
Stefan Schaal
Computer Science & Neuroscience

University of Southern California, Los Angeles
&

ATR Computational Neuroscience Laboratory
Kyoto, Japan

sschaal@usc.edu
http://www-clmc.usc.edu

Scaling Reinforcement Learning to
Complex Motor Systems

A Lecture Series at the Okinawa Computational Neuroscience Course, June 2005

Joint Work With:

• Auke Ijspeert
• Aaron D’Souza
• Jun Nakanishi
• Jan Peters
• Sethu Vijayakumar
• Dimitris Pongas

1

2

How are Motor Skills Generated?
A Question Shared by Biological and Robotics Research

How are Motor Skills Generated?
A Question Shared by Biological and Robotics Research

Movies from collaborations with C. Akteson, S. Kotosaka, S. Vijayakumar

3

4

How are Motor Skills Generated?
A Question Shared by Biological and Robotics Research

Movies from collaborations with C. Akteson, S. Kotosaka, S. Vijayakumar

Unfortunately, each of these
skills required manual

generation of representations
control policies, and
learning mechanisms

• The General Goal of
Motor Learning:

A Computational Approach to
Motor Control: Control Policies

Control Policies
u(t)=p(x(t),t,å)

5

6

Where Do Control Policies
Come From?

Direct Control (Model Free)

Indirect Control (Model-Based)

Unstructured
Learning of

Policies is
infeasible

Possible learning
methods include:
• Reinforcement Learning
• Dynamic Programming
• Adaptive Control
• Supervised Learning
• Evolutionary Methods

Making Motor Learning Feasible

• Modular Motor Control

• Parameterization

�

u t() = p x t(), t,α()
What is needed is research on

Motor Primitives

7

8

• Previous Su(estions Included:
• Organizational Principles

• 2/3 Power Law
• Piecewise Planarity
• Speed-Accuracy Tradeoff
• Optimization of Energy, Jerk, Torque Change, Motor Command Change, Task Variance,

Stochastic Feedback Control, Effort, etc.
• Equilibrium Point/Trajectory Hypotheses
• Force Fields
• Pattern Generators and Dynamics System Theory

• Focusing mostly on coupling phenomena (e.g,. inter-limb, perception-action, intra-limb)
and the necessary interaction of control and musculoskeletal dynamics

• Contraction Theory
• A version of control theory for modular control

• … and many more

Motor Primitives
The Search for a Common Building Block in Motor Control

(At Least) Two Different
Approaches to Motor Primitives

The Self-organizing View
•	

 Regularities of motor coordination
	

 are the “emergent” results of
	

 (we+-tuned) self-organizing
	

 dynamic systems

Examples:
•	

 Interlimb coordination
•	

 Locomotion
•	

 Perception-Action coupling
•	

 etc.

The Optimizing View
•	

 Regularities of motor coordination
	

 are the results of explicit or implicit
	

 learning/optimization processes
	

 based on inherent organizational
	

 criteria
Examples:
•	

Visua+y guided reaching
•	

 Eye movement
•	

Motor learning
•	

 etc.

9

10

Optimization
vs.

Self-organization
The Self-organizing View

Pros:
•	

 Independent of initial conditions
	

 (generalization)
•	

 Inherent stability due to attractor
	

 dynamics
•	

 Coupling with external signals is
	

 relatively straightforward
•	

 etc.
Cons:
•	

Hard to analyze
•	

Hard to design in general
•	

Hard to apply learning
•	

 etc.

The Optimizing View
Pros:
•	

 Learning is relatively easy
•	

 Potential existence of general
	

 optimization criteria
•	

 Established numerical tools to
	

 perform optimization
Cons:
•	

Optimization is time consuming
	

 and often complex	

•	

Dependence of initial conditions
•	

Often explicit time dependence
•	

 Problems with generalization
•	

How to express complex tasks
•	

 etc.

Investigating Principles
of Self-organization

Start with
simple
systems …

11

12

Investigating Principles
of Self-organization

…move on
to more
complex
systems …

Investigating Principles
of Self-organization

…even
more
complex
systems …

13

14

Investigating Principles
of Self-organization

…and add
additional
feedback
control.

Investigating Principles
of Self-organization

•However, the amount of human insight
and manual tuning remained very
significant in all these examples.

•General principles of designing and
adjusting dynamic systems were missing.

15

16

Goals of this Lecture Series

• Introduce Dynamic Motor Primitives (DMPs)
• Discuss Some Evidence of DMPs in Behavioral Science

and Neuroscience
• Introduce the Formal Framework of DMPs
• Imitation Learning with DMPs
• Movement Recognition with DMPs
• Reinforcement Learning with DMPs

Outline

• Part 1: Dynamic Movement Primitives as a
Computational Model for Human Movement?
• Some behavioral and fMRI data ...

• Part II: The Formal Framework of Dynamic Motor
Primitives
• Algorithms, imitation learning, and movement recognition

• Part III: Reinforcement Learning
with DMPs
• Optimization, skill learning, and other applications

17

18

• The General Goal of
Motor Learning:

Reminder: Control Policies

Control Policies
u(t)=p(x(t),t,å)

• Note the similarity between a generic control policy

Parameterized Dynamic
Movement Primitives

�

u t() = p x t(), t,α()

�

u t() = ˙ x desired t() = p xdesired t(),goal,α()
and nonlinear differential equations

From the “Self-Organizing View”, this creates a natural
distinction between two major movement classes:
	

 • Rhythmic Movement
	

 • Discrete Movement

19

20

• Two major hypotheses in the behavioral and
neurophysiological literature:
• All Movements are Discrete (i.e., stroke-based)

• Morasso, Lacquaniti, Terzuolo, Soechting, Viviani, Equilibrium-Point supporters,
Optimization-supporters (via-points), and many others (1981-today)

• Derived 0om monkey and human experiments

• All Movement are Oscillatory Dynamical Systems (i.e., complete and
incomplete limit cycles)

• Dynamic System’s Approach to Motor Control (Turvey, Kelso, Kugler,
Schöner, et.c, 1978-today)

• CPG Research (Gri+ner, Selverston, Cohen, etc., 1970-today)

• Derived 0om invertebrate, lower vertebrate, and human (infant) experiments

Are Rhythmic and Discrete
Movement Different Primitives?

Behavioral Experiments with
Humans and Robots

Are all arm movements stroke-based, i.e., discrete?

21

22

Ball-Bouncing Seems to Be a
Coupled Oscillator System

• Stability properties of
human ba+ bouncing
indicated that human
motor control of ba+
bouncing is generated
0om a coupled osci+ator
systems

• This strategy achieves
very robust ski+
performance on a complex
robot

• Human hand movements in rhythmic movement exhibit
piecewise planarity

The Phenomenon of Piecewise
Planarity is an Artifact

Piecewise planarity can be explained by joint
space rhythmic pattern generators

Human Data Robot Data

23

24

a t() = k c t()2 /3

v t() = k r t()1/3
or

Tangential velocity
of trajectory

Radius of curvature
of movement path

Segmentation Based on the 2/3
Power Law is an Artifact

v

r

Human Data

Robot Data

Movement segmentation based on the 2/3 Power Law can be
explain by joint space rhythmic pattern generators

Rhythmic and Discrete
Movement in fMRI

Typical Wrist Trajectories

Subject in fMRI Scanner

-1

0

1

5 6 7 8 9 10 11 12 13 14 15

-1

0

1

5 6 7 8 9 10 11 12 13 14 15

-1

0

1

5 6 7 8 9 10 11 12 13 14 15

-1

0

1

5 6 7 8 9 10 11 12 13 14 15

P
o
s
it
io

n
 [
ra

d
]

Time [sec]

Rhythmic

Discrete

RhythmicRest

DiscreteRest

25

26

Rhythmic Movement is not
Discrete!

Discrete
Movement
Activates
Significantly
More Higher
Level Brain
Areas

Rhythmic Movement is not
Discrete!

The Control
Experiment
with
Balanced
Starts&Stops
Shows the
Same
Activations

27

28

Rhythmic Movement is not
Discrete!

Summary
Results

BA40
BA7

PMdr

BA47
BA44

M1,S1

DISCRETE-RHYTHMIC
RHYTHMIC-DISCRETE

• Rhythmic Movement is not generated
0om discrete strokes

• Rhythmic and Discrete Movements seem to be two
different motor primitives in human motor control

• The hypothesis of Dynamic Movement Primitives may
be viable

Summary of Behavioral Results

…but how would one model motor
control with dynamic systems?

29

30

Outline

• Part 1: Dynamic Movement Primitives as a
Computational Model for Human Movement?
• Some behavioral and fMRI data ...

• Part II: The Formal Framework of Dynamic Motor
Primitives
• Algorithms, imitation learning, and movement recognition

• Part III: Reinforcement Learning
with DMPs
• Optimization, skill learning, and other applications

How to Model Motor Primitives?
Some Inspiration from Hodkin-Huxley Models

�

Total current flow :
Im = Cm

˙ V + INa + IK + Ileak

where
INa = V −VNa()g Nam3h

IK = V −Vk()g K n4

Ileak = V −Vleak()gleak �

Channel Dynamics :
˙ m = αm 1− m() −βmm
˙ h = αh 1− h() −βhh
˙ n = αn 1− n() −βnn

Can one build (or learn) motor primitives from
similar equations?

31

32

Computational Goals

• A Class of Dynamic Systems that Can Code:
• Point-to-point and periodic behavior as their attractor
• Multi-dimensional systems that required phase locking
• Attractors that have rather complex shape (e.g., complex phase

relationships, movement reversals)
• Learning and optimization
• Coupling phenomena
• Timing (without requiring explicit time)
• Generalization (structural equivalence for parameter changes)
• Robustness to disturbances and interactions with the environment
• Stability guarantees

x = f x,goal()

State
Estimation

Simple
Plan

Movement
Execution

Goal
Motor

Command

Perceptual
Variables

Motor
Primitive

Motor
System

A Sketch of a Control Diagram
Using Motor Primitives

Learning

Phase
Generator

Nonlinear
Transformation

33

34

Point-to-Point Movements
as Dynamic Systems

Time [s]

y dy/dt

goal g

T T

E.g., for a one degree-of-freedom movement, start
with a simple damped spring model

�

˙ z = α z βz g − y() − z()
˙ y = z

≡ y + by + k g − y() = 0 ≡

Can one create more complex dynamics with
a very nonlinear spring?

�

˙ z = α z βz g − y() − z()
˙ y = f ?() + z()

Time [s]

y dy/dt

goal g

T T

How to Create a Very Nonlinear Spring?
For instance, create a time varying damping term:

Time

b …which can be represented, e.g., in
a piecewise linear fashion

… or, even better, smoothed piecewise
linear fashion

Point-to-Point Movements
as Dynamic Systems

f ?() = biϕ ?()∑

35

36

Time [s]

y dy/dt

goal g

T T

Point-to-Point Movements
as Dynamic Systems

�

˙ z = α z βz g − y() − z()
˙ y = f ?() + z()

Can one create more complex dynamics with
a very nonlinear spring?

f t() = biϕ t()∑

Point-to-Point Movements
as Dynamic Systems

dy/dt

T

Direct time dependence
is not desirable

Time [s]

x

goal g

T

Introduce a
behavioral

phase dynamics

v = α v βv g − x() − v()
x = α xv

f = f x,v()

37

38

• A learnable nonlinear point attractor with guaranteed
stability properties

A Dynamic Systems Model
 for Discrete Movement

z = α z βz g − y() − z()
y = α y f x,v() + z()

v = α v βv g − x() − v()
x = α xv

Behavioral Phase

f x,v()
Nonlinear Function

Nonlinear Spring-Damper

• A learnable nonlinear point attractor with guaranteed
stability properties

A Dynamic Systems Model
 for Discrete Movement

�

˙ z = α z β z g − y() − z()
˙ y = α y f x,v() + z()
where
˙ v = α v β v g − x() − v()
˙ x = α xv

f x,v() =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci()2⎛
⎝

⎞
⎠

and x =
x − x0

g − x0

Local Linear
Model Approx.

Canonical
Dynamics

Trajectory Plan
Dynamics

“Phase” for
Localization

“Phase Velocity”
for Nonlinear
Amplification

Learnable
Weights

39

40

An Example

“Phase” for
Localization

“Phase Velocity”
for Nonlinear
Amplification

Desired Position Desired Velocity

Basis Functions
in Time

• A learnable nonlinear limit cycle attractor with
guaranteed stability properties

Extension to Periodic Systems

Phase Oscillator
with amplitude A

Nonlinear Oscillating Spring-Damper

Behavioral Phase

r = α r A − r()
ϕ =ω

Nonlinear Function
f r,ϕ()

z = α z βz g − y() − z()
y = α y f r,ϕ() + z()

41

42

• Use van Mises Basis Function for Local Linear Models

Extension to Periodic Systems

Trajectory Plan Dyanmics
z = α z βz g − ym() − z()
y = α y f r,ϕ() + z()

⎧
⎨
⎪

⎩⎪
where

Canonical System
r = α r A − r()
ϕ =ω

⎧
⎨
⎩

Local Linear Models
using van Mises bases

f x,v() =

wibi
Tx

i=1

k

∑

wi
i=1

k

∑
where x =

r cosϕ
r sinϕ

⎡

⎣
⎢

⎤

⎦
⎥

wi = exp di cos ϕ − ci() −1()()

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

An Example

Phase

First Order Fourier Terms for Learning

Desired Position Desired Velocity

Basis Functions in Time

43

44

Real Demos

Pointer Attractor
Demo

Limit Cycle
Demo

How Did These Demos Work?
Supervised Learning

• Given:
• A goal

• A desired trajectory

• Algorithm
• Extract movement duration
• Adjust time constants of canonical dynamics to movement duration
• Using Locally Weighted Learning to solve nonlinear function

approximation problem

• where z can be calculated from desired trajectory

�

g

�

ydemo , ˙ y demo , ˙ ̇ y demo

�

˙ y target =
˙ y demo

α y

− z = f x,v()

�

˙ z = α z β z g − y() − z()
˙ y = α y f x,v() + z()
where
˙ v = α v β v g − x() − v()
˙ x = α xv

f x,v() =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci()2⎛
⎝

⎞
⎠

and x =
x − x0

g − x0

Local Linear
Model Approx.

Canonical
Dynamics

Trajectory Plan
Dynamics

Note: This is a one-shot
learning problem, i.e.,

no iterations!

45

46

Locally Weighted Learning
with locally linear models

Region of Validity

Linear
ModelReceptive Field

Activation w

0

1

2θ k

Locally Weighted Learning
with locally linear models

y = βx
Tx + β0 = β T ˜ x where ˜ x = x T 1[]T

Linear Model:

w = exp −
1
2
x − c()T D x − c()⎛

⎝
⎞
⎠ where D =MTM

Weighting Kernel:

y =
wiyk

i=1

K

∑

wi
i=1

K

∑
Combined
Prediciton:

learned with

Recursive weighted least squares:

βk
n+1 = βk

n + wPk
n+1x y − xTβk

n()T

Pk
n+1 =

1
λ
Pk
n −

Pk
n
xxTPk

n

λ
w
+ xTPk

n
x

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

learned with
Gradient descent in penalized leave-one-out
local cross-validation (PRESS) cost function:

Mk
n+1 =Mk

n −α ∂J
∂M

J =
1

wk ,i
i=1

N

∑
wk ,i yi − ŷk ,i,− i

2

i=1

N

∑ + γ Dk ,ij
2

i=1, j=1

n

∑

add model when if min
k

wk() < wgen

 createnewRFat cK +1 = x

47

48

Visualization of On-line
Function Approximation

Additional Issues to Be
Addressed

• Coordinating multiple Degrees-of-Freedom

• Movement Recognition

• Dealing with Perturbations

49

50

Coordinating Multiple Degrees-
of-Freedom

Behavioral Phase

r = α r A − r()
ϕ =ω

Nonlinear Function
f r,ϕ()

z = α z βz g − y() − z()
y = α y f r,ϕ() + z()

Coordinating Multiple Degrees-
of-Freedom

Behavioral Phase

r = α r A − r()
ϕ =ω

z1 = α z βz g1 − y1() − z1()
y1 = α y f r,ϕ() + z1()

Nonlinear Function
f1 r,ϕ() DOF-1

z2 = α z βz g2 − y2() − z2()
y2 = α y f r,ϕ() + z2()

z3 = α z βz g3 − y3() − z3()
y3 = α y f r,ϕ() + z3()

zN = α z βz gN − yN() − zN()
yN = α y f r,ϕ() + zN()

DOF-2f2 r,ϕ()

DOF-3f3 r,ϕ()

DOF-NfN r,ϕ()
 

A Central
Patten

Generator?

51

52

Example: A Tennis Backhand as
a Dynamic System

Example: A Tennis Backhand as
a Dynamic System

53

54

Example: Various Periodic
Movement Patterns

• Among the most interesting properties of the DMP
approach is the on-line modification with coupling terms

Dealing with Perturbations:
Adding On-line Modification

�

˙ z = α z β z g − y() − z()
˙ y = α y f x,v() + z()
where
˙ v = α v β v g − x() − v()
˙ x = α xv

f x,v() =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci()2⎛
⎝

⎞
⎠

and x =
x − x0

g − x0

Local Linear
Model Approx.

Canonical
Dynamics

Trajectory Plan
Dynamics +α p yreal − y()

1+α p yreal − y()2()−1

55

56

Example: A Periodic Movement
with Perturbation

Movement Recognition

• An Important Property:
• By design, the dynamic systems are structurally equivalent under

scaling the distance to the goal for point attractor systems, and the
amplitude for limit cycles

• Structural equivalence also holds for a uniform scaling of the time
constants

• Thus, the parameters of the nonlinear function are invariant under
spatial and temporal scaling of a movement and can be used to classify
a movement pattern

57

58

Example: Recognizing Graffiti
Characters

Characters are fit with 2DOF
dynamic point attractors

Example: Recognizing Graffiti
Characters

About 87%
correct

classification
using

correlation
coefficient

Score =
bTemplate
T bObserved

bTemplate bObserved

59

60

State
Estimation

Simple
Plan

Movement
Execution

Goal
Motor

Command

Perceptual
Variables

Motor
Primitive

Motor
System

A Sketch of a Control Diagram
Using Motor Primitives

Learning

Phase
Generator

Nonlinear
Transformation

✔

Computational Goals:
What Did We Accomplish?

• A Class of Dynamic Systems that Can Code:
• Point-to-point and periodic behavior as their attractor
• Multi-dimensional systems that required phase locking
• Attractors that have rather complex shape (e.g., complex phase

relationships, movement reversals)
• Learning and optimization
• Coupling phenomena
• Timing (without requiring explicit time)
• Generalization (structural equivalence for parameter changes)
• Robustness to disturbances and interactions with the environment
• Stability guarantees

x = f x,goal()

✔

✔

✔

✔

✔

✔

✔

✔

61

62

Outline

• Part 1: Dynamic Movement Primitives as a
Computational Model for Human Movement?
• Some behavioral and fMRI data ...

• Part II: The Formal Framework of Dynamic Motor
Primitives
• Algorithms, imitation learning, and movement recognition

• Part III: Reinforcement Learning
with DMPs
• Optimization, skill learning, and other applications

Reinforcement Learning with
Movement Primitives

• Given:
• An acceleration-based motor primitives with parameters
•

1
τ
z = α z βz s − y() − z() + f

1
τ
y = z

1
τ
s = α g g − s()

such that
y, y, y = z is the desired trajectory

1
τ
v = α v βv g − x() − v()

1
τ
x = v

θ

f x,v,g() =
ψ ibiv

i=1

N

∑

ψ i
i=1

N

∑
, where ψ i = exp −hi

x − x0

g − x0

− ci
⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

63

64

Reinforcement Learning with
Movement Primitives

• Given (cont’d):
• A stochastic realization of the motor primitive

• Several n-step roll-outs (a.k.a. trajectory, sample path, etc.)

• An immediate reward

• A discounted long term reward of a roll-out

u = y + ε

π u | x() = 1
2πσ 2

exp −
1
2σ 2 u − y x()()2⎛

⎝⎜
⎞
⎠⎟

x = x,v, z, y, s[]T

ξ = x1,u1,x2 ,u2 ,…,xn ,un ,xn+1{ }

ri = r xi ,ui()

R ξ() = γ i−1

i=1

n

∑ ri

Reinforcement Learning with
Movement Primitives

• Given (cont’d):
• A cost criterion to be optimized

• Approach
• Gradient descent in the primitive parameter using

stochastic policy gradient methods

θ = bT σ 2⎡⎣ ⎤⎦
T

θ n+1 = θ n +α ∂J
∂θ

J θ() = E R ξ(){ }ξ

65

66

Computing the Policy Gradient
∇θJ(θ) =

= ∇θE R ξ(){ }
= ∇θ Ξ∫ pθ (ξ)R(ξ)dξ

=
Ξ∫ ∇θ pθ (ξ)R(ξ)dξ

=
Ξ∫ pθ (ξ)∇θ log pθ (ξ)R(ξ)dξ

= ∇θ log pθ (ξ)R(ξ) ξ

pθ ξ() = p x1() πθ ui | xi()
i=1

n

∏ p xi+1 | xi ,ui()

∇θ log pθ (ξ) = ∇θ logπθ ui | xi()
i=1

n

∑

Computing the Policy Gradient

• A useful observation

Ξ∫ pθ (ξ)dξ = 1

Thus

∇θ Ξ∫ pθ (ξ)dξ =
Ξ∫ pθ (ξ)∇θ log pθ (ξ)dξ = 0

and
β Ξ∫ pθ (ξ)∇θ log pθ (ξ)dξ = 0
for any parameter β

67

68

Policy Gradient I
Classic Policy Gradient

• Thus, the policy gradient with baseline becomes

• The baseline that minimized the variance of the policy
gradient can be shown to be:

∇θJ(θ) = ∇θ logπθ (ui | xi)
i=1

n

∑⎛⎝⎜
⎞
⎠⎟
R(ξ) − β()

ξ

βi =
∇θi

log pθ (ξ)()2 R(ξ)
ξ

∇θi
log pθ (ξ)()2

ξ

.

William, 1992; Lawrence et al. 2004

Episodic REINFORCE

Improving the Gradient

• Inserting the definition of the ro+-out reward

• Realizing that rewards at time k cannot be affected by
actions at time i>k, the gradient can be rewritten

Baxter et al. 1999

∇θJ(θ) = ∇θ logπθ (ui | xi)
i=1

n

∑⎛⎝⎜
⎞
⎠⎟
R(ξ) − β()

ξ

= ∇θ logπθ (ui | xi)
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

γ i−1

i=1

n

∑ ri − β
⎛
⎝⎜

⎞
⎠⎟

ξ

∇θJ(θ) = k=1

n∑ j=1

k∑ ∇θ logπθ (uj | x j ,uj)() γ k−1r(xk ,uk) − β(k)()
ξ

GPOMDP

βi (k) =
∇θi

log pθ (ξ1 : k)()2 r(xk ,uk)
ξ1 : k

∇θi
log pθ (ξ1 : k)()2

ξ1 : k

69

70

Adding Function Approximation

• Replace the ro+-out reward with a function
approximator

• It can be shown (Sutton et al, Konda et al, 2000) that in
order to avoid biasing the gradient, the function
approximator needs to be of the form

∇θJ(θ) = ∇θ logπθ (ui | xi)
i=1

n

∑⎛⎝⎜
⎞
⎠⎟
R(ξ) − β()

ξ

R(ξ) − β = f ξ()

f (ξ) = ∇θ log pθ (ξ)
T 1⎡⎣ ⎤⎦w

The Natural Gradient

• Inserting the function approximator into the gradient,
and canceling a+ irrelevant terms results in

• Amari (1999) demonstrated that a more efficient
gradient in stochastic optimization is

∇θJ(θ) = ∇θ logπθ (ui | xi)
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

∇θ logπθ (ui | xi)
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

T

ξ

w

= F w
where w is the w vector without the constant cofficient ,
and F is the Fisher Information Matrix

∇θJ(θ)nat = F
−1 ∇θJ(θ)

Thus:
∇θJ(θ)nat = F

−1F w = w

Kakade, 2002; Peters, 2004; Bagnell 2004

71

72

Policy Gradient II
Natural Policy Gradient

∇θJ(θ)nat = w
where

w = wT w0⎡⎣ ⎤⎦
T

w = XTX()XTY

X =

∇θ log pθ (ξ1)
T 1

∇θ log pθ (ξ1)
T 1



∇θ log pθ (ξK)
T 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
 Y =

R(ξ1)
R(ξ2)


R(ξK)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Note: There is a also a “natural” gradient based
on GPOMDP

Example: Learning a Minimum
Motor Command Trajectory

ri = cui
2

• Assume that goal and
duration of a movement
are given, learn the
trajectory that minimizes

accumulated over the
entire trajectory

• Compare different
stochastic policy
algorithms

73

74

Example: Learning a Minimum
Motor Command Trajectory

Example: Learning a Minimum
Motor Command Trajectory

These results used a cubic spline representation.

75

76

Example: Imitation Learning
with Self-Improvement

Goal: Hit ball precisely Note: about 150 trials are needed.

Coupling of External Beat and
Control

77

78

Discussion

• Evidence 0om behavioral and fMRI data supports the idea of motor
primitives, in particular in a dynamic systems 0amework

• Formulating motor primitives as kinematic dynamic systems for
movement planning offers a model of movement generation, which can
can address many issues, including:
• Optimization
• Reinforcement learning, supervised learning, imitation learning
• Perception-Action Coupling
• Motor Primitives
• Generalization

• The su(ested approach is more of a design principle rather than fixed
formalism

• The necessary computations of this approach remain (so far) manageable
and potentia+y biologica+y plausible, and may thus serve as a tool to
model primate motor control phenomena

79

