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Understanding Brain
by Creating Brain

Robots and computers are much inferior to humans.

This demonstrates that we do not understand brain
functions.

Only if we try to create a brain, we can understand
information processing in the brain.

Creating only a brain does not make sense, and a
body and its environment are essential.




Computational Neuroscience

We elucidate information processing of
the brain to the extent that artificial
machines, either computer programs or
robots, can be built to solve the same
computational problems that are solved
by the brain, essentially in the same
principle.

Biped
Neuroscience
Schaal S, Sternad D, Osu R, Kawato M: Rhythmic arm movement is not discrete. Nature Neuroscience, 7, 1137-1144
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Humanoid “DB” (Dynamic Brain)

* 30 DOFs

* 190 cm height

* 80 kg weight

e Compliant

* Biomimetic
oculomotor system

e Co-designed by SRC
and KDB

Shibata, T. and Vijayakumar, S. and Conradt, J. and Schaal, S.: Biomimetic Oculomotor
Control. Adaptive Behavior, 9, 189-208 (2001).

New Humanoid “CB”
with SARCOS

/
&
An ATR/SARCOS

development

-Closer to human (speed
and power)

‘Fully autonomous
‘160cm and 60 Kg

‘Mechanically compliant




Understanding Hierarchical
Sensory-Motor Control by the Brain
through Robot Control with Neural Decoding

Human : ROBOT
i Prefrontal decoding Decision

Intention

SARCOS, ATR, CMU, NiCT
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Cerebellum and Cerebral Cortex
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Cerebellum Cerebral Cortex
Weight 1 30g 1to10 | ,300g
Surface Area 50,000mm* 1to2 80,000mm’
Number of Neurons 10" > 10"
Expansion from
Average Primates 2.8 ~ 32

Cerebellum and Human Intelligence

© Cerebellar Nuclei

Medial 0.8, Dentate 4.5 relative to prosimian
Cerebellar Cortex

Body Dentate Nucleus

Weight [Volume W&H Leng.

) Dentate
g Dorsomedial Human | 65kg [1,167mm°| same |twice

Chimp | 45kg | 456mm?| same half

W i.\{fﬁ‘!-. Dentate

\h:_ - a ., . .,_i_};.VentroIateraI

© Cerebellar Size and

Human Intelligence
Paradiso (1997)

Finger tapping r=0.22  p<0.05
Verbal memory r=0.27 p<0.02
General IQ r=0.19  p<0.07
(WAIS-R)

No correlation for left temporal lobe




Cerebro-
Cerebellar

Communication
Loop

Pontine Nucleus ~
P 1 Area46 Area9 !

lateral
PRs
Dentate dorsal Dentate lateral Dentate ventral
Thalamus VPLo X MD,/VL
Primary Motor Ventral Premotor Prefrontal

Cerebral Cortex Cerebral Cortex

Private Communication between
Cerebrum and Cerebellum with
Closed-loop Circuits

OEDEC

Figure 14, Summary diagrams of the closed-loop circuits that link the cerebellum with M1
and area 46. Note that the cortical area, which is the major source of input to a dircuit, is the
major target of output from the circuit. See Discussion for complete details. CBM, Cerebellar
cortex; DN, dentate nudeus; PN, pontine nuclei; TH, subdivisions of the thalamus.

8442 - ). Neurosci,, September 10, 2003 - 23(23):8432- 8444 Kelly and Strick » Cerebellar Loops with M1and Area 46

Neural Circuit of Cerebellar Cortex
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Neural Circuit, Synaptic Plasticity and
Models of Cerebellum

Marr-Albus-Ito (~1970)

+ Climbing fiber inputs as teacher
(error signal)

- Parallel-fiber-Purkinje-cell synapse
changes its efficacy

Stellate cells
Parallel fiber

S

Purkinje (

Basket cell

Mossy fibers  Parallel fibers

Climbing fibers

Granule cells

Granule cell e

HeurunS

Purkinje Long Term Depression, LTP, RP (~1982)
Cell axon

Mossy fiber  Internal Model Theory (~1984)
+ Cerebellar cortex acquires internal models
by learning
- Climbing fiber represents motor command
error




Parallel Fiber and Climbing Fiber Inputs
to Purkinje cells:
Simple Spikes and Complex Spikes

Parallel fiber (PF
A araelr( ) B

Input j
signal Climbing
Purkinje cell fiber (CF)

Output signal* | ° Error signal —]

Simple spike (SS)
Internal model output

p—

Complex spike (CS)
Error signal
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Cerebellar Internal Model Theory

* The cerebellum consists of many modules
(micro-zones) which perform different input-

output transformations.

* Synaptic weights change and different
transformations can be learned.

e Supervised learning guided by

an error signal

 Different modules acquire internal models of

controlled objects, tools, other

brains, etc.

Pole and CBLM

A Feedback control

Stiffness, Viscosity

Feedback

Desired N motor Realized

trajectory +
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command|  Controlled trajectory

object

Delay

B Feedforward control

Desired
trajectory

Feedforward

- Realized
\‘§& trajectory
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Stiffness Measurement by PFM

Hiroaki Gomi

Mechanical perturbations in 8 directions were given during point-to-point movement
and reaction forces were measured. Then stiffness and viscosity were estimated.

A Internal feedback control by forward model

Desired Motor R Rea_llized
trajectory + Feedback  |cOMMand\Y Controned § trajectory
> C‘ ’ controller N object ! >
Estimated
trajectory Current state
B Feedforward control by inverse model
Desired Reglized
trajectory trajectory
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Feedback Error Learning in Cerebellum

Parallel fiber

Cerebellar Cortex Simple spikes

—— Feedforward
motor
command

Complex spikes
Climbing fiber

+ ¥+
: Feedback »O Cont_rolled >
Desrod &+ _% Trajectory | controller Feedback Motor object Actual
trajectory error motor command trajectory
command

(1) Parallel-fiber inputs represent desired trajectory

(2) Simple spike represents feedforward motor command

3) constitutes

(4) Complex spike represents error in motor-command coordinate
(5) LTD time window (optimal if PF leads CF)

Jun Nakanishi and Stefan Schaal : Feedback error learning and nonlinear adaptive control. Neural Networks, 17,
1453-1451 (2004)

Comparison of Feedback Error Learning with
Supervised Learning for Motor Command

Feedback error learning

dw/dt=e(dt; | dw) T, (M
Supervised learning

If teaching signal for motor command is given as Tyeieq > then the
steepest descent direction of , for the following squared error,

E= %(17 wesied =Ti) *(Taesiea = Tix) is given as follows.
dw/dt = E(arff/&w)r(rdesired _rﬂ') (2)

Comparing equations (1) and (2), g, approximates (Tyg., —Tz) inthe
feedback error learning scheme. That is, the feedback motor command
plays a role of the error signal for the motor command. This works only
when the feedback controller is an approximate inverse model of the
controlled object. The following two conditions should be satisfied.

The common coordinate frame for , and . .

The two temporal waveforms _ and br

desired

are similar.

Trp — Ty




LTD and LTP as Synaptic Plasticity for
the Feedback Error Learning Scheme
Simple linear input—output model of Purkinje cell

Output: - Firing of i~th parallel fiber input:  ;
i-th synaptic weight: .. Number of inputs:
1
y= 2 W; X; (1)
n
Model of LTD and LTP
dw;[dt=-£x,(C - Cyon) (2)

Interpretation by feedback error learning

The difference of climbing fiber inputs from its spontaneous level
C- Cipont encodes the feedback motor command.

dw;|dt = (9t dw,)Ts
= &(d(-y)/dw;) Ty

Approximate Mirror-lmage Relationship
Between CS and SS

S8ty = 3 wilt)x;{f) 1)
tdw,(t)/dt = —ex;t{CS(t) - CSspom} -wit)y (2)

w;(t) ~ —ex;(H{CSit) - CS

spont} ©)

SSity=-¢Y x;{CS(t - CSspom}x,- )

~ =8{CSt) = CSspont} @
Prediction
Feedback, After Learning : mirror image
Feedback, Before Learning : no relation

Feedforward, Delay, After Learning : CS at beginning

=—£x,(C = Cypon) (3) Feedforward, No Delay, After Learning: CS vanishes
Topics Spike Timing, Ca?*, and LTD

1. Understanding brain by creating brain Parallel fiber r ~N

2. Basics of cerebellum : (PF) PF-CF input
Spine At =+100ms
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AMPA Receptor #
Climbing fiber decreases at the PF synapse

(CF)




Computational Theory of
Cerebellar STDP

« Computational theory requires that the
temporal window should exist in cerebellar
LTD

* Behavioral learning experiments suggest
the temporal window in cerebellar LTD

« Computational model of Ca?* dynamics
within spine coherently reproduces LTD
data.

« Signal transduction pathway model of LTD

* Forward reaching with 25 cm
and 600 msec

e Two force fields VF and DF
suddenly changed from NF

* Hand path, joint angle, joint
torque measured and estimated

e Stiffness ellipse measured

Burdet E, Osu R, Franklin D, Milner T, Kawato M: The central nervous system stabilizes unstable dynamics by
learning optimal impedance. Nature, 414 446-449 (2001).

Osu R, Burdet E, Franklin DW, Milner TE , Kawato M: Different mechanisms involved in adaptation to stable and unstable
dynamics. Journal of Neurophysiology, 90, 3255-3269 (2003).

Franklin DW, Osu R, Burdet E, Kawato M, Milner TE: Adaptation to stable and unstable environments achieved by
combined impedance control and inverse dynamics model. Journal of Neurophysiology, 90, 3270-3282 (2003).

Franklin DW, Burdet E, Osu R, Kawato M, Milner TE: Functional significance of stiffness in adaptation of multijoint
arm movements to stable and unstable dynamics. Experimental Brain Research, 151 145-157 (2003).

Osu R, Hirai S, Yoshioka T, Kawato M: Random presentation enables subjects to adapt to two opposing forces on the hand.
Nature Neuroscience, 7, 111-112 (2004).

Data supporting FEL with Time
Advance and Cross-Muscle Reflex
®Hand path and EMG of the first few movements

3

Posterior Deltoid

A: incorporation of feedback
command into feedforward
command in next trial with
phase advance for the

~ stretched and main muscle
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feedforward command in
next trial.
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Signaling Networks in Cerebellar LTD
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Simulation of Cerebellar LTD
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Doi T, Kuroda S, Michikawa T, Kawato M: IP3-dependent Ca2+ threshold dynamics detect spike-timing
in cerebellar Purkinje Cells. Journal of Neuroscience, 25, 950-961 (2005).

Ca?* Dynamics Model for Coherent
Understanding of Diverse and Confusing
Experimental Data on LTD Time Window

» Cerebellar learning theories require LTD time
window where CF is delayed with respect to PF
for 100-200 msec.

» Several experimental supports to this prediction

» Strong bundle stimulation to PF alone, uncaging
of Ca?* or IP; can induce LTD without PF-CF
conjunction or time delay.

« Some experiments even reported CF preceding
PF is optimal.

+ Serious doubts and criticisms on LTD as a
cellular basis of cerebellar supervised learning

Ca?* Imaging in Purkinje-cell Spines

PF CF PF&CF
“ |20 mv
SN
PF Il |
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B N e SRR | 2o
Wang et al., Nat Neurosci ' ! . \FIFs
3, 1266-1273 (2000)
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Signal-Transduction Pathways detect
Input Spike Timing within a Spine
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Block Diagram of Ca?* Signaling
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1
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PF input ¢ Ca2*influx & IP3 production
CF input ¢ Ca2* influx

Formulation of Biochemical Reaction

(1) Binding Reaction

kr
A+B AB
® o kh 0@

d[ABV/dt = + k{A][B] - ks[AB]

Dissociation Constant, Ki=ks / kr: equilibrium point
Time Constant, T =1/(kr+ k»): speed for convergence

Formulation of Biochemical Reaction
(1) Binding Reaction

kr
A+B AB
® 06 i @@

(2) Enzymatic Reaction (Michaelis-Menten)

E+S gs K g ip

o " © Qo

k—l +kcat
k1 E: Enzyme, S: Substrate, P: Product

Km =




Example: Glu—mGIuR—Gq
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|IP3 Receptor Kinetic Model
based on Adkins and Taylor (1999)
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Ca* Ca® Ca** Ca*

« IPsR-opening requires binding to both IPs and Ca2*

* Excessive Ca?* inactivates |P3R

 Ca?*-dependent activation is assumed faster than
Ca?*-dependent inactivation

Variables and Parameters

Unknown/Total
Time Constant, T 31/34
Dissociation Constant, Ky
Michaelis Constant, Kmn 3729
Enzyme Turnover, Vinax 3/12
Concentration, [A] 3/21

* 53 ordinary differential equations and 96 parameters

* None of the unknown parameters has significant effects on
peak-time or width of the temporal window.

* Four unknown parameters (time constants and maximum
enzyme velocity regarding mGIuR-Gq & IP;-Ca?*) were
determined from peak-height of the temporal window.

Supralinear Ca?* signal appears
when PF is followed by CF

Ca?* Imaging Simulation
Wang et al., (2000) Nat Neurosci
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Temporal Window of PF and CF
Inputs for Ca?* Signaling and LTD

PF alone PF—CF CF — PF

Ca?* imaging WMM MW MWWY
I [

Wang et al., (2000) Ll 2[9/‘;6
Nat Neurosci 3, 1266-1273 0.1s ¥
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IP3-dependent Ca?* Dynamics
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Ca?* Dynamics and LTD Experiments
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(i) CF alone does not induce LTD
(i1) PF alone does not induce LTD
(ii1) Conjunctive PF-CF induces LTD
(iv) Ca?* uncaging induces LTD

(v) IP3 uncaging induces LTD

(vi) Massive PF stimulus induces LTD

CF PF

Threshold

Fast Positive &
Slow Negative

* Delay in slow PF metabotropic pathway compared with fast
CF electrical pathway as a mechanism for timing-detection

- Fast positive feedback loop generates large Ca2* signals.

« Slow negative feedback loop shuts down the Ca?* increase.

Summary of Ca?* Dynamics Model

« LTD temporal window reproduced by Ca?* dynamics

» Under physiological conditions, only the input order PF¢
CF generates large Ca?* increase.

« Ca?* threshold dynamics dependent on IP3

 Qualitatively different Ca2* dynamics dependent on
different IP3 concentrations can coherently reproduce
diverse data.

» Several experiments to test model predictions

* Only heterosynaptic (PF-CF) conjunctive LTD can
implement supervised learning. Homosynatic (PF alone,
or CF alone) LTD may implement meta-learning or hyper-
parameter tuning.

» Chemical plasticity of temporal window itself is possible.




Computational Theory of
Cerebellar STDP

Computational theory requires that the
temporal window should exist in cerebellar
LTD

Behavioral learning experiments suggest the
temporal window in cerebellar LTD

Computational model of Ca?* dynamics
within spine coherently reproduces LTD
data.

Signal transduction pathway model of LTD

Kuroda S, Schweighofer N, Kawato M: Exploration of signal transduction pathways in cerebellar
long-term depression by kinetic simulation. Journal of Neuroscience, 21 5693-5702 (2001).

LTD Signal Transduction Pathways
AMPAR Phosphorylation

Climbing fiber (CF) Parallel fiber (PF)
I

w Purkinje cells
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Ocular Following Responses and
Related Brain Regions

Experiments by Kawano, Shidara, Takemura, Kobayashi et al. (ETL at Tsukuba)

Reflex eye movements
induced by visual motion
of large field




Eye movements are recorded by
implanted search coil.

(Kandel 1989)

Ocular Following Responses: (Reflex eye movement induced by
movement of large visual field)

Cerebellar Cortex

Granule Purkinje
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Reconstruction of Firing Frequency for
Different Stimulus Speeds and Duration

f(t): firing frequency 0(t): eye movement
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(Takemura et al, 2001)
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(Takemura et al, 2001)
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Do climbing fiber inputs carry
poor or rich information?

1~2 spikes per second

Poor - Unexpected event detector
- 0/1
- Reinforcement learning

Rich - Error signal with magnitude and direction
- Firing probability profile (high-frequency
temporal pattern)
- feedback-error-learning
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Temporal profile of simple spike firing and complex spike firing for each neuron is
very similar (just opposite in sign and firing rate is different).
— Complex spike firing may be a template for simple spike firing.
— Simple spike of individual cell is prescribed by complex spike.

simple spike

0 0002  0.004

complex splke
position

Teacher shapes student’s action by hetero-synaptic
plasticity (Long-term depression/potentiation of
parallel fiber synapse by climbing fiber activation ).
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IDM representation

Mirror between CS and SS
Population coding to rate coding
Two opposite axes for CS and SS
Full learning simulation

Shidara M, Kawano K, Gomi H, Kawato M: Inverse-
dynamics model eye movement control by Purkinje
cells in the cerebellum. Nature, 365, 50-52 (1993).

@ | @ @ sx::ms o1 NOT I—»'Wonve Mo e
. @ ‘ @ @ * Kawato M: Internal models for motor control and
trajectory planning. Current Opinion in
Neurobiology, 9, T18-727 (1999).
. MST / DLPN Cerebellar Corte
Data Supporting Internal Model Theory g
and Feedback-Error-Learning
@ 777777777
Visual Retinalp™s) — = = —————|

(1) Simple spikes (cerebellar output) are well reconstructed by an
inverse dynamics model.

(2) Visual inputs to the cerebellum (MST and DLPN) are not well
reconstructed by an inverse dynamics model, but well reconstructed
by retinal slips.

(3) Climbing fiber inputs (complex spikes) of ultra-low firing rates
convey high-frequency motor command errors.

(4) Drastic change of neural codes from population coding to firing rate
coding at parallel-fiber-Purkinje-cell synapses (direction, speed,
waveform) is supervised by climbing fiber inputs (accessory optic
system).
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Simple spike
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Eye
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Parallel fiber

Purkinje cell

Climbing fiber Parallel fiber

Purkinje cell Climbing fiber




Cerebral Cortex

population coding
probabilistic internal model
cortical dynamics
probability density
multiple peaks
unsupervised learning

Cerebellar Cortex

firing rate coding
deterministic internal model
input-output transformation
moments

competing modules
supervised learning

Cerebral Cortex

Cerebellum

Basal Ganglia

Neural circuit
Synaptic plasticity
Learning algorithm
Artificial NN
Modularity
Function: old view
Function: new view

Computational
principle

Input, output,
and internal
representation

Computation done

Essence
Language analogue

Horizontal and reciprocal
Hebbian, anti-Hebbian
Un-supervised, statistical
Associatron, Cognitron
Areas, column
Everything

Everything

Learning statistical model
filter: neighborhood Gaussian

horizontal: distant coincidence

Efficient representation

based on statistics

of the external-world data
Compress to low-dimension

Stocahsticity

Lexicon

feedforward
Hetero-synaptic (LTD)
Supervised learning
Perceptron, MADALIN
Microzone

Movement coordination
Everything

Learning of predictive and
control model of dynamical
systems

Modeling of dynamics based
on efficient representations
acquired in cerebral cortex
Learning cause-and-effect
Regularity
Syntax

loop

Hebbian and Dopamine
Reinforcement learning
Actor-critique architecture
Dorso-ventral channels
Behavior selection
Everything

Learning of value funciton,
reward function

Modeling of value based on
emotion and efficient
cerebral representation

Learning behavior-reward link

Adaptive significance

Semantics

Adapted, modified and expanded from Doya (1999)

Cerebellar STDP

AR S e

responses

Basics of cerebellum

Understanding brain by creating brain

Internal models are necessary

Feedback-error-learning model

Neurophysiology of ocular following

Chaotic resonance in inferior olive
Human cerebellum and MOSAIC

1. Most intensive gap junctions (electrical
coupling) between 10 neurons

2. Strong rhythmicity and synchrony under
anesthetized rodents with blockades of
synaptic inputs to 10O (Llinas)

3. No rhythmicity and little synchrony for awake
monkeys (Thach)

4. Leaning theory should explain gap junctions
and low firing rates




or
a % b
L °
10, A
F 5
* o ~ k
220k " 2
g1 ° T = ey
00,° & { i
3ot & 0
L b 0 100 200
a® ° Time (ms)
ok .
0 100 200
Time (ms)
c X d 3
Synchronous firing Irregular firing
@
NN N
«“ w
° o o ° ° °
" ° ° ° * ° ° °
=|09 o s o =|9° X °
SI= = N 3 L) ) )
° . ’ » . ’
il] )
% a
w
Time Time

Schweighofer N, Doya K, H. Fukai, Chiron JV, Furukawa T, Kawato. M: Chaos may enhance
information transmission in the inferior olive. Proc Natl Acad Sci USA., 101, 4655-4660 (2004).
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De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SKE, Ruigrok TJH: Microcircuitry
and function of the inferior olive. Trends in Neurosciences., 21, 391-400 (1998).

Biophysical model

DENDRITE of 10 neuron
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Schweighofer N, Doya K, Kawato M: Electrophysiological propersties of infereor olive
neurons: a compartmental model. Journal of Neurophysiology 82, 804-817 (1999).
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Largest Lyapunov Exponent

Network Mutual Information per Spike

x107

Mutual information per spike
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0 0.1 0.2 0.3 0.4 0.5
ge (mSlen)

Conclusions of IO Chaotic Resonance

1. Chaotic resonance can enhance information
transmission with low firing frequency.

2. Chaos is more efficient than synaptic noise in
information transmission.

3. IO network model can explain decrease of
rhythmicity and synchrony with decrease in
coupling under physiological synaptic inputs.

4. Partial synchrony of a small subset of 10 cells
was reproduced.
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Topics

Understanding brain by creating brain
Basics of cerebellum

Internal models are necessary
Feedback-error-learning model
Cerebellar STDP

Neurophysiology of ocular following
responses

Chaotic resonance in inferior olive
Human cerebellum and MOSAIC
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Behavioral

and Imaging Data for Learning Sessions:
All Subjects Averaged

a < »- All subjects averaged b s 5
b Test N.S. 2
§ A 20 &
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5 - I -
5 10 ]P< 005 i 10 8
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o 5 o
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i 1717171 Number T ©
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Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Puetz B, Yoshioka T, Kawato M:

Human cerebellar
Nature 403 192-1

activity reflecting an acquired internal model of a new tool.
95(2000)

Two types of activity were observed

[ i 1. Error signals that guide learning

2. Acquired internal models

- Correlated with performance error

= F, I - Correlated with the rotation after learning

while the errors were equalized
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Switching Modules by Responsibility Signal/;

Responsibility signal

(Goodness of Prediction)
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Wolpert D, Kawato M: Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317-1329 (1998).

Multiple Internal Models
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Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M:
Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA., 100, 5461-5466 (2003).




Maijor part of MOSAIC is in cerebellum

Cerebrum Cerebellum

e s ———— XELELELELEEELEEEEEEE 3
L LELLEEEEEEELEEE \"eessssssssassnaannn -
. LI
' L
' 2.
' nitive Cue Forward §f Inverse 9%
' Information Model 1 {1} Model 1 [
. .

- .

: Superior Parietal lobe : . :
' Occipital lobe=T R\RP, '..'.
Middie Temporal lobe :

L} Rocsrrerhbrk ooty R | o Rl
. p . s 0
. .o
H RE '
. -t

, .

Prefrontal cortex; gating and MOSAIC cerebellum

Cerebrum Cerebellum

Ba 46

csesssssssssssssccnenmanansanay
PMd H
AP n
Cerebellum @
-
-
-
-

Occipital lobe
Middie Temporal lobe
o

Imamizu H, Kuroda T, Yoshioka T, Kawato M: Functional magnetic resonance imaging examination of two
modular architectures for switching multiple internal models. Journal of Neuroscience 24, 1173-1181(2004)




