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How are Motor Skills Generated?
A Question Shared by Biological and Robotics Research

How are Motor Skills Generated?
A Question Shared by Biological and Robotics Research

Movies from collaborations with C. Akteson, S. Kotosaka, S. Vijayakumar
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How are Motor Skills Generated?
A Question Shared by Biological and Robotics Research

Movies from collaborations with C. Akteson, S. Kotosaka, S. Vijayakumar

Unfortunately, each of these 
skills required manual 

generation of representations
control policies, and 
learning mechanisms

• The General Goal of 
Motor Learning:

A Computational Approach to 
Motor Control: Control Policies

Control Policies
u(t)=p(x(t),t,å)
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Where Do Control Policies 
Come From?

Direct Control (Model Free)

Indirect Control (Model-Based)

Unstructured 
Learning of 

Policies is 
infeasible

Possible learning
methods include:
• Reinforcement Learning
• Dynamic Programming
• Adaptive Control
• Supervised Learning
• Evolutionary Methods

Making Motor Learning Feasible

• Modular Motor Control

• Parameterization

� 

u t( ) = p x t( ), t,α( )
What is needed is research on

Motor Primitives
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• Previous Su(estions Included:
• Organizational Principles

• 2/3 Power Law
• Piecewise Planarity
• Speed-Accuracy Tradeoff
• Optimization of Energy, Jerk, Torque Change, Motor Command Change, Task Variance, 

Stochastic Feedback Control, Effort, etc.
• Equilibrium Point/Trajectory Hypotheses
• Force Fields
• Pattern Generators and Dynamics System Theory

• Focusing mostly on coupling phenomena (e.g,. inter-limb, perception-action, intra-limb) 
and the necessary interaction  of control and musculoskeletal dynamics

• Contraction Theory
• A version of control theory for modular control

• … and many more

Motor Primitives
The Search for a Common Building Block in Motor Control

(At Least) Two Different 
Approaches to Motor Primitives

The Self-organizing View
•	
 Regularities of motor coordination 
	
 are the “emergent” results of 
	
 (we+-tuned) self-organizing
	
 dynamic systems

Examples:
•	
 Interlimb coordination
•	
 Locomotion
•	
 Perception-Action coupling
•	
 etc.

The Optimizing View
•	
 Regularities of motor coordination 
	
 are the results of explicit or implicit
	
 learning/optimization processes
	
 based on inherent organizational
	
 criteria
Examples:
•	
Visua+y guided reaching
•	
 Eye movement
•	
Motor learning
•	
 etc.
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Optimization 
vs. 

Self-organization
The Self-organizing View

Pros:
•	
 Independent of initial conditions 
	
 (generalization)
•	
 Inherent stability due to attractor 
	
 dynamics
•	
 Coupling with external signals is 
	
 relatively straightforward
•	
 etc.
Cons:
•	
Hard to analyze
•	
Hard to design in general
•	
Hard to apply learning
•	
 etc.

The Optimizing View
Pros:
•	
 Learning is relatively easy
•	
 Potential existence of general 
	
 optimization criteria
•	
 Established numerical tools to 
	
 perform optimization
Cons:
•	
Optimization is time consuming 
	
 and often complex	

•	
Dependence of initial conditions
•	
Often explicit time dependence
•	
 Problems with generalization
•	
How to express complex tasks
•	
 etc.

Investigating Principles 
of Self-organization

Start with
simple 
systems …
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Investigating Principles 
of Self-organization

…move on 
to more 
complex 
systems …

Investigating Principles 
of Self-organization

…even 
more 
complex 
systems …
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Investigating Principles 
of Self-organization

…and add
additional 
feedback 
control.

Investigating Principles 
of Self-organization

•However, the amount of human insight 
and manual tuning remained very 
significant in all these examples.

•General principles of designing and 
adjusting dynamic systems were missing.
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Goals of this Lecture Series

• Introduce Dynamic Motor Primitives (DMPs)
• Discuss Some Evidence of DMPs in Behavioral Science 

and Neuroscience
• Introduce the Formal Framework of DMPs
• Imitation Learning with DMPs
• Movement Recognition with DMPs
• Reinforcement Learning with DMPs

Outline

• Part 1: Dynamic Movement Primitives as a 
Computational Model for Human Movement? 
• Some behavioral and fMRI data ...

• Part II: The Formal Framework of Dynamic Motor 
Primitives
• Algorithms, imitation learning, and movement recognition

• Part III: Reinforcement Learning 
with DMPs
• Optimization, skill learning, and other applications

17

18



• The General Goal of 
Motor Learning:

Reminder: Control Policies

Control Policies
u(t)=p(x(t),t,å)

• Note the similarity between a generic control policy

Parameterized Dynamic 
Movement Primitives

� 

u t( ) = p x t( ), t,α( )

� 

u t( ) = ˙ x desired t( ) = p xdesired t( ),goal,α( )
and nonlinear differential equations

From the “Self-Organizing View”, this creates a natural 
distinction between two major movement classes:
	
 • Rhythmic Movement
	
 • Discrete Movement

19

20



• Two major hypotheses in the behavioral and 
neurophysiological literature:
• All Movements are Discrete (i.e., stroke-based)

• Morasso, Lacquaniti, Terzuolo, Soechting, Viviani, Equilibrium-Point supporters, 
Optimization-supporters (via-points), and many others (1981-today)

• Derived 0om monkey and human experiments

• All Movement are Oscillatory Dynamical Systems (i.e., complete and 
incomplete limit cycles)

• Dynamic System’s Approach to Motor Control (Turvey, Kelso, Kugler, 
Schöner, et.c, 1978-today)

• CPG Research (Gri+ner, Selverston, Cohen, etc., 1970-today)

• Derived 0om invertebrate, lower vertebrate, and human (infant) experiments

Are Rhythmic and Discrete 
Movement Different Primitives?

Behavioral Experiments with 
Humans and Robots

Are all arm movements stroke-based, i.e., discrete?
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Ball-Bouncing Seems to Be a 
Coupled Oscillator System

• Stability properties of 
human ba+ bouncing 
indicated that human 
motor control of ba+ 
bouncing is generated 
0om a coupled osci+ator 
systems

• This strategy achieves 
very robust ski+ 
performance on a complex 
robot

• Human hand movements in rhythmic movement exhibit 
piecewise planarity

The Phenomenon of Piecewise 
Planarity is an Artifact

Piecewise planarity can be explained by joint 
space rhythmic pattern generators

Human Data Robot Data
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a t( ) = k c t( )2 /3

v t( ) = k r t( )1/3
or

Tangential velocity
of trajectory

Radius of curvature
of movement path

Segmentation Based on the 2/3 
Power Law is an Artifact

v

r

Human Data

Robot Data

Movement segmentation based on the 2/3 Power Law can be 
explain by joint space rhythmic pattern generators

Rhythmic and Discrete 
Movement in fMRI 

Typical Wrist Trajectories

Subject in fMRI Scanner
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Rhythmic Movement is not 
Discrete!

Discrete 
Movement 
Activates 
Significantly 
More Higher 
Level Brain 
Areas

Rhythmic Movement is not 
Discrete!

The Control 
Experiment 
with 
Balanced 
Starts&Stops 
Shows the 
Same 
Activations
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Rhythmic Movement is not 
Discrete!

Summary
Results

BA40
BA7

PMdr

BA47
BA44

M1,S1

DISCRETE-RHYTHMIC
RHYTHMIC-DISCRETE

• Rhythmic Movement is not generated 
0om discrete strokes

• Rhythmic and Discrete Movements seem to be two 
different motor primitives in human motor control

• The hypothesis of Dynamic Movement Primitives may  
be viable

Summary of Behavioral Results

…but how would one model motor 
control with dynamic systems?
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Outline

• Part 1: Dynamic Movement Primitives as a 
Computational Model for Human Movement? 
• Some behavioral and fMRI data ...

• Part II: The Formal Framework of Dynamic Motor 
Primitives
• Algorithms, imitation learning, and movement recognition

• Part III: Reinforcement Learning 
with DMPs
• Optimization, skill learning, and other applications

How to Model Motor Primitives?
Some Inspiration from Hodkin-Huxley Models

� 

Total current flow :
Im = Cm

˙ V + INa + IK + Ileak

where
INa = V −VNa( )g Nam3h

IK = V −Vk( )g K n4

Ileak = V −Vleak( )gleak � 

Channel Dynamics :
˙ m = αm 1− m( ) −βmm
˙ h = αh 1− h( ) −βhh
˙ n = αn 1− n( ) −βnn

Can one build (or learn) motor primitives from 
similar equations? 
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Computational Goals

• A Class of Dynamic Systems that Can Code:
• Point-to-point and periodic behavior as their attractor
• Multi-dimensional systems that required phase locking
• Attractors that have rather complex shape (e.g., complex phase 

relationships, movement reversals)
• Learning and optimization
• Coupling phenomena
• Timing (without requiring explicit time)
• Generalization (structural equivalence for parameter changes)
• Robustness to disturbances and interactions with the environment
• Stability guarantees

 
x = f x,goal( )

State
Estimation

Simple
Plan

Movement
Execution

Goal
Motor 

Command

Perceptual
Variables

Motor
Primitive

Motor
System

A Sketch of a Control Diagram 
Using Motor Primitives

Learning

Phase
Generator

Nonlinear
Transformation
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Point-to-Point Movements 
as Dynamic Systems

Time [s]

y dy/dt

goal g

T T

E.g., for a one degree-of-freedom movement, start 
with a simple damped spring model

� 

˙ z = α z βz g − y( ) − z( )
˙ y = z 

≡    y + by + k g − y( ) = 0   ≡    

Can one create more complex dynamics with 
a very nonlinear spring?

� 

˙ z = α z βz g − y( ) − z( )
˙ y = f ?( ) + z( )

Time [s]

y dy/dt

goal g

T T

How to Create a Very Nonlinear Spring?
For instance, create a time varying damping term:

Time

b …which can be represented, e.g., in
a piecewise linear fashion

… or, even better, smoothed piecewise
linear fashion

Point-to-Point Movements 
as Dynamic Systems

f ?( ) = biϕ ?( )∑

35

36



Time [s]

y dy/dt

goal g

T T

Point-to-Point Movements 
as Dynamic Systems

� 

˙ z = α z βz g − y( ) − z( )
˙ y = f ?( ) + z( )

Can one create more complex dynamics with 
a very nonlinear spring?

f t( ) = biϕ t( )∑

Point-to-Point Movements 
as Dynamic Systems

dy/dt

T

Direct time dependence
is not desirable

Time [s]

x

goal g

T

Introduce a 
behavioral 

phase dynamics 
 

v = α v βv g − x( ) − v( )
x = α xv

f = f x,v( )
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• A learnable nonlinear point attractor with guaranteed 
stability properties

A Dynamic Systems Model
 for Discrete Movement

 

z = α z βz g − y( ) − z( )
y = α y f x,v( ) + z( )

 

v = α v βv g − x( ) − v( )
x = α xv

Behavioral Phase

f x,v( )
Nonlinear Function

Nonlinear Spring-Damper

• A learnable nonlinear point attractor with guaranteed 
stability properties

A Dynamic Systems Model
 for Discrete Movement

� 

˙ z = α z β z g − y( ) − z( )
˙ y = α y f x,v( ) + z( )
where
˙ v = α v β v g − x( ) − v( )
˙ x = α xv

f x,v( ) =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci( )2⎛ 
⎝ 

⎞ 
⎠ 

and  x =
x − x0

g − x0

Local Linear
Model Approx.

Canonical 
Dynamics

Trajectory Plan
Dynamics

“Phase” for 
Localization

“Phase Velocity” 
for Nonlinear 
Amplification

Learnable 
Weights
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An Example

“Phase” for 
Localization

“Phase Velocity” 
for Nonlinear 
Amplification

Desired Position Desired Velocity

Basis Functions 
in Time

• A learnable nonlinear limit cycle attractor with 
guaranteed stability properties

Extension to Periodic Systems

Phase Oscillator
with amplitude A

Nonlinear Oscillating Spring-Damper

Behavioral Phase

 

r = α r A − r( )
ϕ =ω

Nonlinear Function
f r,ϕ( )

 

z = α z βz g − y( ) − z( )
y = α y f r,ϕ( ) + z( )
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• Use van Mises Basis Function for Local Linear Models

Extension to Periodic Systems

 

Trajectory Plan Dyanmics
z = α z βz g − ym( ) − z( )
y = α y f r,ϕ( ) + z( )

⎧
⎨
⎪

⎩⎪
where

Canonical System            
r = α r A − r( )
ϕ =ω

⎧
⎨
⎩

Local Linear Models
using van Mises bases

     
f x,v( ) =

wibi
Tx

i=1

k

∑

wi
i=1

k

∑
where  x =

r cosϕ
r sinϕ

⎡

⎣
⎢

⎤

⎦
⎥

wi = exp di cos ϕ − ci( ) −1( )( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

An Example

Phase

First Order Fourier Terms for Learning

Desired Position Desired Velocity

Basis Functions in Time
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Real Demos

Pointer Attractor
Demo

Limit Cycle
Demo

How Did These Demos Work?
Supervised Learning

• Given:
• A goal

• A desired trajectory

• Algorithm
• Extract movement duration
• Adjust time constants of canonical dynamics to movement duration
• Using Locally Weighted Learning to solve nonlinear function 

approximation problem

• where z can be calculated from desired trajectory 

� 

g

� 

ydemo , ˙ y demo , ˙ ̇ y demo

� 

˙ y target =
˙ y demo

α y

− z = f x,v( )

� 

˙ z = α z β z g − y( ) − z( )
˙ y = α y f x,v( ) + z( )
where
˙ v = α v β v g − x( ) − v( )
˙ x = α xv

f x,v( ) =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci( )2⎛ 
⎝ 

⎞ 
⎠ 

and  x =
x − x0

g − x0

Local Linear
Model Approx.

Canonical 
Dynamics

Trajectory Plan
Dynamics

Note: This is a one-shot 
learning problem, i.e., 

no iterations!
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Locally Weighted Learning
with locally linear models 

Region of Validity

Linear 
ModelReceptive Field

Activation w

0

1

2θ  k

Locally Weighted Learning
with locally linear models 

y = βx
Tx + β0 = β T ˜ x where ˜ x = x T 1[ ]T

Linear Model:

w = exp −
1
2
x − c( )T D x − c( )⎛ 

⎝ 
⎞ 
⎠ where D =MTM

Weighting Kernel:

y =
wiyk

i=1

K

∑

wi
i=1

K

∑
Combined 
Prediciton:

learned with

 

Recursive weighted least squares:

βk
n+1 = βk

n + wPk
n+1x y − xTβk

n( )T

Pk
n+1 =

1
λ
Pk
n −

Pk
n
xxTPk

n

λ
w
+ xTPk

n
x

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

learned with
Gradient descent in penalized leave-one-out 
local cross-validation (PRESS) cost function:

Mk
n+1 =Mk

n −α ∂J
∂M

J =
1

wk ,i
i=1

N

∑
wk ,i yi − ŷk ,i,− i

2

i=1

N

∑ + γ Dk ,ij
2

i=1, j=1

n

∑

add model when if  min
k

wk( ) < wgen

        createnewRFat cK +1 = x
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Visualization of On-line 
Function Approximation

Additional Issues to Be 
Addressed

• Coordinating multiple Degrees-of-Freedom

• Movement Recognition

• Dealing with Perturbations
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Coordinating Multiple Degrees-
of-Freedom

Behavioral Phase

 

r = α r A − r( )
ϕ =ω

Nonlinear Function
f r,ϕ( )

 

z = α z βz g − y( ) − z( )
y = α y f r,ϕ( ) + z( )

Coordinating Multiple Degrees-
of-Freedom

Behavioral Phase

 

r = α r A − r( )
ϕ =ω

 

z1 = α z βz g1 − y1( ) − z1( )
y1 = α y f r,ϕ( ) + z1( )

Nonlinear Function
f1 r,ϕ( ) DOF-1

 

z2 = α z βz g2 − y2( ) − z2( )
y2 = α y f r,ϕ( ) + z2( )

 

z3 = α z βz g3 − y3( ) − z3( )
y3 = α y f r,ϕ( ) + z3( )

 

zN = α z βz gN − yN( ) − zN( )
yN = α y f r,ϕ( ) + zN( )

DOF-2f2 r,ϕ( )

DOF-3f3 r,ϕ( )

DOF-NfN r,ϕ( )
 

A Central
Patten

Generator?
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Example: A Tennis Backhand as 
a Dynamic System

Example: A Tennis Backhand as 
a Dynamic System
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Example: Various Periodic 
Movement Patterns

• Among the most interesting properties of the DMP 
approach is the on-line modification with coupling terms

Dealing with Perturbations:
Adding On-line Modification

� 

˙ z = α z β z g − y( ) − z( )
˙ y = α y f x,v( ) + z( )
where
˙ v = α v β v g − x( ) − v( )
˙ x = α xv

f x,v( ) =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci( )2⎛ 
⎝ 

⎞ 
⎠ 

and  x =
x − x0

g − x0

Local Linear
Model Approx.

Canonical 
Dynamics

Trajectory Plan
Dynamics +α p yreal − y( )

1+α p yreal − y( )2( )−1
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Example: A Periodic Movement 
with Perturbation

Movement Recognition

• An Important Property:
• By design, the dynamic systems are structurally equivalent under 

scaling the distance to the goal for point attractor systems, and the 
amplitude for limit cycles

• Structural equivalence also holds for a uniform scaling of the time 
constants

• Thus, the parameters of the nonlinear function are invariant under 
spatial and temporal scaling of a movement and can be used to classify 
a movement pattern
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Example: Recognizing Graffiti 
Characters

Characters are fit with 2DOF 
dynamic point attractors

Example: Recognizing Graffiti 
Characters

About 87% 
correct 

classification 
using 

correlation 
coefficient

Score =
bTemplate
T bObserved

bTemplate bObserved
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State
Estimation

Simple
Plan

Movement
Execution

Goal
Motor 

Command

Perceptual
Variables

Motor
Primitive

Motor
System

A Sketch of a Control Diagram 
Using Motor Primitives

Learning

Phase
Generator

Nonlinear
Transformation

✔

Computational Goals:
What Did We Accomplish?

• A Class of Dynamic Systems that Can Code:
• Point-to-point and periodic behavior as their attractor
• Multi-dimensional systems that required phase locking
• Attractors that have rather complex shape (e.g., complex phase 

relationships, movement reversals)
• Learning and optimization
• Coupling phenomena
• Timing (without requiring explicit time)
• Generalization (structural equivalence for parameter changes)
• Robustness to disturbances and interactions with the environment
• Stability guarantees

 
x = f x,goal( )

✔

✔

✔

✔

✔

✔

✔

✔
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Outline

• Part 1: Dynamic Movement Primitives as a 
Computational Model for Human Movement? 
• Some behavioral and fMRI data ...

• Part II: The Formal Framework of Dynamic Motor 
Primitives
• Algorithms, imitation learning, and movement recognition

• Part III: Reinforcement Learning 
with DMPs
• Optimization, skill learning, and other applications

Reinforcement Learning with 
Movement Primitives

• Given:
• An acceleration-based motor primitives with parameters
•  

 

1
τ
z = α z βz s − y( ) − z( ) + f

1
τ
y = z

1
τ
s = α g g − s( )

such that
y, y, y = z is the desired trajectory

 

1
τ
v = α v βv g − x( ) − v( )

1
τ
x = v

θ

f x,v,g( ) =
ψ ibiv

i=1

N

∑

ψ i
i=1

N

∑
, where ψ i = exp −hi

x − x0

g − x0

− ci
⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟
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Reinforcement Learning with 
Movement Primitives

• Given (cont’d):
• A stochastic realization of the motor primitive

• Several n-step roll-outs (a.k.a. trajectory, sample path, etc.)

• An immediate reward

• A discounted long term reward of a roll-out

 

u = y + ε

π u | x( ) = 1
2πσ 2

exp −
1
2σ 2 u − y x( )( )2⎛

⎝⎜
⎞
⎠⎟

x = x,v, z, y, s[ ]T

ξ = x1,u1,x2 ,u2 ,…,xn ,un ,xn+1{ }

ri = r xi ,ui( )

R ξ( ) = γ i−1

i=1

n

∑ ri

Reinforcement Learning with 
Movement Primitives

• Given (cont’d):
• A cost criterion to be optimized

• Approach
• Gradient descent in the primitive parameter using 

stochastic policy gradient methods

θ = bT σ 2⎡⎣ ⎤⎦
T

θ n+1 = θ n +α ∂J
∂θ

J θ( ) = E R ξ( ){ }ξ
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Computing the Policy Gradient
∇θJ(θ) =

= ∇θE R ξ( ){ }
= ∇θ Ξ∫ pθ (ξ)R(ξ)dξ

=
Ξ∫ ∇θ pθ (ξ)R(ξ)dξ

=
Ξ∫ pθ (ξ)∇θ log pθ (ξ)R(ξ)dξ

= ∇θ log pθ (ξ)R(ξ) ξ

pθ ξ( ) = p x1( ) πθ ui | xi( )
i=1

n

∏ p xi+1 | xi ,ui( )

∇θ log pθ (ξ) = ∇θ logπθ ui | xi( )
i=1

n

∑

Computing the Policy Gradient

• A useful observation

Ξ∫ pθ (ξ)dξ = 1

Thus

∇θ Ξ∫ pθ (ξ)dξ =
Ξ∫ pθ (ξ)∇θ log pθ (ξ)dξ = 0

and
β   Ξ∫ pθ (ξ)∇θ log pθ (ξ)dξ = 0
for any parameter β
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Policy Gradient I
Classic Policy Gradient 

• Thus, the policy gradient with baseline becomes

• The baseline that minimized the variance of the policy 
gradient can be shown to be:

∇θJ(θ) = ∇θ logπθ (ui | xi )
i=1

n

∑⎛⎝⎜
⎞
⎠⎟
R(ξ) − β( )

ξ

βi =
∇θi

log pθ (ξ)( )2 R(ξ)
ξ

∇θi
log pθ (ξ)( )2

ξ

.

William, 1992; Lawrence et al. 2004

Episodic REINFORCE

Improving the Gradient

• Inserting the definition of the ro+-out reward

• Realizing that rewards at time k cannot be affected by 
actions at time i>k, the gradient can be rewritten

Baxter et al. 1999

∇θJ(θ) = ∇θ logπθ (ui | xi )
i=1

n

∑⎛⎝⎜
⎞
⎠⎟
R(ξ) − β( )

ξ

= ∇θ logπθ (ui | xi )
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

γ i−1

i=1

n

∑ ri − β
⎛
⎝⎜

⎞
⎠⎟

ξ

∇θJ(θ) = k=1

n∑ j=1

k∑ ∇θ logπθ (uj | x j ,uj )( ) γ k−1r(xk ,uk ) − β(k)( )
ξ

GPOMDP

βi (k) =
∇θi

log pθ (ξ1 : k )( )2 r(xk ,uk )
ξ1 : k

∇θi
log pθ (ξ1 : k )( )2

ξ1 : k
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Adding Function Approximation

• Replace the ro+-out reward with a function 
approximator

• It can be shown (Sutton et al, Konda et al, 2000) that in 
order to avoid biasing the gradient, the function 
approximator needs to be of the form

∇θJ(θ) = ∇θ logπθ (ui | xi )
i=1

n

∑⎛⎝⎜
⎞
⎠⎟
R(ξ) − β( )

ξ

R(ξ) − β = f ξ( )

f (ξ) = ∇θ log pθ (ξ)
T 1⎡⎣ ⎤⎦w

The Natural Gradient

• Inserting the function approximator into the gradient, 
and canceling a+ irrelevant terms results in

• Amari (1999) demonstrated that a more efficient 
gradient in stochastic optimization is

 

∇θJ(θ) = ∇θ logπθ (ui | xi )
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

∇θ logπθ (ui | xi )
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

T

ξ

w

= F w
where w is the w vector without the constant cofficient , 
and F is the Fisher Information Matrix

 

∇θJ(θ)nat = F
−1  ∇θJ(θ)

Thus:
∇θJ(θ)nat = F

−1F w = w

Kakade, 2002; Peters, 2004; Bagnell 2004
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Policy Gradient II
Natural Policy Gradient 

 

∇θJ(θ)nat = w
where

w = wT  w0⎡⎣ ⎤⎦
T

w = XTX( )XTY

X =

∇θ log pθ (ξ1)
T 1

∇θ log pθ (ξ1)
T 1



∇θ log pθ (ξK )
T 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
   Y =

R(ξ1)
R(ξ2 )


R(ξK )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Note: There is a also a “natural” gradient based
on GPOMDP

Example: Learning a Minimum 
Motor Command Trajectory

ri = cui
2

• Assume that goal and 
duration of a movement 
are given, learn the 
trajectory that minimizes

accumulated over the 
entire trajectory

• Compare different 
stochastic policy 
algorithms

73

74



Example: Learning a Minimum 
Motor Command Trajectory

Example: Learning a Minimum 
Motor Command Trajectory

These results used a cubic spline representation.
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Example: Imitation Learning 
with Self-Improvement

Goal: Hit ball precisely      Note: about 150 trials are needed.

Coupling of External Beat and 
Control
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Discussion

• Evidence 0om behavioral and fMRI data supports the idea of motor 
primitives, in particular in a dynamic systems 0amework

• Formulating motor primitives as kinematic dynamic systems for 
movement planning offers a model of movement generation, which can 
can address many issues, including:
• Optimization
• Reinforcement learning, supervised learning, imitation learning
• Perception-Action Coupling
• Motor Primitives
• Generalization

• The su(ested approach is more of a design principle rather than fixed 
formalism

• The necessary computations of this approach remain (so far) manageable 
and potentia+y biologica+y plausible, and may thus serve as a tool to 
model primate motor control phenomena
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