to solve using the integrating factor method:

$$
f(x)=C e^{1 / x}+e^{1 / x} \int_{0}^{x} \frac{e^{-1 / u}}{u} \mathrm{~d} u \quad \text { for } x>0, C=\mathrm{const}
$$

- But let's pretend we don't know this, and use the power series method:
power series ansatz $\quad \widehat{f}(x):=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$
substitute into (\star) to get a recursion:

$$
a_{0}=0, a_{1}=1, \quad \text { and } \quad a_{k+1}=-k a_{k} \quad \text { i.e. } \quad a_{k+1}=(-1)^{k} k!\quad \text { for } k \geqslant 1
$$

§1. Resurgence of the Euler Series

- Problem: find all solutions on the real line of the following ODE

$$
x^{2} f^{\prime}+f=x
$$

- Aside: actually easy to solve using the integrating factor method:

$$
f(x)=C e^{1 / x}+e^{1 / x} \int_{0}^{x} \frac{e^{-1 / u}}{u} \mathrm{~d} u \quad \text { for } x>0, C=\mathrm{const}
$$

- But let's pretend we don't know this, and use the power series method:
power series ansatz $\quad \widehat{f}(x):=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$
substitute into (\star) to get a recursion:

$$
a_{0}=0, a_{1}=1, \quad \text { and } \quad a_{k+1}=-k a_{k} \quad \text { i.e. } \quad a_{k+1}=(-1)^{k} k!\quad \text { for } k \geqslant 1
$$

- Obtain a power series solution called the Euler series:

$$
\widehat{\operatorname{Eu}}(x):=\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1}=x-x^{2}+2 x^{3}-6 x^{4}+24 x^{5}-120 x^{6}+\cdots
$$

§1. Resurgence of the Euler Series

- Problem: find all solutions on the real line of the following ODE

$$
x^{2} f^{\prime}+f=x
$$

- Answer: the Euler series

$$
\widehat{\operatorname{Eu}}(x):=\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1}=x-x^{2}+2 x^{3}-6 x^{4}+24 x^{5}-120 x^{6}+\cdots
$$

\qquad

- Curious historical aside: why "Euler series"? Clipping from his 1760 paper in Novi Commentarii academiae scientiarum Petropolitanae:

	:220 DESERIEBVS §. §. Inveftigemus nunc etiam analytice huius feriei valorem, eam vero in latiori fenfu accipiamus: fit igitur
6. 13. His mamifis neminem fore arbitror, qui me reprehendendum patet, guod in fummam fequentis feriei diligentius inquifuerim: $\mathrm{x}-\mathrm{I}+2-6+24-120+720-5040+40320-\text { etc. }$ quae eft feries a Wallifio hypergeometrica dicta, fignis	quae differentiata dabit: $\frac{d s}{d x}=x-2 x+6 x x-2 x^{3}+120 x^{4}-\text { etc. }=\frac{x-s}{d x}$ vade fit $d s+s \frac{s d x}{d x}=\frac{d x}{x}$, cuius aequationis, fi e fuma-
alternantibus inftructa. Haec feries autem eo magis	

§1. Resurgence of the Euler Series

- Problem: find all solutions on the real line of the following ODE

$$
x^{2} f^{\prime}+f=x
$$

- Answer: the Euler series

$$
\widehat{\operatorname{Eu}}(x):=\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1}=x-x^{2}+2 x^{3}-6 x^{4}+24 x^{5}-120 x^{6}+\cdots
$$

- This answer is exceptionally simple and beautiful, but comes with two major setbacks:
(1) $\widehat{\mathrm{Eu}}(x)$ is divergent and therefore not a true solution!
(2) $\widehat{\mathrm{Eu}}(x)$ is at best only a particular solution, so the power series method has missed most solutions to our ODE!

§1. Resurgence of the Euler Series

- Key observation: if $x>0$, then $\quad x=\int_{0}^{\infty} e^{-t / x} \mathrm{~d} t$

§1. Resurgence of the Euler Series

- Key observation: if $x>0$, then $\quad x=\int_{0}^{\infty} e^{-t / x} \mathrm{~d} t$ and $k!x^{k+1}=\int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t$

§1. Resurgence of the Euler Series

- Key observation: if $x>0$, then $\quad x=\int_{0}^{\infty} e^{-t / x} \mathrm{~d} t \quad$ and $k!x^{k+1}=\int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t$
- Illegal trick: plug this into the Euler series to get

$$
\begin{aligned}
\widehat{\operatorname{Eu}}(x) & =\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t \\
" & =" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t \\
" & =" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=: \operatorname{Eu}(x)
\end{aligned}
$$

§1. Resurgence of the Euler Series

- Key observation: if $x>0$, then $\quad x=\int_{0}^{\infty} e^{-t / x} \mathrm{~d} t \quad$ and $k!x^{k+1}=\int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t$
- Illegal trick: plug this into the Euler series to get

$$
\begin{aligned}
\widehat{\operatorname{Eu}}(x) & =\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t \\
" & =" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t \\
" & =" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=: \operatorname{Eu}(x)
\end{aligned}
$$

§1. Resurgence of the Euler Series

- Key observation: if $x>0$, then $\quad x=\int_{0}^{\infty} e^{-t / x} \mathrm{~d} t \quad$ and $k!x^{k+1}=\int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t$
- Illegal trick: plug this into the Euler series to get

$$
\begin{aligned}
\widehat{\operatorname{Eu}}(x) & =\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t \\
" & =" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t \\
" & =" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=: \operatorname{Eu}(x)
\end{aligned}
$$

- But: $\mathrm{Eu}(x)$ is a perfectly well-defined analytic function for $x>0$. Moreover:

$$
x^{2} \operatorname{Eu}^{\prime}(x)+\operatorname{Eu}(x)=x \quad \text { and } \quad \operatorname{Eu}(x) \simeq \widehat{\operatorname{Eu}}(x) \quad \text { as } x \rightarrow 0^{+}
$$

§1. Resurgence of the Euler Series

- Key observation: if $x>0$, then $\quad x=\int_{0}^{\infty} e^{-t / x} \mathrm{~d} t \quad$ and $k!x^{k+1}=\int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t$
- Illegal trick: plug this into the Euler series to get

$$
\begin{aligned}
\widehat{\operatorname{Eu}}(x) & =\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t \\
" & =" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t \\
" & =" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=: \operatorname{Eu}(x)
\end{aligned}
$$

- But: $\mathrm{Eu}(x)$ is a perfectly well-defined analytic function for $x>0$. Moreover:

$$
x^{2} \operatorname{Eu}^{\prime}(x)+\operatorname{Eu}(x)=x \quad \text { and } \quad \operatorname{Eu}(x) \simeq \widehat{\operatorname{Eu}}(x) \quad \text { as } x \rightarrow 0^{+}
$$

In fact: $\operatorname{Eu}(x)=e^{1 / x} \int_{0}^{x} \frac{e^{-1 / u}}{u} \mathrm{~d} u$ is the particular solution we encountered before!

§1. Resurgence of the Euler Series

- Key observation: if $x>0$, then $\quad x=\int_{0}^{\infty} e^{-t / x} \mathrm{~d} t \quad$ and $k!x^{k+1}=\int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t$
- Illegal trick: plug this into the Euler series to get

$$
\begin{aligned}
\widehat{\operatorname{Eu}}(x) & =\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \int_{0}^{\infty} t^{k} e^{-t / x} \mathrm{~d} t \\
\cdot \quad & =" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t \\
" & =" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=: \operatorname{Eu}(x)
\end{aligned}
$$

- But: $\mathrm{Eu}(x)$ is a perfectly well-defined analytic function for $x>0$. Moreover:

$$
x^{2} \operatorname{Eu}^{\prime}(x)+\operatorname{Eu}(x)=x \quad \text { and } \quad \operatorname{Eu}(x) \simeq \widehat{\operatorname{Eu}}(x) \quad \text { as } x \rightarrow 0^{+}
$$

In fact: $\operatorname{Eu}(x)=e^{1 / x} \int_{0}^{x} \frac{e^{-1 / u}}{u} \mathrm{~d} u$ is the particular solution we encountered before!

§1. Resurgence of the Euler Series

$$
\begin{gathered}
\widehat{\operatorname{Eu}}(x)=\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} "=" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t "=" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=\operatorname{Eu}(x) \\
\text { Borel Resummation: }
\end{gathered}
$$

(1) Borel transform: $\widehat{\operatorname{Eu}}(x) \stackrel{\mathfrak{B}}{\longmapsto} \widehat{\mathrm{eu}}(t):=\sum_{k=0}^{\infty}(-1)^{k} t^{k}$

§1. Resurgence of the Euler Series

$$
\widehat{\operatorname{Eu}}(x)=\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} "=" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t "=" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=\operatorname{Eu}(x)
$$

Borel Resummation:

(1) Borel transform: $\widehat{\operatorname{Eu}}(x) \stackrel{\mathfrak{B}}{\longmapsto} \widehat{\mathrm{eu}}(t):=\sum_{k=0}^{\infty}(-1)^{k} t^{k}$

$$
\widehat{f}(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \stackrel{\mathfrak{B}}{\longmapsto} \sum_{k=0}^{\infty} \frac{a_{k+1}}{k!} t^{k}=\widehat{\varphi}(x)
$$

§1. Resurgence of the Euler Series

$$
\widehat{\operatorname{Eu}}(x)=\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} "=" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t "=" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=\operatorname{Eu}(x)
$$

Borel Resummation:

(1) Borel transform: $\widehat{\operatorname{Eu}}(x) \stackrel{\mathfrak{B}}{\longmapsto} \widehat{\mathrm{eu}}(t):=\sum_{k=0}^{\infty}(-1)^{k} t^{k}$

$$
\widehat{f}(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \stackrel{\mathfrak{B}}{\longmapsto} \sum_{k=0}^{\infty} \frac{a_{k+1}}{k!} t^{k}=\widehat{\varphi}(x)
$$

(2) analytic continuation to all $t \in \mathbb{R}_{+}: \quad \widehat{\mathrm{eu}}(t) \rightsquigarrow \mathrm{eu}(t):=\frac{1}{1+t}$

§1. Resurgence of the Euler Series

$$
\widehat{\operatorname{Eu}}(x)=\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} "=" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t "=" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=\operatorname{Eu}(x)
$$

Borel Resummation:

(1) Borel transform: $\widehat{\operatorname{Eu}}(x) \stackrel{\mathfrak{B}}{\longmapsto} \widehat{\mathrm{eu}}(t):=\sum_{k=0}^{\infty}(-1)^{k} t^{k}$

$$
\widehat{f}(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \stackrel{\mathfrak{B}}{\longmapsto} \sum_{k=0}^{\infty} \frac{a_{k+1}}{k!} t^{k}=\widehat{\varphi}(x)
$$

(2) analytic continuation to all $t \in \mathbb{R}_{+}: \quad \widehat{\mathrm{eu}}(t) \rightsquigarrow \mathrm{eu}(t):=\frac{1}{1+t}$
(3) Laplace transform: $\quad \mathrm{eu}(t) \stackrel{\mathfrak{L}}{\longmapsto} \mathrm{Eu}(x)=\int_{0}^{\infty} e^{-t / x} \mathrm{eu}(t) \mathrm{d} t$

§1. Resurgence of the Euler Series

$$
\widehat{\operatorname{Eu}}(x)=\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} "=" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t "=" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=\operatorname{Eu}(x)
$$

Borel Resummation:

(1) Borel transform: $\widehat{\operatorname{Eu}}(x) \stackrel{\mathfrak{B}}{\longmapsto} \widehat{\mathrm{eu}}(t):=\sum_{k=0}^{\infty}(-1)^{k} t^{k}$

$$
\widehat{f}(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \stackrel{\mathfrak{B}}{\longmapsto} \sum_{k=0}^{\infty} \frac{a_{k+1}}{k!} t^{k}=\widehat{\varphi}(x)
$$

(2) analytic continuation to all $t \in \mathbb{R}_{+}: \quad \widehat{\mathrm{eu}}(t) \rightsquigarrow \mathrm{eu}(t):=\frac{1}{1+t}$
(3) Laplace transform: $\mathrm{eu}(t) \stackrel{\mathfrak{L}}{\longmapsto} \mathrm{Eu}(x)=\int_{0}^{\infty} e^{-t / x} \mathrm{eu}(t) \mathrm{d} t$

$$
\varphi(t) \stackrel{\mathfrak{L}}{\longmapsto} \int_{0}^{\infty} \varphi(t) e^{-t / x} \mathrm{~d} t
$$

§1. Resurgence of the Euler Series

$$
\widehat{\mathrm{Eu}}(x)=\sum_{k=0}^{\infty}(-1)^{k} k!x^{k+1} "=" \int_{0}^{\infty}\left(\sum_{k=0}^{\infty}(-1)^{k} t^{k}\right) e^{-t / x} \mathrm{~d} t "=" \int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=\operatorname{Eu}(x)
$$

Borel Resummation:

(1) Borel transform: $\widehat{\operatorname{Eu}}(x) \stackrel{\mathfrak{B}}{\longmapsto} \widehat{\mathrm{eu}}(t):=\sum_{k=0}^{\infty}(-1)^{k} t^{k}$

$$
\widehat{f}(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \stackrel{\mathfrak{B}}{\longmapsto} \sum_{k=0}^{\infty} \frac{a_{k+1}}{k!} t^{k}=\widehat{\varphi}(x)
$$

(2) analytic continuation to all $t \in \mathbb{R}_{+}$: $\quad \widehat{\mathrm{eu}}(t) \rightsquigarrow \mathrm{eu}(t):=\frac{1}{1+t}$
(3 Laplace transform: $\mathrm{eu}(t) \stackrel{\mathfrak{L}}{\longmapsto} \mathrm{Eu}(x)=\int_{0}^{\infty} e^{-t / x} \mathrm{eu}(t) \mathrm{d} t$

$$
\varphi(t) \stackrel{\mathfrak{L}}{\longmapsto} \int_{0}^{\infty} \varphi(t) e^{-t / x} \mathrm{~d} t
$$

The Borel sum of $\widehat{f}(x)$ is

$$
f(x)=\Sigma(\widehat{f}(x)):=a_{0}+\mathfrak{L}[\varphi(t)]=a_{0}+\mathfrak{L} \circ \text { AnCont } \circ \mathfrak{B}[\widehat{f}(x)]
$$

§1. Resurgence of the Euler Series

Wallis Hypergeometric Series

Question: What is the 'value' of

$$
\widehat{\mathrm{Eu}}(1)=1-1!+2!-3!+4!-5!+\cdots=1-1+2-6+24-120+\cdots \quad ?
$$

§1. Resurgence of the Euler Series

Wallis Hypergeometric Series

Question: What is the 'value' of

$$
\widehat{\operatorname{Eu}}(1)=1-1!+2!-3!+4!-5!+\cdots=1-1+2-6+24-120+\cdots \quad ?
$$

Answer: since $\operatorname{Eu}(x)$ is the Borel resummation of $\widehat{\operatorname{Eu}}(x)$ for $x>0$, get

$$
\Sigma(\widehat{\operatorname{Eu}}(1))=\operatorname{Eu}(1)
$$

§1. Resurgence of the Euler Series

Wallis Hypergeometric Series

Question: What is the 'value' of

$$
\widehat{\mathrm{Eu}}(1)=1-1!+2!-3!+4!-5!+\cdots=1-1+2-6+24-120+\cdots \quad ?
$$

Answer: since $\operatorname{Eu}(x)$ is the Borel resummation of $\widehat{\operatorname{Eu}}(x)$ for $x>0$, get

$$
\Sigma(\widehat{\operatorname{Eu}}(1))=\operatorname{Eu}(1)=\int_{0}^{\infty} \frac{e^{-t}}{1+t} \mathrm{~d} t
$$

§1. Resurgence of the Euler Series

Wallis Hypergeometric Series

Question: What is the 'value' of

$$
\widehat{\mathrm{Eu}}(1)=1-1!+2!-3!+4!-5!+\cdots=1-1+2-6+24-120+\cdots \quad ?
$$

Answer: since $\operatorname{Eu}(x)$ is the Borel resummation of $\widehat{\operatorname{Eu}}(x)$ for $x>0$, get

$$
\Sigma(\widehat{\mathrm{Eu}}(1))=\mathrm{Eu}(1)=\int_{0}^{\infty} \frac{e^{-t}}{1+t} \mathrm{~d} t \approx 0.596347362 \underline{3} 23194 \ldots
$$

9. 16. Adhibeatur iam haec methodus ad reviems
propofitem
$A=1-I+2-6+24-x 20+720-5040+40320-$ etc。

$$
A=\frac{914985}{15343 \times 59392,24}=0,5963473621237
$$

§1. Resurgence of the Euler Series

$$
\begin{aligned}
& \text { What about } \boldsymbol{x}<\mathbf{0} \text { ? } \\
& \operatorname{Eu}(x)=\int_{0}^{\infty} \frac{e^{-t / x}}{1+t} \mathrm{~d} t
\end{aligned}
$$

has an obvious problem for $x<0$: integrand is exponentially growing as $t \rightarrow+\infty$
expand our worldview: from now on, x is a complex variable

§1. Resurgence of the Euler Series

- $\mathfrak{L}[t](x)=\int_{\mathbb{R}_{+}} t e^{-t / x} \mathrm{~d} t \quad$ is well-defined for all $x \in \mathbb{H}_{+}:=\{\operatorname{Re}(x)>0\}$

§1. Resurgence of the Euler Series

- $\mathfrak{L}[t](x)=\int_{\mathbb{R}_{+}} t e^{-t / x} \mathrm{~d} t \quad$ is well-defined for all $x \in \mathbb{H}_{+}:=\{\operatorname{Re}(x)>0\}$
- $\mathfrak{L}_{\theta}[t](x):=\int_{\mathbb{R}_{\theta}} t e^{-t / x} \mathrm{~d} t \quad$ is well-defined for all $x \in \mathbb{H}_{\theta}:=\left\{\operatorname{Re}\left(e^{-i \theta} x\right)>0\right\}$

§1. Resurgence of the Euler Series

- $\mathfrak{L}[t](x)=\int_{\mathbb{R}_{+}} t e^{-t / x} \mathrm{~d} t \quad$ is well-defined for all $x \in \mathbb{H}_{+}:=\{\operatorname{Re}(x)>0\}$
- $\mathfrak{L}_{\theta}[t](x):=\int_{\mathbb{R}_{\theta}} t e^{-t / x} \mathrm{~d} t \quad$ is well-defined for all $x \in \mathbb{H}_{\theta}:=\left\{\operatorname{Re}\left(e^{-i \theta} x\right)>0\right\}$
- $\mathfrak{L}_{\mathrm{A}}[t](x):=\left\{\mathfrak{L}_{\theta}[t](x)\right\}_{\theta \in \mathrm{A}} \quad$ assembles into a holomorphic function on $\underset{\theta \in \mathrm{A}}{ } \mathbb{H}_{\theta}$ $\mathrm{A}=\left(\alpha_{-}, \alpha_{+}\right)=$arc of directions

§1. Resurgence of the Euler Series

Get a particular holomorphic solution for all $x \in \mathbb{C} \backslash \mathbb{R}_{-}$:

$$
\operatorname{Eu}(x):=\int_{\Gamma_{x}} \frac{e^{-t / x}}{1+t} \mathrm{~d} t
$$

§1. Resurgence of the Euler Series

Get a particular holomorphic solution for all $x \in \mathbb{C} \backslash \mathbb{R}_{-}$:

$$
\operatorname{Eu}(x):=\int_{\Gamma_{x}} \frac{e^{-t / x}}{1+t} \mathrm{~d} t
$$

Consider: $\operatorname{Eu}^{ \pm}(x):=\int_{\Gamma^{ \pm}} \frac{e^{-t / x}}{1+t} \mathrm{~d} t$

Stokes Phenomenon: they are not the same!

§1. Resurgence of the Euler Series

Get a particular holomorphic solution for all $x \in \mathbb{C} \backslash \mathbb{R}_{-}$:

$$
\operatorname{Eu}(x):=\int_{\Gamma_{x}} \frac{e^{-t / x}}{1+t} \mathrm{~d} t
$$

Consider: $\operatorname{Eu}^{ \pm}(x):=\int_{\Gamma^{ \pm}} \frac{e^{-t / x}}{1+t} \mathrm{~d} t$

Stokes Phenomenon: they are not the same!

$$
\mathrm{Eu}^{+}(x)-\mathrm{Eu}^{-}(x)=\oint_{t=-1} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=2 \pi i \operatorname{Res}_{t=-1}\left(\frac{e^{-t / x}}{1+t} \mathrm{~d} t\right)=2 \pi i e^{1 / x}
$$

§1. Resurgence of the Euler Series

Get a particular holomorphic solution for all $x \in \mathbb{C} \backslash \mathbb{R}_{-}$:

$$
\operatorname{Eu}(x):=\int_{\Gamma_{x}} \frac{e^{-t / x}}{1+t} \mathrm{~d} t
$$

Consider: $\operatorname{Eu}^{ \pm}(x):=\int_{\Gamma^{ \pm}} \frac{e^{-t / x}}{1+t} \mathrm{~d} t$

Stokes Phenomenon: they are not the same!

$$
\operatorname{Eu}^{+}(x)-\operatorname{Eu}^{-}(x)=\oint_{t=-1} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=2 \pi i \underset{t=-1}{\operatorname{Res}}\left(\frac{e^{-t / x}}{1+t} \mathrm{~d} t\right)=2 \pi i e^{1 / x}
$$

So the missing solutions have resurged as residues of the Borel transform!

§1. Resurgence of the Euler Series

Get a particular holomorphic solution for all $x \in \mathbb{C} \backslash \mathbb{R}_{-}$:

$$
\operatorname{Eu}(x):=\int_{\Gamma_{x}} \frac{e^{-t / x}}{1+t} \mathrm{~d} t
$$

Consider: $\operatorname{Eu}^{ \pm}(x):=\int_{\Gamma^{ \pm}} \frac{e^{-t / x}}{1+t} \mathrm{~d} t$

Stokes Phenomenon: they are not the same!

$$
\operatorname{Eu}^{+}(x)-\operatorname{Eu}^{-}(x)=\oint_{t=-1} \frac{e^{-t / x}}{1+t} \mathrm{~d} t=2 \pi i \operatorname{Res}_{t=-1}\left(\frac{e^{-t / x}}{1+t} \mathrm{~d} t\right)=2 \pi i e^{1 / x}
$$

So the missing solutions have resurged as residues of the Borel transform!
The general solution is the multivalued holomorphic function on $\mathbb{C} \backslash\{0\}$:

$$
f(x)=\operatorname{Eu}(x)+C e^{1 / x}=\operatorname{Eu}(x)+C 2 \pi i \operatorname{Res}_{t=-1}\left(e^{-t / x} \operatorname{eu}(t) \mathrm{d} t\right) \quad C \in \mathbb{C}
$$

