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Abstract. This paper reviews ideas and results from unsupervised learning theory that have given
the best explanation yet of how neural firing rates self-organise to code natural images in area V1
of visual cortex. It then discusses the generalisation of these ideas to self-organising spike-coding
networks. A mismatch between the resulting spike-learningalgorithm and the known physiological
processes of synaptic plasticity is then used as a motivation to introduce the rather obvious idea
that neurons are not sending their information to other neurons, but to synapses – more microscopic
structures. This prompts a survey of other inter-level communications in the brain and inside cells.
It is proposed on the basis of this that information flows all the way up and down the reductionist
hierarchy – an idea that transforms many of our ideas about machine learning and neuroscience.
What it transforms them into is not yet clear, but the remainder of the paper discusses this.
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THE NEED FOR PROGRESS

Despite many technical advances in probabilistic machine learning no-one has been able
to connect its ideas convincingly with the learning processes occurring in the brain. At
the same time, efforts to understand biological self-organisation with ideas from physics
have not yielded as much as might be hoped. And to complete thetriangle, the project
to connect physical law to principles of information and computation is still a marginal
activity, despite some fascinating results (for example [13] in this volume).

It is nonetheless anticipated that these 3 lines of enquiry (physics, biology, inference)
will converge before long and a new science of complex systems will be invented. The
mother-to-be of this invention is necessity. We face enormous challenges in climate,
ecology, health and education – in the organisation of our societies and in their relation-
ships to the biological systems that they contain and that contain them. At the same time,
our communications and biotechnologies are transitioningto a new level of sophistica-
tion. It is hard to believe that we will be able to use our new technologies responsibly
and find solutions to our problems without a better understanding of what life is, what
learning is – for what characterises life perhaps above everything else, is its ability to
adapt to and create new circumstances. We need to understandwhat gives biological
systems their amazing adaptive abilities. This paper makesa serious attempt to propose
a new line of thinking about this, using results and controversies in neuroscience and
statistical learning theory as a guide.



MACHINE LEARNING AND THE BRAIN

The modern theories of statistical machine learning and probabilistic inference, although
they emerged largely from the neural networks community, have little to say to an
experimental neuroscientist. A comfortable and unexamined consensus seems to exist
along the lines of “optimal perceptual inference to build representations, and optimal
decision theory to choose actions”. This view is so common that it may be called ‘the
Standard Model’. Its first component (inference) imagines the cortex utilising Bayesian
procedures to estimate the values of variables in a scene (like depth). The theory is
supported by the finding that humans can combine relevant information in Bayesianly
optimal ways (for example visual and touch information [19]). But the question of which
of the combinatorial number of possible ‘hidden variables in the world’ one should
estimate is not answered by the Bayesian framework. The theory only works if it is
already known what should be estimated. Our brains cannot always be estimating all
variables of potential relevance. Ideas about attention, involving guiding feedback from
higher cortical areas, have not yet matured into an acceptedtheory, and require the brain
to have a motivation, to which we now turn.

Somewhere in the middle of the brain, the problem of representing turns into the prob-
lem of choosing and executing actions. At this point, the second stage of the Standard
Model imagines cortex computing actions that maximise an abstract utility function,
sometimes called ‘reward’, based on motivational information supplied by sub-cortical
structures. The problem with this theory is that the circuits carrying this information
themselves need to learn how to convert sensory input into motivational signals. There
is nogivenreward function. The (rather elegant) mathematics of reinforcement learning,
in which the reward signal comes in on a ‘special wire’ from outside unfortunately does
not map onto the real situation where the neuromodulatory connections flooding cortex
from subcortical structures are themselves plastic (or else they could not be altered by
addictive substances). Much of what is rewarding is in constant flux as the needs of the
physical organism change from moment to moment. The fact that reward is necessarily
a plastic function within the system, and not a value judgement mystically arriving from
outside is never more apparent than when one visits a robotics lab where reinforcement
learning is being used. Like the undefined fitness functions of an Artificial Life simula-
tion, the undefined reward functions of reinforcement learning signal the inadequacy of
the theory underlying them to apply to the neurophysiological situation.

Even if we were to somehow blend the decision theoretic stageinto the perceptual in-
ference stage, so the Standard Model looked less like a two-stage homuncular hangover
from a Cartesian worldview, we would still be stuck with the reward concept, defined
when the rat is in the box, but much more elusivein vivo. Perhaps it is time to dispense
with this concept and its attendant goal of explaining the complex social behaviours
of N creatures as being that of the optimisation ofN separate undefined scalar reward
functions.

Aside from concerns about attention and reward, the Standard Model, with its focus
on sensory and motor processes, has nothing to say about whatthe brain is doing when
it is just thinking. Why for that matter do we need to sleep? All creatures with nervous
systems above a certain complexity need to sleep or their nervous systems become
epileptic, causing death. This leads many to believe that sleep is a neural requirement. It



is unlikely that sleep exists just to conserve energy since we use as much when we are
asleep as when we are awake and resting.

If reward is at best a learned function, then the brain’s learning must be unsuper-
vised. Unsupervised learning attacks a host of problems, including clustering, but in the
absence of ana priori need to cluster, it is perhaps best viewed as simply density estima-
tion. The line that I will follow in this paper is that densityestimation is the correct way
to think about learning in the brain. To summarise the theoryin one sentence: the brain
is saying ‘how likely was that?’ and adjusting itself accordingly. The density estimation
occurs not between some external world input and some internal brain representation,
but ratheracross levels of the reductionist hierarchy. But we are getting ahead of our
story. First we must explain what density estimation is and why anyone would think it
adequate to explain something so unsensory as behaviour.

SENSORY-MOTOR DENSITY ESTIMATION

The goal of density estimation is to fit a model probability density function (pdf) to data,
as when we find the mean and variance that best fits a normal curve to a histogram of
data values of, for example, peoples’ heights. The objective that is minimised is called
the Kullback-Leibler divergence between the data pdfp and the model pdfq, defined as
D[p|q] = 〈log(p/q)〉p where〈·〉p means the average over the pdfp.

Now if we had some arbitrary parameterw that we wanted to learn (say the strength of
a synapse in the brain), we could learn it by computing the gradient of the KL divergence
and running down it till we reach a minimum. A few lines of calculus shows this gradient
to be:

∂wD[p|q] =

〈(

1+ log
p
q

)

∂w logp−∂w logq

〉

p
(1)

The second term is the gradient of the log likelihood of the data under the model, which
(before we take the Bayesian path and talk about prior distributions over models) is the
gradient normally followed in density estimation algorithms. This term is thesensory
term, corresponding to changing ones model to fit the data. The first term, on the other
hand, is amotor term: it corresponds to changing ones data to fit the model. While this
would be a disreputable activity for a statistician, it is nonetheless a part of life, if we
consider that a synaptic weight change may change the probability of future data.

Unless the dynamics of the world’s data-generation processis deterministic and
known, it seems impossible to evaluate this first term. But its very existence wakes us up
to the fact that density estimation need not be a sensory gamealone: the gradient of the
KL divergence and the log likelihood are different. Furthermore, the tables are turned
on a common complaint against unsupervised or Shannon information based learning
models: that they do not distinguish between meaningful information and noise. The
appearance of a second term dependent on the motor-influenceof w suffices to make
some data more relevant than other data. This term has the potential to actually provide
a foundation for the signal/noise distinction, containing, as it does, the subjectivity of
how ones brain-state effects the world.



But how can this term do so in a way that is meaningful to a creature - things like
finding food and keeping warm? We do not have an answer to this question. But if we
can find a cross-level theory of learning such that even cellsand molecules can be seen
as modeling and changing their local environments and contributing to a global model,
then when they are too cold or lack energy, they will display dynamics that, just like an
agent, will give rise to emergent properties that cause macroscopic behaviour changes,
such as eating or finding shelter.

Such a theory may be out of reach at the moment, but we have to start somewhere.
We will start by exploring the technicalities of statistical density estimation in order to
set the stage for the cross-level ideas introduced later on.This will necessitate a dip into
the mathematics, but for the unitiated, hold on - the story gets better later.

If the sensory-motor problem does have the unsupervised structure argued for by
eq.(1), then the introduction of the motor term, for all its analytic intractability,cannot
make things worse. It iseasierto find the hidden degrees of freedom of the world when
we can manipulate objects than when we are just looking at pictures. Children learn by
doing, not just observing. It is easier to understand a worldthat we are in the process of
creating than one that is given to us. (Of course, we can always go too far in this, leading
to solipsism. A question for later sections is: what force tends to keep an adaptive agent
away from a solipsistic solution?)

Knuth et al ([32] and references therein) describe a different unsupervised approach
to the sensory-motor problem. It uses the combined calculusof inference and inquiry to
design instruments that perform actions to maximise expected information gain. This is
eminently sensible, but biological systems do not appear tofunction this way. Rather,
organisms seem to converge onautopoeticallystable reverberations with partially self-
constructed environments [36], and this is closer to the idea we are trying to reach. A
robot maximising information gain would never stop to sing asong.

Another interesting unsupervised approach maximises the information flow in the
sensory-motor loop [30], though it is subject to the this same criticism.

SENSORY DENSITY ESTIMATION

Density estimation learning methods have already providedour best computational
model to date for how the brain might self-organise from experience. One can show
tiny images or movies to a neural network and train it to have receptive fields similar to
those measured by single-neuron recordings from area V1 of visual cortex of cats and
monkeys. Fig. 1a viewable on the internet, shows a movie of anexperiment done by
Hubel and Wiesel on a cat in the 1960s, demonstrating how the notion of a receptive
field arose.

Theoretical results of this kind were first obtained by Olshausen and Field [38] using
the idea that neurons should try be sparse (fire rarely) and decorrelated. But the receptive
fields can be obtained using density estimation alone. The results in Fig. 1b and 1c
were obtained by an Independent Component Analysis (ICA) network [5] and a kind
of DependentComponent Analysis (DCA) network related to Hyvärinen and Hoyer’s
‘Topographic ICA’ [27, 39, 49]). These receptive fields are static. Dynamic (spatio-
temporal) receptive fields were obtained by van Hateren and Ruderman [48], and are



FIGURE 1. Receptive fields learned from natural image data. The full version of this figure is on the
internet at www.snl.salk.edu/t̃ony/RecFields.html. (a) On web: A movie showing Hubel and Wiesel’s
discovery of visual receptive fields in cat. (b) Left above: ICA-learned image bases. Each picture is a
learned axis in image space, corresponding to a column ofW−1 (see text). (c) Right above: a typical basis
set obtained with a model closely related to Topographic-ICA [49] [Thank you to Simon Osindero for
permission to reprint his figure]. (d) On web: spatio-temporal receptive fields learned from natural movies
by van Hateren and Ruderman [48]

shown on the web (Fig. 1d). In both cases shown here, receptive fields are ‘Gabor-like’:
localised in space, orientation, spatial frequency and phase, like Hubel and Wiesel’s
‘simple cells’ of V1. (Phase-invariant ‘complex cells’ mayalso be learned [27]). In the
topographic ICA case, the neurons are also spatially ordered in a 2D grid, or ‘map’, very
much as V1 cells are arranged across the sheet of cortex, ie: in a orientation ‘column’
where position, orientation and spatially frequency vary continuously across the map,
except at discontinuities called pinwheels visible in Fig.1c.

Both ICA and DCA are simple density estimation networks. They take a multivariate
data distribution and find a new set of axes in it (just as a Fourier transform or Principal
Component Analysis does). Unlike PCA, the new coordinate system is chosen entirely
on the basis of the statistics of the data (PCA and Fourier bases impose the additional
constraint that the axes be orthogonal in the original space). [It is important here not to
confuse the orthogonality of the transform with the decorrelation of the resulting output
variables.] The axes are found by training a complete set of filters (ie: a square matrix
W) to transform the data byu = Wx into a new vector spaceu where the elements
ui are either as statistically independent as possible, or statistically dependent in some
specified way. The training is done by presenting the images one at a time and changing
the filter matrix according to one of the following equations:

ICA : ∆W ∝
(

I−
〈

f(u)uT〉

p

)

W (2)



DCA : ∆W ∝
(

〈

f(u)uT〉

q−
〈

f(u)uT〉

p

)

W (3)

whereI is the identity matrix. The learned axes (orbasis functions) actually correspond
to the columns of the inverse of the filter matrixW−1.

Both algorithms linearly transform the data into au-space where a certain statistical
model,q(u), (a ‘shaping density’) is imposed. The optimisation is to fitthe transformed
data to this model by gradient ascent in the log likelihood ofthe data under this model
via ∆W ∝ 〈∂W logq(x)〉p, just as in eq.(1) without the motor term. The models on the
input and output neurons are related byq(x) = q(u) |W|, where|·| means the absolute
determinant.

In ICA, the model factorises:q(u) = ∏i q(ui), and the details of the univariate
marginals,q(ui), may also be learned (though it is often un-necessary to do so). The
vector of functionsf (u) has entriesfi(u) = −∂ui logq(u), and these are called the score
functions. If these were linear, a condition satisfied by having a gaussian models on the
q(ui), then ICA can be seen to stabilise on average (〈∆W〉p = 0) whenI =

〈

uuT
〉

p, in
other words when the outputs are unit variance decorrelated. To make non-gaussian sig-
nals independent we need statistics higher than second-order and these are provided by
the Taylor-expansion of the score functions.

Much more could (and has) been said about this, but the main point to make here is
that DCA is the completely general form, turning into ICA when the model we impose
is that of independence, ie:

〈

f(u)uT
〉

q = I. The DCA form can be derived by writing the
model density in the completely general Gibbs’ form:

q(u) =
1
Z

e−E(u) (4)

involving an ‘energy’E(u) and a normaliser called the partition functionZ [25]. The
two averages over the model and data densities in eq.(3) are then seen to arise from the
gradients with respect toW of the log partition function and the energy respectively.
The learning equation for a single weight has exactly a Boltzmann machine structure
[24] consisting of a Hebbian (correlational) term sampled over the data density and an
anti-Hebbian (anti-correlational) term sampled over the model density. This is said by
some to be accomplished by alternately learning from data inan awake phase, then
unlearning from the model in an asleep phase. This idea, while intriguing, has yet to
condense into a serious neurobiological theory of sleep, but it is one to which we will
return. There are few applications of DCA, for the same reason that there are few for the
Boltzmann Machine, namely that the training (sampling fromq) is just too slow.

The topographic ICA results in Fig. 1c [27, 39] are actually obtained by a very simple
DCA model1, but more complicated models run into this need to integrateover the
model density (the first term of eq.(3)). This integration, which is a universal bother in
machine learning and statistical physics is only tractablein simple cases (like Gaussian
or ICA models), and otherwise, as mentioned above, we must resort to sampling from

1 overlapping neighbourhoods on a map:q(u) ∝ ∏K q(uK) whereuK means neighbourhoodK of the map,
and radially symmetric laplacian multivariate marginals,q(uK) ∝ exp(−‖uK‖)



the model density using one of many schemes (Monte-Carlo Markov Chain (MCMC) or
Contrastive Divergence [26] being two such schemes).

Were we able to solve the model-selection problem (the choice of q(u)) and the
gradient of the partition function, we would be in good shapeto attempt the Holy
Grail problem of building hierarchical representations just from data, as we could use
the resulting groupings of variables (like the neighbourhoods of the topographic map)
to non-linearly recoordinatise the data at each layer and then look for new structure
‘unwrapped’ by the non-linear recoordinatisation. An example would be to re-express
data fitting a radially symmetric laplacian model in spherical coordinates (phases and an
amplitude) and input this to a higher network.

Many have travelled this road (my attempt is in [7]) and few have emerged unbloodied
and with meaningful results (the few are [29, 27, 39]). It is not a problem I would
recommend to a graduate student unless he had a good new idea.Rather I would
recommend stepping back to look at the problem afresh, and biology can be a great
inspiration in redesigning ones question until the answer looks right. In other words, if
one is struggling with the problems of model selection and partition function gradients
then perhaps it is a good idea to ask how on earth these problems map onto the tissue
inside our skulls. That is the track that we will follow in thenext part of the story.

To conclude, this section has been a quite dense summary of much technical work by
many people just to arrive at two equations. eq.(3) is Amari et al’s Natural Gradient [2]
transformation of Hinton et al’s view [25] of the Infomax-ICA algorithm [4], which is
identical to the maximum likelihood approach (see [12] for an explanation). The Natural
Gradient concept (optimisation in the metric space of matrices) is explained in detail
(without reference to Amari’s Information Geometry) in [47, 37]. The ICA method in
eq.(2) is also in the natural gradient form proposed by Amariet al where the weight
space is given a Fisher metric based on reasons of information geometry [3]. A review
of related sparse-coding techniques is found in [45].

SPIKING DENSITY ESTIMATION

Looking at biology, there is quite a variety of phenomena to draw inspiration from.
Since it was not at all clear what model selection and the partition function gradient
might mean in neural tissue, I decided to focus on a problem that had disturbed me for a
long time: the issue of learning with neurons that spike. My earlier attempts on this had
floundered (actually giving the Infomax-ICA algorithm as a by-product). The reason to
tell the story is that it moves us close enough to biology thatwe can derive thereductio
ad absurdemwhich sends us in a completely new direction. The story is interesting and
I hope the reader will indulge me.

The problem was as follows: most real neurons communicate with each other not
by sending real numbers (as in neural network models) but by sending pulses called
spikes which last about 1ms. You can hear them crackle away inthe Hubel & Wiesel
movie in Fig. 1a (on the internet). Unresolved controversy has raged in the neuroscience
community for decades about whether or not the timings of these spikes is meaningful
since they sound so much like Geiger counters popping randomly. Cortical pyramidal
cells in area V1 which arenot driven by their preferred visual stimulus (so-called



FIGURE 2. Recordings from an excitatory pyramidal cell in area V1 of ananaesthetised cat’s visual
cortex when shown (a) a drifting bar (see also the movie in Fig. 1a), (b) a flashed grating, and (c) a natural
movie. In each case, each row of dots represents a single trial, and each dot is a neuron spiking. Data from
Blanche et al [10] with permission.

spontaneously firing cells) have roughly Poisson firing statistics: that is - they look like
completely random point processes. And when we repeatedly give a neuron its preferred
stimulus, its rate repeatably goes up while the detailed structure of its spike timings are
different on each trial, as can be seen in Fig. 2a and 2b.

There are two interpretations of this seemingly noisy Poisson-like firing. The domi-
nant one has been that neurons are ‘noisy rate coders’ of their preferred stimuli. But a
radically different explanation emerges if we consider that Poisson firing could also be
the consequence of a neuron trying to maximise its information transmission rate. When
we compress signals to maximise their information rate (as in image or video compres-
sion), the elements of the code become statistically independent (minimally redundant).
If such an optimisation were to occur in spiking neurons, we would expect to see neurons
firing with Poisson-like statistics.

The noisy rate coding idea is diametrically opposed to the idea that spike timings
look noisy because they are highly informative. If one of these ideas is correct, the other
one is wrong. Evidence for spike timing codes has built up over the years in studies
of sensory neurons, but it is harder to demonstrate in cortical neurons because they are
further from the sensory input and receive many unknown inputs from higher in the
brain. The crucial breakthrough in studying this came when researchers started to record
from cortical neurons while the animal was exposed to naturalistic stimuli instead of
drifting gratings and bars designed to elicit maximum rate responses. An example of
this is shown in Fig. 2c. In multiple presentations of a natural movie to an anaesthetised
cat while recording from an area V1 cortical pyramidal cell,the spiking pattern was
quite repeatable from trial to trial, and when a neuron fired,it fired 1-3 spikes reliably



usually within a 50ms time window. Such responses to naturalstimuli (which the neuron
is presumably more used to) are not consistent with the noisyrate coding hypothesis, but
they are consistent with a picture where individual spikes signal the precise timing of the
perceptual events they encode (see also [17] for an example from rat auditory cortex).

Although this debate is by no means settled, it does stimulate the theorist to attempt a
proof-in-concept that spike-timing codes can self-organise. I embarked upon this project,
together with Lucas Parra and Jeff Beck [8, 40]. Our idea was to use the same density
estimation learning described earlier, but where the elements of the neural code are
spike-timings, not real numbers representing rates, as in the simpler neural networks
trained by ICA or DCA.

The principles are the same, but the network is an integrate-and-fire network [22]. For
the ith neuron, the time-dependent voltage is:

ui(t) = ∑
j

Wi j ∑
k

Ri j (t− tk) (5)

It sums over synaptic inputsj and spikesk arriving at that synapse at timestk. The
functionsRi j are the shapes of the potentials caused by the spikes, exceptRii which is
the shape of the voltage reset afterui(t) reaches a threshold value and neuroni itself fires
a spike. Our learning algorithm works by maximising the sensitivity of all output spike
timings to input spike timings in a single-layer feedforward network. Without going into
too much detail, there is a density modelq(tin) (tin being the vector of all input timings)
and it is a function of the weight matrixW and the output timingstout. For every input
spike l that helps cause an output spikek, the relevant synaptic weightWi j changes
according to:

∆Wi j ∝
Tkl

Wi j

([

TT#]

kl −
[

TTT#]

kk

)

− f (r i)r j (6)

in which the matrixT is the spike-timing Jacobian (or sensitivity) matrix, having entries
∂ tk/∂ tl and the last term is a non-linear Hebbian term in the input (r j ) and output (r i)
spike rates, appropriately defined. As in eq.(2),f is again a score function.

We were very disappointed with this rule. It was a lot of work to find it, a lot of
work to simulate it, and it is utterly biologically implausible. The simplicities of the
ICA/DCA algorithms were not replicated in the spiking situation. The notation

[

TT#
]

kl ,
for example, represents thekl-th entry of the pseudoinverse of the transpose of the matrix
representing the sensitivity of all output spike timings toall input spike timings, defined
over all time and all neurons. The learning algorithm is horrendously non-local in space
and time (meaning synaptic weight changes cannot be made using time-local pre- and
post-synaptic information). Furthermore, the algorithm only works if there are more
output spikes than input spikes (anovercompletemapping being required to make a
non-lossy map more probable). Were it not for Lucas Parra’s persistence, this network
learning rule would never have been derived, proven correctin simulations or published.

The answer was so complicated that the question had to be wrong. Referring again to
the neurophysiology (always a good idea) soon revealed why.In focusing all our atten-
tion on the mapping between input spikes and output spikes, we had treated the dendrites
of a neuron as if they were simple feedforward functions, designed to get information
to the next neuron. In reality, there is also feedback from the output of the cell back to



the synapses (called the back-propagating action potential), as well as electrical com-
munication between synapses in the dendrites. In addition,the growing experimental
literature on spike-based synaptic learning (called SpikeTiming-Dependent Plasticity,
or STDP), clearly showed that this information fed back to the synapse was implicated
in synaptic plasticity. The physiology of synaptic plasticity is inordinately complex and
controversial [15, 44], but one common theme emerges from the literature: calcium con-
verts electrical signals into the molecular changes required to alter synapses. There are at
least two distinct calcium currents operating in and aroundsynapses to do this. The first
enters through ion channels opened by neurotransmitter (the various kinds of NMDA
receptor). The second enters through ion channels which areopened by changes in volt-
age internal to the cell (the NMDA receptor also has a voltagedependency). The other
kind of receptor at excitatory synapses, the AMPA receptor,does not let in calcium and
thus cannot drive plasticity directly. Details aside, whatthis means is that the synapse
integrates activity external and internal to the cell to determine how it should change.

We had used the mapping from input spikes to output spikes as our trainable density
model, ignoring the backward and sideways information pathways in the dendrites. Our
learning rule was clearly unbiological, also in the way it required the feedforward neural
mapping to be non-lossy.

The conclusion was obvious: when we added the other information pathways in, the
mapping relevant for the purpose of learning was not from input spike to output spike,
but from input spike to synaptic readout. This readout was done by calcium currents local
to the synapse, not a thresholding mechanism at the axon hillock. And what was read
out were three kinds of spiking activity: spikes arriving atthat synapse, spikes arriving at
other synapses and spikes propagating back from the cell body, the latter two signalling
to the local synapse through graded potentials in the dendrites.

This may not sound startling to a physiologist, but from the direction we were ap-
proaching, the implications were startling indeed. Firstly, since there are roughly 1000
times as many synapses in the brain as neurons, the neuron-to-synapse mapping was
1000 times overcomplete, easily solving the problem that aninvertable mapping was
required for the density estimation maths to work. In fact the state variables at the neu-
ral level (ie: spikes) could now be as lossy as they liked, because they no longer had to
model the statistics of other spikes - this job could be done by new state variables (driven
by calcium) operating at a different level of the system: thesynaptic level. Suddenly neu-
ral information was preserved in the map tosynapticreadout, while (in all likelihood)
thrown away in the map toneuralreadout. This bypassed the main criticism of informa-
tion theoretic neural learning algorithms: that they couldnot throw away information, as
neurons clearly did. It also made sense to have the informational readout at the site of
learning, rather than the output of the cell, thus decoupling the circuit’s statistical model
from its feedforward computation, two essentially different tasks which were conflated
in the ICA/DCA case which had no synaptic state variables, operating only at a single
level.

To make the model concrete, it is proposed that synaptic plasticity (at excitatory
glutamatergic synapses anyway) operates roughly within the following framework. The
neuron is a network of protein complexes (post-synaptic densities and the axon hillock),



communicating similarly to eq.(5):

ua(t) = ∑
b

wb∑
k

Rab(t− tk,ub) (7)

except that now the indicesa andb refer to these sites on the membrane. Each site has
a learnable synaptic weightwb and the transfer functionsRab represent the effects that
spikesk at sitebcan have on the voltage at sitea (Raa is the local synaptic response). This
is essentially just the cable equation for linear electrical communication in dendrites,
with a non-linear voltage-dependence added to account for the NMDA receptor voltage-
dependency and conductance effects. At each sitea, there are two calcium readouts,
the first being synaptic (NMDA receptor) calciumc+

a and the second being intrinsic
(voltage-dependent) calciumc−a carrying information from the rest of the cell:

c+
a (t) = λ+

a wa∑
k

Raa(t− tk,ua) (8)

c−a (t) = λ−
a ∑

b6=a

wb∑
k

Rab(t− tk,ub) (9)

The new ‘plasticity parameters’λ+
a andλ−

a represent the fraction of the local synaptic
and intrinsic ionic currents which are calcium-carrying and thus available to drive
molecular change. (Hippocampal excitatory synapses, for example, are much more
plastic than cortical synapses, having much higher NMDA receptor counts. So-called
‘silent synapses’, common in developing nervous systems, and largely lacking AMPA
receptors, would haveλ+

a close to 1.)
These two kinds of calcium drive a first-order kinetic schemeinvolving a phenomeno-

logical variableya which is the ‘readout’:

ẏa = ec+
a (1−ya)−e−c−a ya (10)

You may ask: where did these equations come from? The answer is that they are
pure guesses based on intuition, a reading of the literatureon the physiology of synaptic
plasticity and a desire to simplify things. They are included here merely to illustrate
what may be the essential features of a calcium-based synaptic readout: a dynamic
computation that compares external input with internal activity to determine how a
weight should change. The real situation is much more complex [15], and varies greatly
with synapse-type. However the kinetic scheme is not a complete fantasy: the push-pull
of c+

a andc−a is meant to represent the actions of calcium-driven kinase and phosphotase
proteins (like CAM-K2 and calcineurin) which activate opponent processes controlling
the delivery to and recycling from the membrane of AMPA receptors, or the alteration
of their sensitivity through phosphorylation.

It is useful to try to make a concrete model that shows information flowing from the
neural to the synaptic level. But we have no learning rule here, just some equations for
synaptic readout that suggest that macroscopic (neural) activity might be statistically
modeled by a more microscopic set of dynamic variables located at synapses. What is
missing is an understanding of this kind of inter-level communication in general. It is to
this that we now turn.



LEVELS IN BIOLOGY

As scientists, we usually like to believe that the level at which we work is the impor-
tant level for understanding more macroscopic phenomena, more microscopic phenom-
ena being irrelevant. This is understandable because science is the search for lawful
behaviour – this search involves adjusting experimental conditions (macro-variables)
until the things which are measured (meso-variables) behave deterministically. Micro-
variables are then not needed to explain these cases, and arethen often regarded as
merely implementation detail for the observed laws, or if they interfere with the lawful
behaviour, they are “noise”. In other words, the scientific method, for all its successes,
creates a series of self-reinforcing parochialisms, each centred on a certain level of de-
scription, each behaving deterministically largely only under the experimental condi-
tions imposed.

No-one is specially to blame here. A molecular biologist whoregards the quantum
level as irrelevant cannot criticise a social psychologistfor whom the skull is a reflecting
barrier. These points may seem obvious, but think how often we read phrases like “the
genetic basis of behaviour” or “the social basis of religion”. The word ‘basis’ betrays a
fundamentalism that seeks to diminish the importance of ordered emergence from the
microsphere. And the notion that higher laws (ie: more compact determinisms) in the
macrosphere are not much better ways of talking is also implicit here.

We have already seen two examples of problematic thinking inneuroscience that can
arise from this: the rate-coding neuron which disappears when we show the cat a natural
movie, and reward-maximising behaviours that become elusive when the rat escapes
from the box. Rewards and rates are not defined under more natural conditions.

The other error mentioned above is to assume that deviationsfrom deterministic
behaviour are a consequence of ‘noise’. The inability of an experimenter to predict a
phenomenon does not mean that there are not meaningful hidden variables producing it.
(You may not expect to read this sentence but that doesn’t mean I am noisy!) Thus it is
a mistake to talk about synaptic transmission as unreliablejust because an experimenter
cannot predict if a spike arriving at a presynaptic bouton will cause a vesicle release
or not. Presynaptic filtering of spikes based on a bouton’s internal state is probably an
intelligent process.

Similar mistakes are made at the cellular level. Those studying bulk ion channel
kinetics regard the motions of individual channels as noisy. Yet for molecules in the
neighbourhood of single channels, these motions are a signal, particularly if any calcium
flows through the channel. Calcium concentrations vary meaningfully over distances of
10nm – the width of a membrane protein. Calcium ions address individual molecules.
Calcium may be to the post-synaptic density (PSD) what voltage is to the neuron as
a whole: a spatially varying field communicating between proteins the way voltage
communicates between the protein complexes called synapses. ([44] is an up-to-date
review of the amazing structure of the PSD.)

We turn now to the cytoplasm. For the classical biochemist, enzyme reactions occur as
they doen massein a thermal aqueous medium, molecules bumping into each other ran-
domly. But a more modern picture of the cytoplasm reveals that there is ‘macromolecular
crowding’ (in which up to 50% of the cell’s volume may be takenup by mostly immo-
bilised proteins and polynucleotides). This has opened thefascinating possibility that



the remaining space (water) iscompletely orderedinto a 3-dimensional protein-gated
switching network, lined by charged hydration shells. These water pathways continu-
ously semi-conduct ions and small molecules differentially based on their size, valence
and shape [46, 18]. The cellular metabolism, argue some, is “vectorial”. The same seems
true of the membrane, a packed and organised 2-dimensional fluid in which cholesterol-
based structures of all sizes (called lipid rafts) control the positions and motions of ev-
ery integral protein [23, 28]. The quiet revolution in cell biology that has produced this
new picture of ordered and meaningful multiscale micro-organisation mirrors the de-
velopments in systems neuroscience away from preoccupation with rate-coding feature
detectors and towards an understanding of cross-level interactions involving spikes, and
correlated activity on all scales. We turn now to the latter.

At the level above that of the neuron, many new lawful relations are coming to
light. (This area of research was largely pioneered by Walter Freeman). Global brain
oscillations in the delta range (1-4 Hz) seem to constrain less global oscillations in
the theta range (4-8 Hz) [34], just as theta oscillations seem to constrain oscillations
in the even more spatio-temporally local gamma range (40-200 Hz) [14], and just as
gamma oscillations seem to determine when spikes are most likely to occur [20, 21]. In
each case, it is at a particular phase of the lower frequency,more global, oscillation
that the higher frequency, more local, effect is likely to increase its amplitude (or
probability of occurence, in the case of gamma-to-spike coupling). The timing of spikes
relative to the gamma oscillation is emerging as an important information-carrying factor
in visual coding [33] and elsewhere [21]. See also [11] for information on this and
other related topics, including important findings about how theta-to-gamma coupling
in the hippocampus codes information about whereabouts a rat is in its environment
(place-coding). A mini-review on these topics appears in [43]. It is noteworthy that the
structured relations between spike timings and oscillation phases can be disrupted for
several minutes by zapping the local tissue with a magnetic field [1].

All of this indicates a very structured organisation of the brain’s oscillatory activity
across space and time. Some neuroscientists have argued that these oscillations are
‘epiphenomena’, since they are just the result of many synchronised membrane currents.
The computation, goes the argument, is occuring at the synapses – the junction points
of the spiking computer. Others disagree, arguing that these oscillating electrical fields
can influence spike timings directly [41], so-called ephaptic interactions. But even if
this is not the case, describing these fields as epiphenomenais like saying that the
US government is an epiphenomenon as it is just the result of the activity of many
people talking to each other. The law-like influences of higher-order structures on lower
is not an indicator of mystical downward causality but an epistemic statement about
which groupings of variables are sufficient to summarise causal dependency. When we
converse, we hear each others words, not each others spikes filtered through the air.

PUTTING IT TOGETHER?

We have mused on the problem of self-organising sensory-motor systems, explained
some statistical learning theory, dived into the physiology of synaptic plasticity and
outlined the flows of information across scales in the nervous system and inside cells.



FIGURE 3. Three schematic views of the multi-level organisation found in biology. (a) Nervous
systems viewed as networks of networks. (b) The units at eachlevel are the networks at the level beneath.
Adaptivity is given a different name at each level, but it is really a single unitary process, viewed at
different scales, like an image viewed at different resolutions in space and time. Natural selection and
self-organisation are thus not different processes, or competing explanations for biological adaptivity, but
different spatio-temporal accounts of the same underlyingthing. (c) A discrete-time ‘cartoon’ (for didactic
purposes only) of the temporal evolution of a multiresolution state vector. Structural relations reduce
the state vector as we ascend the reductionist hierarchy. Causal relations are thus similarly transformed.
Objects at a given level do not communicate directly with each other, but rather through downward and
upward arcs. For example, spikes can influence other spikes through dendrites and axons or through agents
communicating.

But we have been dancing around our main theme: that of uniting learning theory with
this multi-level picture. This is because when there is no good theory (note the first word
of this paper’s title!), it is important to to survey all clues, empirical and theoretical, as
well as to identify the shortcomings in existing ideas.

But there is no shying away any more. The central observationso far, that neurons talk
to synapses not neurons, may be trivial. But if we repeat it atdifferent scales, it naturally



leads to to a view of the nervous system which is at odds with most of the main strands of
current computational and experimental thinking, yet thisview is consistent with all the
empirical data and throws the concepts of machine learning into new unexplored inter-
level scenarios. This view is presented in Fig. 3. It has the following characteristics:

• Biological organisation consists of networks within networks (Fig. 3a). Micro-
scopic networks are inside the nodes of macroscopic networks, like the network of
synapses (eq.(7)) inside a neuron. The outputs and inputs ofa network are signals
to and from the network above in the hierarchy. Phases of groups of neurons, tim-
ings of individual neurons, flows of voltage and flows of calcium carry the network
information at the cell assembly, neural, synaptic and molecular levels respectively.

• There is thus no ‘functionalist cut-off level’2 anywhere in the biological hierarchy
[6]. Nature does not seem to shield the macro from the micro inthe way that
a computer shields bits from electrons. A single photon can save a cat’s life in
the dark [42], and this kind of structured amplification (called emergence) from
microscopic matter is happening continually all through biological tissue. There
can thus be no “machine code of the brain”. The ordered flow of information from
the microscopic is represented in Fig. 3c by the upward diagonal arrows. Memory
recall and ‘spontaneous thought’ are seen as such upward cross-level emergences.

• This information flow is bidirectional. As we communicate with each other, we
change each other’s gene expression through the downward diagonal arrows in Fig.
3c. Words (for example) cause spikes, spikes cause calcium flows and these send
a message to the nucleus to make different proteins. See [9] for a mechanism by
which this can be accomplished.3 ‘One-shot’ learning is storage in a massively
overcomplete distributed microscopic state space, and memories are accessed as-
sociatively through downward arrows from macroscopic neural patterns.

• The sensory-motor loop, properly considered, is an inter-level interaction. Going
upward, behaviours like words emerge from spikes, and goingdownward, they are
the (social) boundary condition for a listener’s neural activity, just as spikes are the
neural boundary condition on the membrane for voltage flows in the dendrites.

• The sensory-motor loop is just one stage in a multi-resolution hierarchy of nested
similar inter-level dynamics. It is not special, just as “agents” are not a special stage
in this hierarchy, but merely a level of description.

• Spikes (for example) communicate with each other by two different mechanisms:
an upward arc via the social network, and a downward arc via the dendritic net-
work (see Fig. 3c). Viewed this way, there are no horizontal arrows, just flows of
information up and down. Even messages between synapses in dendrites may be
differently processed by different voltage or calcium-sensitive macromolecules in
the post-synaptic density of the receiving synapse (the lowest downward arc in Fig.
3c).

2 Functionalism is the idea that you could build a computer outof beer cans and string.
3 The mechanism is the Endoplasmic Reticulum. Quoting Berridge: “the ER and plasma membrane form
a binary membrane system that functions to regulate a variety of neuronal processes including excitability,
associativity, neurotransmitter release, synaptic plasticity and gene transcription”.



• These processes areall the same thing expressed at different resolutions. The state
vectors are transformed by dimensionality-reducing structural relations in 3c, and
the causal relations are transformed with them.

A cross-level theory of learning would be a theory taking place in a causal structure
like that of Fig. 3c. Normally in (Bayesian) learning theory, we separate the datax from
the model (the learned weightsW), and define quantities like the likelihoodq(x|W),
the priorq(W), and the posteriorq(W|x). In a cross-level theory, the data (for example
spike timings) is just the network traffic which flows throughconnections which are
nodes in the network below, as described. Thus quantities like the likelihood and the
posterior are actually conditional distributions of groupings of variables across levels.
It is a tantalising task to connect the framework known as ‘hierarchical Bayes’ to the
hierarchy of matter observed in experiments.

The key to this may lie in generalising to the learning-scenario a framework in physics
known as the Renormalisation Group (RG) [50]. RG has been called the most important
new mathematical idea discovered in the 20th century. It is what enabled the creation
of quantum field theory from generic quantum mechanics. It isalso the idea used to
understand equilibrium phase transitions in certain physical systems (like the 2D Ising
model). It allows one to investigate the changes of a physical system as one views it at
different spatial scales. It applies to scale-invariant systems, the correlation functions of
which change in simple ways as the resolution is altered. It does not apply in biology
because biology has special scales, permitting the separation of nested networks that we
have described.

As mentioned, the statistics of the activity in scale-invariant systems transform in
simple and lawful ways as the scale is varied. RG provides equations that capture
these constraints. These equations are used to solve for thepartition function of the
system, leading to the accurate prediction of important physical quantities. This partition
function,Z, is exactly the same mathematical quantity we encountered before in eq.(4).

In machine learning, as indicated earlier, it is notZ but its gradientwhich matters
(remember the first term in eq.(3)). Could it be that something like RG could enable
the calculation of an appropriate learning gradient for themultiresolution state vectors
shown in Fig. 3c?

The empirical relations between statistics of activity at different scales of the brain’s
material hierarchy (like the dendritic currents, spikes and local field potentials we have
discussed) are only beginning to be unveiled by an array of sophisticated new multires-
olution probes. The principles underlying the brain’s multi-level statistical model of its
sensory-motor world may even be identified by experimentersbefore the theorists get
their act together.

Physics, biology, inference – the strings are not yet tied, the questions not even really
formalised. In physics, even reductionism is not necessarily on solid ground [35]. Noise,
signal, control, reward, agency, the brain as a logic device– the ideas that lay behind the
cybernetics movement in the 1950s, and that have so heavily influenced our thinking
today, are starting to look like they may not be the primitives of a future emergent
understanding. What kind of statistical self-modelling isoccuring in matter? How can
we draw these loose strands together? The game is open. There’s everything to play for.
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