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Unfortunately, each of these

skills required manual
generation of representations [

control policies, and '

learning mechanisms

A Computational Approach to
Motor Control: Control Policies

* The General Goal of *
Motor Learning: . -

Control Policies
u@®)=p&x(®,t,c)

Internal & External State: x(t) - Action: u(t)
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Optimization
Self-organization

The Self-organizing View The Optimizing View

Pros: Pros:
* Independent of initial conditions * Learningis relatively easy
(generalization) * Potential existence of general
* Inberent stability due to attractor optimization criteria
dynamics * Established numerical tools to
* Coupling with external signals is perform optimization.
relatively straightforward ot
niteen » Optimization is time consuming
Cons: and often complex
* Hard to analyze * Dependence of initial conditions
* Hard to design in general * Often explicit time dependence
* Hardto apply learning * Problems with generalization.
silese * How to express complex tasks

sitete

Investigating Principles
of Self-organization

Start with
simple
systems ...
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Investigating Principles
of Self-organization

...Move on
to more
complex
systems ...

Investigating Principles
of Self-organization

...even
more
complex
systems ...
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...and add
additional
feedback

control.

Investigating Principles
of Self-organization

Investigating Principles
of Self-organization

* However, the amount of human insight
and manual tuning remained very
significant in all these examples.

* General principles of designing and
adjusting dynamic systems were missing.
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Are Rhythmic and Discrete
Movement Different Primitives?

* Two major hypotheses in the behavioral and
neurophysiological literature:
¢ All Movements are Discrete (i.e., stroke-based)

o Morasso, Lacquaniti, Terzuolo, Soechting, Viviani, Equilibrium-Point supporters,
Optimization-supporters (via-points), and many others (1981-today)

o Derived from monkey and human experiments

* All Movement are Oscillatory Dynamical Systems (i.e., complete and
incomplete limit cycles)

®  Dynamic System’s Approach to Motor Control (Turvey, Kelso, Kugler,
Schiner, et.c, 1978-today)
o CPG Research (Grillner; Selverston, Coben, etc., 1970-today)

o Derived from invertebrate, lower vertebrate, and buman (infant) experiments
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Behavioral Experiments with
Humans and Robots

Are all arm movements stroke-based, i.e., discrete?
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Ball-Bouncing Seems to Be a
Coupled Oscillator System

Paddle Acceleration at Impact [m/32]

o]
normal Greduced
2 T o)

&

"o
0
—oc..— o—cfr +SD
e ° o 00 ©

=

e - mean

°
Stability Greduoed

Stability G, o

o>
|
=

5]
Subject1 Subject2 Subject3 Subjectd Subject5 Subject6

The Phenomenon of Piecewise
Planarity is an Artifact

® Human band movements in rbythmic movement exhibit.
piecewise planarity

Human Data Robot Data

a)

Piecewise planarity can be explained by joint
space rhythmic pattern generators
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Segmentation Based on the 2/3
Power Law is an Artifact

Human Data }ﬁ

Robot Data /
/

Radius of Curvature”1/3

Tangential Velocity

Movement segmentation based on the 2/3 Power Law can be
explain by joint space rhythmic pattern generators
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Rhythmic and Discrete
Movement in {MRI

Typical Wrist Trajectories
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Rhythmic Movement is not
Discrete!

Axial Slice at z= +48 mm

Experiment 2

DiscreteRest-RhythmicRest masked with D-R

2 3 4 5
RhythmicRest-DiscreteRest masked with R-R

3 4 5

t-Value a )

RhythmicRest-Rhythmic masked with D-R

1 2

t-Value

b)

y=-2 mm =-1mm z=+45 mm
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Rhythmic Movement is not
Discrete!

Summary
Results

DiscRETE-RHYTHMIC
RHYTHMIC-DISCRETE

Summary of Behavioral Results

* Rbythmic Movement is not generated
from discrete strokes

* Rbythmic and Discrete Movements seem to be two
different motor primitives in human motor control

 The hypothesis of Dynamic Movement Primitives may
be viable

...but how would one model motor
control with dynamic systems?
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>« Point-to-Point Movements
A as Dynamic Systems

goal g

y dy/dt

Time [s] T T

E.g., for a one degree-of-freedom movement, start
with a simple damped spring model

z=a,(B(s-)-2)
y=z

;

JHby+k(g—y)=0 =

Point-to-Point Movements
as Dynamic Systems

How to Create a Very Nonlinear Spring?

For instance, create a time varying damping term:
F(2)=2b0(?)
i
b 4

... or, even better, smoothed piecewise
linear fashion

[\
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Desired Position

Basis Functions
in Time

“Phase Velocity”
for Nonlinear
Amplification

Desired Velocity

“Phase” for
Localization

* Timels)”




Desired Position Desired Velocity
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Trajectory Plan
Dynamics

Canonical
Dynamics

Local Linear
Model Approx.

{
{

z=o,(B.(e=y)-2)
y=a, (f(x,v)+z)
where

v=a (s1NQ1E) This is a o1




Locally Weighted Learning

with locally linear models

/ Region of Validity

29kl
Receptive Field ~Linear
Activationw 1 * Model
i /\‘>

Locally Weighted Learning

with locally linear models

Recursive weighted least squares:

learned with ﬂ:“ =B+ ka”“x(y 4] iTﬁZ )T

Pn+1 fLL l Pn 11 P:iiTP:
k k
AT A ek
w

Gradient descent in penalized leave-one-out

local cross-validation (PRESS) cost function:

M =M - “5_1{4
1
W= exp(—i(x—c)TD(x— c)) where D=M"M | & i 411
J== Zwk,,- "y,' _yk,i,fi" i z D ;
W, . i=1 i=1,j=1
K < k,i
U zink
ombine y = 4=l add model when f min(wk) < W
Prediciton: o e i
w; createnew RF at ¢, , =X
i=1
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| Example: A Tennis Backhand as
A, a Dynamic System

Example: A Tennis Backhand as
a Dynamic System
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Example: A Periodic Movement
with Perturbation

Movement Recognition

* An Important Property:

¢ By design, the dynamic systems are structurally equivalent under
scaling the distance to the goal for point attractor systems, and the
amplitude for limit cycles

¢ Structural equivalence also holds for a uniform scaling of the time
constants

® Thus, the parameters of the nonlinear function are invariant under
spatial and temporal scaling of a movement and can be used to classify
a movement pattern
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Example: Recognizing Graffiti
Characters

Characters are fit with 2DOF
dynamic point attractors

Example: Recognizing Graffiti
Characters
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