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Abstract. This paper reviews ideas and results from unsupervisedifeatheory that have given
the best explanation yet of how neural firing rates self-oigmto code natural images in area V1
of visual cortex. It then discusses the generalisation @$¢hdeas to self-organising spike-coding
networks. A mismatch between the resulting spike-learalggrithm and the known physiological
processes of synaptic plasticity is then used as a motivatiantroduce the rather obvious idea
that neurons are not sending their information to otheromsirbut to synapses — more microscopic
structures. This prompts a survey of other inter-level camications in the brain and inside cells.
It is proposed on the basis of this that information flows la#l tvay up and down the reductionist
hierarchy — an idea that transforms many of our ideas abouhima learning and neuroscience.
What it transforms them into is not yet clear, but the remeiraf the paper discusses this.
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THE NEED FOR PROGRESS

Despite many technical advances in probabilistic macl@aming no-one has been able
to connect its ideas convincingly with the learning proesssccurring in the brain. At
the same time, efforts to understand biological self-oiggtion with ideas from physics
have not yielded as much as might be hoped. And to completeiéimgle, the project
to connect physical law to principles of information and gutation is still a marginal
activity, despite some fascinating results (for examp8j [& this volume).

It is nonetheless anticipated that these 3 lines of engphiygics, biology, inference)
will converge before long and a new science of complex systeith be invented. The
mother-to-be of this invention is necessity. We face enarsnchallenges in climate,
ecology, health and education — in the organisation of ocieties and in their relation-
ships to the biological systems that they contain and thatboo them. At the same time,
our communications and biotechnologies are transitiotorgnew level of sophistica-
tion. It is hard to believe that we will be able to use our neeht®logies responsibly
and find solutions to our problems without a better undedstenof what life is, what
learning is — for what characterises life perhaps aboveyévieg else, is its ability to
adapt to and create new circumstances. We need to undemstaidyives biological
systems their amazing adaptive abilities. This paper malsesious attempt to propose
a new line of thinking about this, using results and contreias in neuroscience and
statistical learning theory as a guide.



MACHINE LEARNING AND THE BRAIN

The modern theories of statistical machine learning andaiiistic inference, although
they emerged largely from the neural networks communityehétle to say to an
experimental neuroscientist. A comfortable and unexathomnsensus seems to exist
along the lines of “optimal perceptual inference to builgresentations, and optimal
decision theory to choose actions”. This view is so commai ithmay be called ‘the
Standard Model'. Its first component (inference) imagimesdortex utilising Bayesian
procedures to estimate the values of variables in a scewe dépth). The theory is
supported by the finding that humans can combine relevaotnrdtion in Bayesianly
optimal ways (for example visual and touch information )18t the question of which
of the combinatorial number of possible ‘hidden variableghe world’ one should
estimate is not answered by the Bayesian framework. Theyhady works if it is
already known what should be estimated. Our brains canmatysl be estimating all
variables of potential relevance. Ideas about attentrvolving guiding feedback from
higher cortical areas, have not yet matured into an accepésuly, and require the brain
to have a motivation, to which we now turn.

Somewhere in the middle of the brain, the problem of reprsgturns into the prob-
lem of choosing and executing actions. At this point, theoedcstage of the Standard
Model imagines cortex computing actions that maximise astrabt utility function,
sometimes called ‘reward’, based on motivational infoiorasupplied by sub-cortical
structures. The problem with this theory is that the cicwiarrying this information
themselves need to learn how to convert sensory input intovatmnal signals. There
is nogivenreward function. The (rather elegant) mathematics of ceagment learning,
in which the reward signal comes in on a ‘special wire’ frontside unfortunately does
not map onto the real situation where the neuromodulatampections flooding cortex
from subcortical structures are themselves plastic (@ #isy could not be altered by
addictive substances). Much of what is rewarding is in camslux as the needs of the
physical organism change from moment to moment. The fattréwaard is necessarily
a plastic function within the system, and not a value judgameystically arriving from
outside is never more apparent than when one visits a rabaticwhere reinforcement
learning is being used. Like the undefined fitness functidrandrtificial Life simula-
tion, the undefined reward functions of reinforcement legysignal the inadequacy of
the theory underlying them to apply to the neurophysiolalgauation.

Even if we were to somehow blend the decision theoretic stagehe perceptual in-
ference stage, so the Standard Model looked less like atage fromuncular hangover
from a Cartesian worldview, we would still be stuck with tlesvard concept, defined
when the rat is in the box, but much more elusiveivo. Perhaps it is time to dispense
with this concept and its attendant goal of explaining thenglex social behaviours
of N creatures as being that of the optimisatiorNo$eparate undefined scalar reward
functions.

Aside from concerns about attention and reward, the Stdndadel, with its focus
on sensory and motor processes, has nothing to say abouthehadain is doing when
it is just thinking. Why for that matter do we need to sleepPchdatures with nervous
systems above a certain complexity need to sleep or thewonsrsystems become
epileptic, causing death. This leads many to believe tleafpsis a neural requirement. It



is unlikely that sleep exists just to conserve energy sineaige as much when we are
asleep as when we are awake and resting.

If reward is at best a learned function, then the brain’sregy must be unsuper-
vised. Unsupervised learning attacks a host of problenskjdmg clustering, but in the
absence of aa priori need to cluster, it is perhaps best viewed as simply dersiity -
tion. The line that | will follow in this paper is that densiggtimation is the correct way
to think about learning in the brain. To summarise the théoigne sentence: the brain
is saying ‘how likely was that?’ and adjusting itself acdagly. The density estimation
occurs not between some external world input and some @itérain representation,
but ratheracross levels of the reductionist hierarctBut we are getting ahead of our
story. First we must explain what density estimation is amg @wnyone would think it
adequate to explain something so unsensory as behaviour.

SENSORY-MOTOR DENSITY ESTIMATION

The goal of density estimation is to fit a model probabilitysi¢y function (pdf) to data,
as when we find the mean and variance that best fits a normad tw histogram of
data values of, for example, peoples’ heights. The objectiat is minimised is called
the Kullback-Leibler divergence between the datapdhd the model pdf, defined as
Dip|q] = (log(p/q))p where(-) , means the average over the mpdf

Now if we had some arbitrary parametethat we wanted to learn (say the strength of
a synapse in the brain), we could learn it by computing thdigra of the KL divergence
and running down it till we reach a minimum. A few lines of aalles shows this gradient
to be:

dwD[pla] = < <1+ Iogg) dwlogp— 6wlogq> 1)
p

The second term is the gradient of the log likelihood of theadender the model, which
(before we take the Bayesian path and talk about prior digions over models) is the
gradient normally followed in density estimation algonitb. This term is theensory
term, corresponding to changing ones model to fit the date.fif$t term, on the other
hand, is anotorterm: it corresponds to changing ones data to fit the modeilé/tis
would be a disreputable activity for a statistician, it i;iatheless a part of life, if we
consider that a synaptic weight change may change the ptitypabfuture data.

Unless the dynamics of the world’s data-generation procesteterministic and
known, it seems impossible to evaluate this first term. Budry existence wakes us up
to the fact that density estimation need not be a sensory géome: the gradient of the
KL divergence and the log likelihood are different. Furthere, the tables are turned
on a common complaint against unsupervised or Shannomation based learning
models: that they do not distinguish between meaningfudrimétion and noise. The
appearance of a second term dependent on the motor-inflaénesuffices to make
some data more relevant than other data. This term has thet@bdto actually provide
a foundation for the signal/noise distinction, containiag it does, the subjectivity of
how ones brain-state effects the world.



But how can this term do so in a way that is meaningful to a areat things like
finding food and keeping warm? We do not have an answer to thastopn. But if we
can find a cross-level theory of learning such that even eellsmolecules can be seen
as modeling and changing their local environments and iriing to a global model,
then when they are too cold or lack energy, they will displggaimics that, just like an
agent, will give rise to emergent properties that cause osaopic behaviour changes,
such as eating or finding shelter.

Such a theory may be out of reach at the moment, but we havartossimewhere.
We will start by exploring the technicalities of statistickensity estimation in order to
set the stage for the cross-level ideas introduced lateéFlus.will necessitate a dip into
the mathematics, but for the unitiated, hold on - the stotg better later.

If the sensory-motor problem does have the unsupervisedtste argued for by
ed.(1), then the introduction of the motor term, for all itebytic intractability,cannot
make things worse. It isasierto find the hidden degrees of freedom of the world when
we can manipulate objects than when we are just looking &ingis. Children learn by
doing, not just observing. It is easier to understand a witiddl we are in the process of
creating than one that is given to us. (Of course, we can agayoo far in this, leading
to solipsism. A question for later sections is: what foraedteto keep an adaptive agent
away from a solipsistic solution?)

Knuth et al ([32] and references therein) describe a diffevmsupervised approach
to the sensory-motor problem. It uses the combined calaflugerence and inquiry to
design instruments that perform actions to maximise exgectformation gain. This is
eminently sensible, but biological systems do not appeéuriotion this way. Rather,
organisms seem to converge amtopoeticallystable reverberations with partially self-
constructed environments [36], and this is closer to tha ide are trying to reach. A
robot maximising information gain would never stop to sirgpag.

Another interesting unsupervised approach maximisesrtfiegmation flow in the
sensory-motor loop [30], though it is subject to the this samiticism.

SENSORY DENSITY ESTIMATION

Density estimation learning methods have already proviokedbest computational
model to date for how the brain might self-organise from eigmee. One can show
tiny images or movies to a neural network and train it to haeeptive fields similar to
those measured by single-neuron recordings from area Visoéhcortex of cats and
monkeys. Fig. 1a viewable on the internet, shows a movie abgreriment done by
Hubel and Wiesel on a cat in the 1960s, demonstrating how @liemof a receptive
field arose.

Theoretical results of this kind were first obtained by Oisden and Field [38] using
the idea that neurons should try be sparse (fire rarely) acalgdated. But the receptive
fields can be obtained using density estimation alone. Thelteein Fig. 1b and 1c
were obtained by an Independent Component Analysis (ICAyor& [5] and a kind
of DependenComponent Analysis (DCA) network related to Hyvéarinen arayét’s
‘Topographic ICA' [27, 39, 49]). These receptive fields atatis. Dynamic (spatio-
temporal) receptive fields were obtained by van Hateren amtkfRnan [48], and are



FIGURE 1. Receptive fields learned from natural image data. The fuBliea of this figure is on the
internet at www.snl.salk.ediahy/RecFields.html. (a) On web: A movie showing Hubel antba&l's
discovery of visual receptive fields in cat. (b) Left abov@AHearned image bases. Each picture is a
learned axis in image space, corresponding to a colurii of (see text). (c) Right above: a typical basis
set obtained with a model closely related to Topographi&-|@9] [Thank you to Simon Osindero for
permission to reprint his figure]. (d) On web: spatio-tengboeceptive fields learned from natural movies
by van Hateren and Ruderman [48]

shown on the web (Fig. 1d). In both cases shown here, reeditids are ‘Gabor-like’:
localised in space, orientation, spatial frequency ands@hbke Hubel and Wiesel's
‘simple cells’ of V1. (Phase-invariant ‘complex cells’ maiso be learned [27]). In the
topographic ICA case, the neurons are also spatially oddara 2D grid, or ‘map’, very
much as V1 cells are arranged across the sheet of corter, @&oifientation ‘column’
where position, orientation and spatially frequency vasgtmuously across the map,
except at discontinuities called pinwheels visible in Hig.

Both ICA and DCA are simple density estimation networks.yitade a multivariate
data distribution and find a new set of axes in it (just as aiEotnansform or Principal
Component Analysis does). Unlike PCA, the new coordinastesy is chosen entirely
on the basis of the statistics of the data (PCA and Fouriezsbaspose the additional
constraint that the axes be orthogonal in the original gpdites important here not to
confuse the orthogonality of the transform with the dedatien of the resulting output
variables.] The axes are found by training a complete settefdi(ie: a square matrix
W) to transform the data by = Wx into a new vector space where the elements
u; are either as statistically independent as possible, tstitally dependent in some
specified way. The training is done by presenting the imagesaba time and changing
the filter matrix according to one of the following equations

ICA: AW O (1= (f(uu"), )W 2)



DCA: AW O ({f(u)u"),—(f(upuT) )W (3)

wherel is the identity matrix. The learned axes {@sis functionsactually correspond
to the columns of the inverse of the filter matuik L.

Both algorithms linearly transform the data intaa&pace where a certain statistical
model,q(u), (a ‘shaping density’) is imposed. The optimisation is tdtfé transformed
data to this model by gradient ascent in the log likelihoothefdata under this model
via AW [0 (dw logq(x)),, just as in eq.(1) without the motor term. The models on the
input and output neurons are relateddfx) = q(u) |W|, where|-| means the absolute
determinant.

In ICA, the model factorisesg(u) = []iq(ui), and the details of the univariate
marginals,g(u;), may also be learned (though it is often un-necessary to fioTee
vector of functionsf (u) has entriedi(u) = —d, logq(u), and these are called the score
functions. If these were linear, a condition satisfied byihgwa gaussian models on the
q(u), then ICA can be seen to stabilise on avera@@\() , = 0) whenl = (uuT>p, in

other words when the outputs are unit variance decorrel@techake non-gaussian sig-
nals independent we need statistics higher than secored-and these are provided by
the Taylor-expansion of the score functions.

Much more could (and has) been said about this, but the mairt fpomake here is
that DCA is the completely general form, turning into ICA whie model we impose
is that of independence, iéﬁ(u)uT>q =1. The DCA form can be derived by writing the

model density in the completely general Gibbs’ form:

q(u) = 2= @
Z

involving an ‘energy’E(u) and a normaliser called the partition functidn{25]. The
two averages over the model and data densities in eq.(3haneseen to arise from the
gradients with respect té/ of the log partition function and the energy respectively.
The learning equation for a single weight has exactly a Budtzn machine structure
[24] consisting of a Hebbian (correlational) term sampledrdhe data density and an
anti-Hebbian (anti-correlational) term sampled over thadei density. This is said by
some to be accomplished by alternately learning from datanirawake phase, then
unlearning from the model in an asleep phase. This ideagwhifiguing, has yet to
condense into a serious neurobiological theory of sleepit lsione to which we will
return. There are few applications of DCA, for the same redisat there are few for the
Boltzmann Machine, namely that the training (sampling figyns just too slow.

The topographic ICA results in Fig. 1c [27, 39] are actualiyained by a very simple
DCA model, but more complicated models run into this need to integoatr the
model density (the first term of eq.(3)). This integratiomieh is a universal bother in
machine learning and statistical physics is only tractabkmple cases (like Gaussian
or ICA models), and otherwise, as mentioned above, we masttréo sampling from

1 overlapping neighbourhoods on a mafu) O [k d(uk) whereux means neighbourhoddof the map,
and radially symmetric laplacian multivariate marginglaik ) O exp(—||uk||)



the model density using one of many schemes (Monte-Carl&dwaZhain (MCMC) or
Contrastive Divergence [26] being two such schemes).

Were we able to solve the model-selection problem (the ehofcg(u)) and the
gradient of the partition function, we would be in good shapeattempt the Holy
Grail problem of building hierarchical representationstjirom data, as we could use
the resulting groupings of variables (like the neighboodsof the topographic map)
to non-linearly recoordinatise the data at each layer aed thok for new structure
‘unwrapped’ by the non-linear recoordinatisation. An exé&mwould be to re-express
data fitting a radially symmetric laplacian model in spharmordinates (phases and an
amplitude) and input this to a higher network.

Many have travelled this road (my attempt is in [7]) and fewdhamerged unbloodied
and with meaningful results (the few are [29, 27, 39]). It & a problem | would
recommend to a graduate student unless he had a good newRdtwer | would
recommend stepping back to look at the problem afresh, amiddy can be a great
inspiration in redesigning ones question until the answeks right. In other words, if
one is struggling with the problems of model selection anditpan function gradients
then perhaps it is a good idea to ask how on earth these prsbteap onto the tissue
inside our skulls. That is the track that we will follow in thext part of the story.

To conclude, this section has been a quite dense summaryadf technical work by
many people just to arrive at two equations. eq.(3) is Amiaai’e Natural Gradient [2]
transformation of Hinton et al’s view [25] of the InfomaxACalgorithm [4], which is
identical to the maximum likelihood approach (see [12] foeaplanation). The Natural
Gradient concept (optimisation in the metric space of roas) is explained in detall
(without reference to Amari's Information Geometry) in [477]. The ICA method in
eq.(2) is also in the natural gradient form proposed by Areaial where the weight
space is given a Fisher metric based on reasons of informgéometry [3]. A review
of related sparse-coding techniques is found in [45].

SPIKING DENSITY ESTIMATION

Looking at biology, there is quite a variety of phenomena tandinspiration from.
Since it was not at all clear what model selection and thetmartfunction gradient
might mean in neural tissue, | decided to focus on a probleithd disturbed me for a
long time: the issue of learning with neurons that spike. Mslier attempts on this had
floundered (actually giving the Infomax-ICA algorithm asyagroduct). The reason to
tell the story is that it moves us close enough to biology Watan derive theeductio
ad absurdenmwhich sends us in a completely new direction. The story mradting and
I hope the reader will indulge me.

The problem was as follows: most real neurons communicatie @ach other not
by sending real numbers (as in neural network models) butebgiag pulses called
spikes which last about 1ms. You can hear them crackle awsyeitdubel & Wiesel
movie in Fig. 1a (on the internet). Unresolved controveay faged in the neuroscience
community for decades about whether or not the timings ddarspikes is meaningful
since they sound so much like Geiger counters popping ralyd@urtical pyramidal
cells in area V1 which ar@ot driven by their preferred visual stimulus (so-called
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FIGURE 2. Recordings from an excitatory pyramidal cell in area V1 ofamaesthetised cat’s visual
cortex when shown (a) a drifting bar (see also the movie in g, (b) a flashed grating, and (c) a natural
movie. In each case, each row of dots represents a sindlatrtheach dot is a neuron spiking. Data from
Blanche et al [10] with permission.

spontaneously firing cells) have roughly Poisson firingisias: that is - they look like
completely random point processes. And when we repeatedhagreuron its preferred
stimulus, its rate repeatably goes up while the detailadgire of its spike timings are
different on each trial, as can be seen in Fig. 2a and 2b.

There are two interpretations of this seemingly noisy Rwidge firing. The domi-
nant one has been that neurons are ‘noisy rate coders’ ofgtederred stimuli. But a
radically different explanation emerges if we considet thaisson firing could also be
the consequence of a neuron trying to maximise its inforonatansmission rate. When
we compress signals to maximise their information rater{asiage or video compres-
sion), the elements of the code become statistically inadgrat (minimally redundant).
If such an optimisation were to occur in spiking neurons, weld expect to see neurons
firing with Poisson-like statistics.

The noisy rate coding idea is diametrically opposed to tlea ithat spike timings
look noisy because they are highly informative. If one ostha&leas is correct, the other
one is wrong. Evidence for spike timing codes has built upr dhre years in studies
of sensory neurons, but it is harder to demonstrate in @nieurons because they are
further from the sensory input and receive many unknowntsiwm higher in the
brain. The crucial breakthrough in studying this came wiesearchers started to record
from cortical neurons while the animal was exposed to nastiastimuli instead of
drifting gratings and bars designed to elicit maximum ra&gponses. An example of
this is shown in Fig. 2c. In multiple presentations of a naltumrovie to an anaesthetised
cat while recording from an area V1 cortical pyramidal c#le spiking pattern was
quite repeatable from trial to trial, and when a neuron firefited 1-3 spikes reliably



usually within a 50ms time window. Such responses to nastiraluli (which the neuron
is presumably more used to) are not consistent with the matsycoding hypothesis, but
they are consistent with a picture where individual spikgsa the precise timing of the
perceptual events they encode (see also [17] for an exangolerfit auditory cortex).

Although this debate is by no means settled, it does stimtifet theorist to attempt a
proof-in-concept that spike-timing codes can self-organiembarked upon this project,
together with Lucas Parra and Jeff Beck [8, 40]. Our idea wasst the same density
estimation learning described earlier, but where the ehdsnef the neural code are
spike-timings, not real numbers representing rates, akdrsimpler neural networks
trained by ICA or DCA.

The principles are the same, but the network is an integnatefire network [22]. For
theith neuron, the time-dependent voltage is:

Ui (t) = > Wij ZRij(t_t@ ()
J

It sums over synaptic inputg and spikesk arriving at that synapse at timés The
functionsR;; are the shapes of the potentials caused by the spikes, éXcegtich is
the shape of the voltage reset aftgt ) reaches a threshold value and neuritself fires
a spike. Our learning algorithm works by maximising the gesty of all output spike
timings to input spike timings in a single-layer feedfordraetwork. Without going into
too much detail, there is a density modéli,) (tin being the vector of all input timings)
and it is a function of the weight matri/ and the output timingk:. For every input
spikel that helps cause an output spikethe relevant synaptic weigw;; changes
according to:

AW O oo ([T = [T ) — f(rr; (6)

in which the matrixT is the spike-timing Jacobian (or sensitivity) matrix, hayentries
ot/dt and the last term is a non-linear Hebbian term in the inpgtgnd output «)
spike rates, appropriately defined. As in eq.{2)s again a score function.

We were very disappointed with this rule. It was a lot of wookfind it, a lot of
work to simulate it, and it is utterly biologically implale. The simplicities of the
ICA/DCA algorithms were not replicated in the spiking siioa. The notatior{TT#} K
for example, represents tketh entry of the pseudoinverse of the transpose of the matrix
representing the sensitivity of all output spike timingslianput spike timings, defined
over all time and all neurons. The learning algorithm is éodously non-local in space
and time (meaning synaptic weight changes cannot be madg tisie-local pre- and
post-synaptic information). Furthermore, the algorithntyoworks if there are more
output spikes than input spikes (awercompletenapping being required to make a
non-lossy map more probable). Were it not for Lucas Parrarsigtence, this network
learning rule would never have been derived, proven comesttnulations or published.

The answer was so complicated that the question had to begywiRaferring again to
the neurophysiology (always a good idea) soon revealed llgcusing all our atten-
tion on the mapping between input spikes and output spikesad treated the dendrites
of a neuron as if they were simple feedforward functionsjgies] to get information
to the next neuron. In reality, there is also feedback froendutput of the cell back to



the synapses (called the back-propagating action pokerasawell as electrical com-
munication between synapses in the dendrites. In additiengrowing experimental
literature on spike-based synaptic learning (called Spikeng-Dependent Plasticity,
or STDP), clearly showed that this information fed back ® slgnapse was implicated
in synaptic plasticity. The physiology of synaptic plasjigés inordinately complex and
controversial [15, 44], but one common theme emerges frefitdrature: calcium con-
verts electrical signals into the molecular changes requw alter synapses. There are at
least two distinct calcium currents operating in and aragyrthpses to do this. The first
enters through ion channels opened by neurotransmitterviious kinds of NMDA
receptor). The second enters through ion channels whicbypemeed by changes in volt-
age internal to the cell (the NMDA receptor also has a vol@ég@mendency). The other
kind of receptor at excitatory synapses, the AMPA recegtoes not let in calcium and
thus cannot drive plasticity directly. Details aside, wttas means is that the synapse
integrates activity external and internal to the cell teedetine how it should change.

We had used the mapping from input spikes to output spikesiiaganable density
model, ignoring the backward and sideways informationwatfs in the dendrites. Our
learning rule was clearly unbiological, also in the way gu&ed the feedforward neural
mapping to be non-lossy.

The conclusion was obvious: when we added the other infoomatthways in, the
mapping relevant for the purpose of learning was not fronuirgpike to output spike,
but from input spike to synaptic readoiihis readout was done by calcium currents local
to the synapse, not a thresholding mechanism at the axackilAnd what was read
out were three kinds of spiking activity: spikes arrivinglat synapse, spikes arriving at
other synapses and spikes propagating back from the cej| tollatter two signalling
to the local synapse through graded potentials in the dixsdri

This may not sound startling to a physiologist, but from tiection we were ap-
proaching, the implications were startling indeed. Rgstince there are roughly 1000
times as many synapses in the brain as neurons, the neusymapse mapping was
1000 times overcomplete, easily solving the problem thaiaertable mapping was
required for the density estimation maths to work. In faet skate variables at the neu-
ral level (ie: spikes) could now be as lossy as they likedabee they no longer had to
model the statistics of other spikes - this job could be dgnadw state variables (driven
by calcium) operating at a different level of the system:ayagaptic level. Suddenly neu-
ral information was preserved in the mapsynapticreadout, while (in all likelihood)
thrown away in the map toeuralreadout. This bypassed the main criticism of informa-
tion theoretic neural learning algorithms: that they caudtithrow away information, as
neurons clearly did. It also made sense to have the infoomatreadout at the site of
learning, rather than the output of the cell, thus decogglie circuit’s statistical model
from its feedforward computation, two essentially difigréasks which were conflated
in the ICA/DCA case which had no synaptic state variablesyajng only at a single
level.

To make the model concrete, it is proposed that synaptidipkys(at excitatory
glutamatergic synapses anyway) operates roughly witkgridtowing framework. The
neuron is a network of protein complexes (post-synaptisiies and the axon hillock),



communicating similarly to eq.(5):

Ua(t) = %Wb Z Rab(t —tk, Up) (7)

except that now the indicesandb refer to these sites on the membrane. Each site has
a learnable synaptic weight, and the transfer functiorR,, represent the effects that
spikesk at siteb can have on the voltage at sé€R,4 is the local synaptic response). This

is essentially just the cable equation for linear eleckrimammunication in dendrites,
with a non-linear voltage-dependence added to accourntiédXMDA receptor voltage-
dependency and conductance effects. At eachasitbere are two calcium readouts,
the first being synaptic (NMDA receptor) calciugy and the second being intrinsic
(voltage-dependent) calciuay carrying information from the rest of the cell:

Gat) = Ay WaZRaa(t—tkaua) (8)
() = Ay bgaWbZRab(t—tkyub) (9)

The new ‘plasticity parameterd;” andA; represent the fraction of the local synaptic
and intrinsic ionic currents which are calcium-carryingdahus available to drive
molecular change. (Hippocampal excitatory synapses, famele, are much more
plastic than cortical synapses, having much higher NMDZAepgéar counts. So-called
‘silent synapses’, common in developing nervous systemd largely lacking AMPA
receptors, would havi;" close to 1.)

These two kinds of calcium drive a first-order kinetic scheémrelving a phenomeno-
logical variabley, which is the ‘readout’:

Ya=€%(1—ys) —€ Gy, (10)

You may ask: where did these equations come from? The answhbat they are
pure guesses based on intuition, a reading of the literatuthe physiology of synaptic
plasticity and a desire to simplify things. They are inclddesre merely to illustrate
what may be the essential features of a calcium-based sgnapidout: a dynamic
computation that compares external input with internaivagtto determine how a
weight should change. The real situation is much more caxjpte, and varies greatly
with synapse-type. However the kinetic scheme is not a cetahntasy: the push-pull
of ¢i andc, is meant to represent the actions of calcium-driven kinasegphosphotase
proteins (like CAM-K2 and calcineurin) which activate opymt processes controlling
the delivery to and recycling from the membrane of AMPA raoeg or the alteration
of their sensitivity through phosphorylation.

It is useful to try to make a concrete model that shows infdioneflowing from the
neural to the synaptic level. But we have no learning rulehgist some equations for
synaptic readout that suggest that macroscopic (neuraitganight be statistically
modeled by a more microscopic set of dynamic variables éatat synapses. What is
missing is an understanding of this kind of inter-level coamigation in general. It is to
this that we now turn.



LEVELSIN BIOLOGY

As scientists, we usually like to believe that the level aiohhwe work is the impor-
tant level for understanding more macroscopic phenomeoeg microscopic phenom-
ena being irrelevant. This is understandable becausecscisrthe search for lawful
behaviour — this search involves adjusting experimentatitimns (macro-variables)
until the things which are measured (meso-variables) leedaterministically. Micro-
variables are then not needed to explain these cases, aridear®ften regarded as
merely implementation detail for the observed laws, or étimterfere with the lawful
behaviour, they are “noise”. In other words, the scientifietinod, for all its successes,
creates a series of self-reinforcing parochialisms, eacdlred on a certain level of de-
scription, each behaving deterministically largely onhydar the experimental condi-
tions imposed.

No-one is specially to blame here. A molecular biologist whgards the quantum
level as irrelevant cannot criticise a social psycholdgistvhom the skull is a reflecting
barrier. These points may seem obvious, but think how oftemaad phrases like “the
genetic basis of behaviour” or “the social basis of religidrhe word ‘basis’ betrays a
fundamentalism that seeks to diminish the importance oéred emergence from the
microsphere. And the notion that higher laws (ie: more carhpaterminisms) in the
macrosphere are not much better ways of talking is also anpiere.

We have already seen two examples of problematic thinkimguroscience that can
arise from this: the rate-coding neuron which disappeaeswie show the cat a natural
movie, and reward-maximising behaviours that become \&ushen the rat escapes
from the box. Rewards and rates are not defined under moreahatunditions.

The other error mentioned above is to assume that deviafrons deterministic
behaviour are a consequence of ‘noise’. The inability of gpeementer to predict a
phenomenon does not mean that there are not meaningfuliwddables producing it.
(You may not expect to read this sentence but that doesn’hrhaa noisy!) Thus it is
a mistake to talk about synaptic transmission as unreljabtédoecause an experimenter
cannot predict if a spike arriving at a presynaptic boutoh @ause a vesicle release
or not. Presynaptic filtering of spikes based on a boutornésial state is probably an
intelligent process.

Similar mistakes are made at the cellular level. Those stgdipulk ion channel
kinetics regard the motions of individual channels as noYgy for molecules in the
neighbourhood of single channels, these motions are alsgarécularly if any calcium
flows through the channel. Calcium concentrations vary nmggully over distances of
10nm - the width of a membrane protein. Calcium ions addredisidual molecules.
Calcium may be to the post-synaptic density (PSD) what gelta to the neuron as
a whole: a spatially varying field communicating betweentgres the way voltage
communicates between the protein complexes called sysafj4d] is an up-to-date
review of the amazing structure of the PSD.)

We turn now to the cytoplasm. For the classical biochemimstyme reactions occur as
they doen massé a thermal aqueous medium, molecules bumping into ea@r cdh-
domly. But a more modern picture of the cytoplasm revealgttee is ‘macromolecular
crowding’ (in which up to 50% of the cell’'s volume may be takgmby mostly immo-
bilised proteins and polynucleotides). This has openedabenating possibility that



the remaining space (water) c®@mpletely orderednto a 3-dimensional protein-gated
switching network, lined by charged hydration shells. Ehester pathways continu-
ously semi-conduct ions and small molecules differentiaised on their size, valence
and shape [46, 18]. The cellular metabolism, argue someeigdrial”. The same seems
true of the membrane, a packed and organised 2-dimensiaithirflwhich cholesterol-
based structures of all sizes (called lipid rafts) contnel positions and motions of ev-
ery integral protein [23, 28]. The quiet revolution in celblogy that has produced this
new picture of ordered and meaningful multiscale microaorgation mirrors the de-
velopments in systems neuroscience away from preoccupattb rate-coding feature
detectors and towards an understanding of cross-leveauttens involving spikes, and
correlated activity on all scales. We turn now to the latter.

At the level above that of the neuron, many new lawful relai@are coming to
light. (This area of research was largely pioneered by W&lteeman). Global brain
oscillations in the delta range (1-4 Hz) seem to constrass [global oscillations in
the theta range (4-8 Hz) [34], just as theta oscillationgrs&® constrain oscillations
in the even more spatio-temporally local gamma range (4D420) [14], and just as
gamma oscillations seem to determine when spikes are ket to occur [20, 21]. In
each case, it is at a particular phase of the lower frequenoye global, oscillation
that the higher frequency, more local, effect is likely t@rease its amplitude (or
probability of occurence, in the case of gamma-to-spiketing). The timing of spikes
relative to the gamma oscillation is emerging as an impoméormation-carrying factor
in visual coding [33] and elsewhere [21]. See also [11] fdoimation on this and
other related topics, including important findings aboutvhbeta-to-gamma coupling
in the hippocampus codes information about whereabout$ ia ra its environment
(place-coding). A mini-review on these topics appears 8].[# is noteworthy that the
structured relations between spike timings and osciltagibases can be disrupted for
several minutes by zapping the local tissue with a magnedidt [ii].

All of this indicates a very structured organisation of thaib’s oscillatory activity
across space and time. Some neuroscientists have arguetheéksa oscillations are
‘epiphenomena’, since they are just the result of many sypmsked membrane currents.
The computation, goes the argument, is occuring at the sgsap the junction points
of the spiking computer. Others disagree, arguing thattlssillating electrical fields
caninfluence spike timings directly [41], so-called ephaptiteractions. But even if
this is not the case, describing these fields as epiphenomdiile saying that the
US government is an epiphenomenon as it is just the resulefattivity of many
people talking to each other. The law-like influences of brgbrder structures on lower
is not an indicator of mystical downward causality but ansepnic statement about
which groupings of variables are sufficient to summarisesabdependency. When we
converse, we hear each others words, not each others sjteeifthrough the air.

PUTTING IT TOGETHER?

We have mused on the problem of self-organising sensorpmnsyistems, explained
some statistical learning theory, dived into the physiglofj synaptic plasticity and
outlined the flows of information across scales in the nesveystem and inside cells.
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FIGURE 3. Three schematic views of the multi-level organisation fbun biology. (a) Nervous
systems viewed as networks of networks. (b) The units at kesehare the networks at the level beneath.
Adaptivity is given a different name at each level, but it éalty a single unitary process, viewed at
different scales, like an image viewed at different resohg in space and time. Natural selection and
self-organisation are thus not different processes, opatimg explanations for biological adaptivity, but
different spatio-temporal accounts of the same underlyiimg. (c) A discrete-time ‘cartoon’ (for didactic
purposes only) of the temporal evolution of a multiresalntstate vector. Structural relations reduce
the state vector as we ascend the reductionist hierarclugaCeelations are thus similarly transformed.
Objects at a given level do not communicate directly withheather, but rather through downward and
upward arcs. For example, spikes can influence other spikesgh dendrites and axons or through agents
communicating.

But we have been dancing around our main theme: that of griggrning theory with
this multi-level picture. This is because when there is nodgieory (note the first word
of this paper’s title!), it is important to to survey all ckieempirical and theoretical, as
well as to identify the shortcomings in existing ideas.

But there is no shying away any more. The central observatdar, that neurons talk
to synapses not neurons, may be trivial. But if we repeatdiftdrent scales, it naturally



leads to to a view of the nervous system which is at odds witktimithe main strands of
current computational and experimental thinking, yet tésv is consistent with all the
empirical data and throws the concepts of machine learmiayriew unexplored inter-
level scenarios. This view is presented in Fig. 3. It has ¢tflewing characteristics:

« Biological organisation consists of networks within neti (Fig. 3a). Micro-
scopic networks are inside the nodes of macroscopic nesybkke the network of
synapses (eq.(7)) inside a neuron. The outputs and inpaisiefwork are signals
to and from the network above in the hierarchy. Phases ofpgrofineurons, tim-
ings of individual neurons, flows of voltage and flows of cafaicarry the network
information at the cell assembly, neural, synaptic and owé levels respectively.

- There is thus no ‘functionalist cut-off level'anywhere in the biological hierarchy
[6]. Nature does not seem to shield the macro from the micrthenway that
a computer shields bits from electrons. A single photon e & cat's life in
the dark [42], and this kind of structured amplification [edlemergence) from
microscopic matter is happening continually all througbldygical tissue. There
can thus be no “machine code of the brain”. The ordered flomfofmation from
the microscopic is represented in Fig. 3c by the upward diabarrows. Memory
recall and ‘spontaneous thought’ are seen as such upwass-l@eel emergences.

+ This information flow is bidirectional. As we communicatetiveach other, we
change each other’s gene expression through the downwagdrtal arrows in Fig.
3c. Words (for example) cause spikes, spikes cause calcaws #ind these send
a message to the nucleus to make different proteins. Seerf @ mechanism by
which this can be accomplishédOne-shot’ learning is storage in a massively
overcomplete distributed microscopic state space, andanesare accessed as-
sociatively through downward arrows from macroscopic akpatterns.

« The sensory-motor loop, properly considered, is an irgeellinteraction. Going
upward, behaviours like words emerge from spikes, and gadawgnward, they are
the (social) boundary condition for a listener’s neuraiwtgt just as spikes are the
neural boundary condition on the membrane for voltage flovike dendrites.

» The sensory-motor loop is just one stage in a multi-resmtutiierarchy of nested
similar inter-level dynamics. It is not special, just aséats” are not a special stage
in this hierarchy, but merely a level of description.

« Spikes (for example) communicate with each other by twcedsffit mechanisms:
an upward arc via the social network, and a downward arc wad#ndritic net-
work (see Fig. 3c). Viewed this way, there are no horizontadvas, just flows of
information up and down. Even messages between synapsesdnitgés may be
differently processed by different voltage or calciumstwe macromolecules in
the post-synaptic density of the receiving synapse (thesvdownward arc in Fig.
30).

2 Functionalism is the idea that you could build a computerdineer cans and string.

3 The mechanism is the Endoplasmic Reticulum. Quoting Bgeritthe ER and plasma membrane form
a binary membrane system that functions to regulate a yarieteuronal processes including excitability,
associativity, neurotransmitter release, synaptic jgiaseind gene transcription”.



» These processes aa# the same thing expressed at different resolutidree state
vectors are transformed by dimensionality-reducing stmat relations in 3c, and
the causal relations are transformed with them.

A cross-level theory of learning would be a theory takingcplén a causal structure
like that of Fig. 3c. Normally in (Bayesian) learning theome separate the daxarom
the model (the learned weightd), and define quantities like the likelihoagx|W),
the priorg(W), and the posteriag(W|x). In a cross-level theory, the data (for example
spike timings) is just the network traffic which flows througbnnections which are
nodes in the network below, as described. Thus quantitiestiie likelihood and the
posterior are actually conditional distributions of grongs of variables across levels.
It is a tantalising task to connect the framework known aerdnichical Bayes’ to the
hierarchy of matter observed in experiments.

The key to this may lie in generalising to the learning-sceramframework in physics
known as the Renormalisation Group (RG) [50]. RG has bedad:tdie most important
new mathematical idea discovered in the 20th century. Ithatvenabled the creation
of quantum field theory from generic quantum mechanics. &l$® the idea used to
understand equilibrium phase transitions in certain glatsystems (like the 2D Ising
model). It allows one to investigate the changes of a physicsiem as one views it at
different spatial scales. It applies to scale-invariaistess, the correlation functions of
which change in simple ways as the resolution is alteredodischot apply in biology
because biology has special scales, permitting the semparcdtnested networks that we
have described.

As mentioned, the statistics of the activity in scale-iiar systems transform in
simple and lawful ways as the scale is varied. RG providesi@opus that capture
these constraints. These equations are used to solve fgrattidon function of the
system, leading to the accurate prediction of importanspday quantities. This partition
function,Z, is exactly the same mathematical quantity we encounterfidin eq.(4).

In machine learning, as indicated earlier, it is @obut its gradientwhich matters
(remember the first term in eq.(3)). Could it be that someghilke RG could enable
the calculation of an appropriate learning gradient forrthdtiresolution state vectors
shown in Fig. 3c?

The empirical relations between statistics of activity iffedent scales of the brain’s
material hierarchy (like the dendritic currents, spiked kotal field potentials we have
discussed) are only beginning to be unveiled by an arraymtisticated new multires-
olution probes. The principles underlying the brain’s migvel statistical model of its
sensory-motor world may even be identified by experimeriefere the theorists get
their act together.

Physics, biology, inference — the strings are not yet tieel guestions not even really
formalised. In physics, even reductionism is not necelgsamisolid ground [35]. Noise,
signal, control, reward, agency, the brain as a logic devitte ideas that lay behind the
cybernetics movement in the 1950s, and that have so heaWilienced our thinking
today, are starting to look like they may not be the primgive# a future emergent
understanding. What kind of statistical self-modellingpckuring in matter? How can
we draw these loose strands together? The game is open.sTéngeything to play for.
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