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“Would any one trust in the convictions of a monkey’s mind,
if there are any convictions in such a mind?”

Charles Darwin (1881, letter to W. Graham)

Nervous systems extract sensory information from the

environment to guide behavior. The underlying neural

mechanisms have been studied extensively, in part by

identifying neurons with responses linked deterministically

to sensory and motor events. Higher nervous systems are

also capable of widespread cognitive abilities, including

interpretation, decision-making, valuation, intention,

language, and learning. The mechanisms underlying these

abilities is less clear, in part because they seem beyond
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the scope of the machine-like behavior of sensory and motor

neurons. This chapter examines this conundrum: How do

properties of neurons and neural circuits give rise not

just to reflexive sensory and motor abilities, but to

cognition, as well? We suggest that an answer can be found

in circuits that link sensory input to motor output. Here,

transformations of sensory and motor signals reflect the

kinds of nuance and flexibility that are hallmarks of

cognition.

Several lines of evidence show that sensory-motor and

cognitive mechanisms interact in the brain. Psychophysical

measurements illustrate the many ways in which mechanisms

that link sensation and action are not reflexive: they take

a variable amount of time that can depend on the subject’s

strategy and other factors (Luce, 1986); they can involve

flexible associations between different sensory stimuli and

different actions (Murray et al., 2000; Wise and Murray,

2000); and they can be influenced by psychological factors

like bias, attention, and expected costs and benefits

(Carpenter and Williams, 1995; Reddi and Carpenter, 2000).

Clinical observations of patients with damage to

“association” areas of cortex, particularly in the parietal

and frontal lobes, have shown deficits in both sensory-
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guided behavior and cognitive functions (Mesulam, 1985;

Feinberg and Farah, 1997). Neuroimaging studies have also

shown co-localization of function, with similar patterns of

activation in these association areas during certain

sensory-motor and cognitive tasks (Corbetta et al., 1998;

Acuna et al., 2002; Simon et al., 2002; Astafiev et al.,

2003).

Combined electrophysiology and psychophysics in monkeys

provides an opportunity to study how properties of neurons

and circuits of neurons provide these sensory-motor and

cognitive abilities. Here we describe advances in

understanding the neural mechanisms responsible for making

a decision about visual motion (Fig. 1). In part I, we

quantify decision formation in terms of a trade-off between

speed and accuracy. In part II, we show that the underlying

mechanisms involve neural activity that tends to persist

beyond sensory and motor events, accumulates over time a

“weight of evidence” that supports or opposes the

alternative decisions, and is related to motor intention.

In part III, we discuss the broader implications of these

findings. The mechanisms of decision formation appear well

suited for a variety of roles, from sensory-motor

processing to more complex aspects of cognition.
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I. Psychophysics of decision-making

Decisions about noisy sensory signals involve an inherent

trade-off between speed and accuracy. Deciding quickly can

mean missing important signals. Taking more time can

provide more or better signals, but that time might be

wasted. We use the motion task to study the mechanisms

responsible for this trade-off. The random-dot stimulus

supplies a continuous source of noisy signals that can take

hundreds of msec for the brain to accumulate and interpret.

Thus, we can study the underlying mechanisms on a time

scale that is relatively long for neurons. Here we analyze

performance and show that information from the motion

stimulus appears to be accumulated over time until

sufficient evidence has been gathered to render a decision.

The most direct evidence for a temporal accumulation

of motion information comes from experiments in which the

time given to view the stimulus was varied randomly from

trial to trial (Fig. 1A). The percentage of coherently

moving dots was also varied. Performance accuracy was

affected by both variables (Fig. 2). At high motion

coherence (top curve), performance was perfect (no errors)
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with greater than ~200 msec of motion viewing. At lower

motion coherences, performance improved with increased

viewing time, measured out to 700 msec, but never reached

perfect accuracy. The smooth curves fit to the data allow

us to infer properties of the signals in the brain that are

used to make the decision (Gold and Shadlen, 2000; Gold and

Shadlen, 2003). Information from the stimulus appears to be

accumulated throughout motion viewing without loss, as long

as it is needed to improve performance. Information gained

in the first 100 msec is simply added to information gained

in the next 100 msec, and so forth. This perfect

accumulation persists over a time scale that is at least an

order of magnitude longer than the time scale of neural

computations in the sensory cortex, which must keep up with

changes in the environment.

In a second set of experiments, the monkey, rather

than the experimenter, controlled the period of motion

viewing (Fig. 1B). The results from this type of experiment

are shown in Figure 3. In addition to a psychometric

function describing accuracy (Fig. 3A), we also obtain a

chronometric function of behavioral response time (RT)

versus motion strength (Fig. 3B). The RT was measured from

the time the random dots first appear to the time that the
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monkey initiates an eye movement to indicate its choice of

direction. For high coherences, the task was easy and the

monkey took a short time to reach a decision. For

progressively lower coherences, the task was more difficult

and the monkey took progressively longer to reach a

decision.

Performance on the RT task is also consistent with a

decision process that accumulates noisy motion evidence

over time. In this case, the decision process terminates

and monkey issues a response when the amount of evidence in

favor of one of the alternatives reaches a criterion level.

The analysis of this kind of process has roots in

sequential analysis (a branch of statistical hypothesis

testing) and psychology (Wald, 1947; Stone, 1960; Laming,

1968; Link, 1992; Ratcliff and Rouder, 1998; Gold and

Shadlen, 2002; Usher et al., 2002). Here we emphasize an

analogy to the diffusion of a particle toward absorbing

barriers that lie on either side of its starting point

(Fig. 4).

Random-dot motion causes the brain to generate signals

that depend on the direction and strength of the motion

stimulus but are highly variable from moment-to-moment
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(Shadlen and Newsome, 1994, 1998). We assume that the

accumulation of these signals will tend to drift in one

direction or the other, depending on the stimulus, but

because of the variability will meander like a particle in

Brownian motion. The process stops when the accumulation

reaches one of two barriers at ±B (Fig. 4; here the

barriers are stationary as a function of time, but, in

principle, that does not need to be the case). If the

accumulation reaches +B, a decision is rendered in favor of

one direction; if the accumulation reaches –B, the brain

renders the opposite decision. The value of B controls the

trade-off between speed and accuracy: larger values imply

more time to reach the barrier and thus more time to

accumulate signals, resulting in fewer errors (i.e.,

crossing the wrong barrier). The variability in the signals

being accumulated ensures that one of the barriers will be

reached, even when the evidence favors neither alternative

on average (i.e., 0% coherence), and accounts for both

errors and trial-by-trial differences in RT.

The smooth curves in Fig. 3 illustrate how well the

diffusion-to-barrier model can account for performance on

the RT task. The sigmoid curve fit to the RT data (Fig. 3B)

describes the hitting time of a particle in 1-dimensional
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Brownian motion:

† 

t(c) =
B
kc

tanh(Bkc) + tnd , (1)

where c is motion strength (percent coherence) and k, B and

† 

tnd  are fitted parameters (for derivations of Eqs. 1 and 2,

see Link, 1992; Ross, 1996). 

† 

tnd  is the non-decision

component of the RT; it includes, for example, the time

needed to propagate information from the stimulus to the

circuits that form the decision and to execute the eye

movement once the decision has been made. The term

involving tanh describes the amount of time for an

accumulation at one sample per msec of a normally

distributed random number with mean kc and variance 1 to

reach a criterion level, ±B.

The same diffusion-to-barrier model also predicts the

monkey’s choices. It specifies how often the accumulation

will reach +B first. This is quantified as a logistic

function for the probability of correct choices:

† 

p(c) =
1

1+ e-2k c B (2)

Equation (2) describes the sigmoid curve in Fig. 3A, but it

is not a fit to the data. It is a prediction from the

chronometric function. The scaling factor, k, and barrier

distance, B, were determined by fitting the RTs. This
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leaves no free parameters to fit the psychometric function,

which nonetheless lies close to the data points. This close

match is emblematic of the success this kind of model has

had in explaining psychophysical data, including percent

correct, mean RT, and distributions of RT, on a wide range

of perceptual tasks (Link, 1992; Ratcliff and Rouder,

1998).

Both the variable-duration and RT experiments suggest

that there is a gradual evolution of a quantity, termed a

decision variable, that determines the monkey’s decision.

The decision variable grows, on average, in proportion to

the motion strength and viewing time. It represents the

accumulated evidence in favor of one proposition and

against another. As described in the next section, such a

decision variable has been identified in the brain of the

monkey.

II. Neurophysiology of decision-making

Early brain mapping studies using electrical

microstimulation in awake patients undergoing brain surgery

exposed extensive “silent” regions of neocortex that did

not seem tied to particular sensations or motor outputs
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(Penfield and Roberts, 1974). These regions, found in the

parietal, temporal, and frontal lobes, were eventually

assumed to subserve higher “associative” functions.

Electrophysiological measurements in alert monkeys have

shown that neurons in these areas have complicated response

properties that are not simply locked to sensory or motor

events. Instead, the neural activity tends to persist

throughout delay periods. Such persistent activity is

likely to be a hallmark of the capacity for temporal

integration – holding a level of response until perturbed

to a new value – that underlies the computation of decision

variables. Here we describe neural signals that appear to

integrate over time a “weight of evidence” that supports or

opposes the alternative direction interpretations on the

motion task, thereby linking the interpretation of sensory

input to a motor output (in this case, the eye-movement

response).

In one set of experiments, we recorded from neurons in

the lateral intraparietal area (LIP; Fig. 5A) (for reviews,

see Colby and Goldberg, 1999; Andersen and Buneo, 2002).

Using a saccade-to-target task, we selected neurons with

activity that persisted in a delay period between flashing

the target in the periphery and instructing the monkey to
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initiate an eye movement to the target (Figure 5B). These

neurons are not purely sensory because they respond when

there is nothing present in the visual scene (after the

target has been turned off). They are also not purely

motor, because their discharge does not obligate an

immediate action. In our experiments, the persistent

activity corresponded to particular target locations,

termed the neuron’s response field (RF). This term is a

descriptive hybrid of “receptive field”, which implies

visual processing of the target, and “motor field”, which

implies processing the metrics of the impending eye

movement.

We used the motion task to test whether this

persistent activity represented a decision variable.

Instead of a flashed target, the direction of random-dot

motion indicated which eye movement to make. Not

surprisingly, the LIP neuron predicted whether or not the

monkey made an eye movement into the RF; that is, it

reflected the outcome of the process that formed the

direction decision. What is perhaps more surprising is that

the LIP responses also reflected the computations

underlying the decision process itself.
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This result is best appreciated in the RT version of

the motion task (Roitman and Shadlen, 2002). The advantage

of this task is that the monkey indicates the end of the

decision process on every trial. Thus, we can study LIP

activity in the time epoch in which the monkey is forming a

decision but has not yet committed to an answer. The

results are summarized in Fig. 5C. Following onset of the

targets (not shown), activity is robust (~35 spikes/sec on

average) until ~100 msec following onset of the motion

stimulus. The activity then undergoes a stereotyped dip and

recovery that does not reflect the motion stimulus or the

eye-movement response. We think this activity might

represent a reset of an integration process that appears to

begin ~200 msec after motion onset and continues until the

decision is formed.

The integration process is evident as ramp-like

changes in LIP activity. The ramps represent accumulations

of motion evidence that, on average, correspond to the

monkey’s decisions. For the decision associated with the

target in the neuron’s RF, the activity ramps upward (solid

curves). For the alternative decision, the activity ramps

downward (dashed curves). Higher coherence provides more

evidence, corresponding to steeper ramps. Lower coherence
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provides less evidence, corresponding to shallower ramps.

Even zero coherence, which provides no net motion

information but still must be interpreted by the monkey to

reach a decision, is treated as noisy evidence that ramps

gradually towards the monkey’s choice. Note that the

responses in Fig. 5C are averages from many individual

trials. For any one trial, LIP activity is probably more

like the meandering path of a particle in Brownian motion.

The upward and downward ramps, apparent for individual

neurons, suggest that the motion evidence being accumulated

is a difference in activity favoring the two directions.

For example, an LIP neuron with a rightward RF would

accumulate the difference between rightward and leftward

direction signals. Rightward motion would tend to cause a

positive (upward) accumulation, whereas leftward motion

would tend to cause a negative (downward) accumulation. A

recent study provided direct experimental support for this

difference operation (Ditterich et al., 2003). Such a

difference approximates the logarithm of the likelihood

ratio—or “weight of evidence”—in favor of one or the other

alternative (Gold and Shadlen, 2001). Thus, accumulating

this difference to a criterion value approximates a

statistical process known as the sequential probability
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ratio test (Wald, 1947; Stone, 1960; Laming, 1968; Link,

1992).

Consistent with the sequential probability ratio test

and the “diffusion-to-barrier” model (see Fig 4), the LIP

activity appears to reach a criterion value that indicates

the end of the decision process. On the right side of

figure 5C, the same responses are shown aligned to the

beginning of the eye movement response. In contrast to the

ramps on the left, the rising responses are stereotyped.

They seem to reach a common value ~100 msec before the eye

movement response, regardless of their trajectory to this

point. This is more apparent when the data are sorted by RT

instead of motion strength (Fig. 5D): the responses reach

an apparent decision threshold rapidly for fast decisions

but take a more meandering approach to the same threshold

when the decision takes longer. In contrast, there is no

common end point for the declining responses associated

with the opposite decision (Fig. 5C, dashed curves).

Presumably, a second set of neurons accumulates evidence in

the opposite direction. When their activity reaches the

criterion value, a movement into their RF is triggered and

all decision processes are terminated.
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LIP is just one of several brain structures with

neurons that show this kind of activity on the motion task.

Similar activity has been found in other cortical

association areas, including the frontal eye field (FEF)

and dorsolateral prefrontal cortex, and in subcortical

structures including the superior colliculus (Kim and

Shadlen, 1999; Horwitz and Newsome, 2001). The relative

contributions these different structures make to the

decision process are not known. For example, it is not

clear whether they all help to compute the decision

variable or some simply reflect computations performed

elsewhere. Nevertheless, one common feature of these

structures is evident: they are all involved in preparing

the eye-movement response (Funahashi et al., 1991; Schall,

1997; Sparks, 2002).

Thus, a decision that links sensation to action

appears to be formed by structures involved in motor

preparation. From one perspective, this seems odd. The

direction decision clearly depends on the sensory input but

seems unrelated to how the answer will be communicated.

Indeed, one might predict that the motor systems that

control the behavioral response should be engaged only

after the decision is reached. These motor systems should
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not be concerned with the evolving sensory evidence. This

prediction turns out to be incorrect.

We examined how much of the decision process is

communicated to the oculomotor system while the monkey

performs the motion task (Fig. 6A). In effect, we perturbed

the oculomotor system to find evidence of the decision

variable. As in some of the behavioral experiments, the

monkey was given a variable amount of time to view the

motion stimulus. At the exact time that the motion was

turned off, a brief train of microstimulation pulses was

applied to the FEF. These pulses evoked a short-latency

saccadic eye movement. After another ~100 msec, the monkey,

having recognized the offset of random-dot motion and thus

the end of the trial, made a second, voluntary eye movement

to one of the choice targets to indicate its direction

decision.

The trajectory of the evoked saccade was influenced by

an evolving decision variable. The trajectory was similar

to those measured on control trials when the monkey simply

fixated a central spot (Fig. 6B, fix). However, on

discrimination trials, the trajectory tended to deviate in

the direction of the subsequent voluntary eye movement
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(Fig. 6B, up and down). This deviation appeared to reflect

an ongoing plan to make this movement while viewing the

motion stimulus. Importantly, this deviation was not an all

or none phenomenon but instead, like the decision variable,

depended on the strength and duration of motion (Fig. 6C).

Thus, the accumulated weight of evidence in favor of one

direction versus the other is represented in the commands

related to the behavioral response.

III. A window on cognition: perspectives and future

directions

Several principles appear to govern the formation of

decisions about motion. Sensory input is converted into a

weight of evidence to support or oppose the alternative

direction decisions. The weight of evidence is accumulated

over time. The accumulation stops when a criterion value is

reached. This process is represented in structures that

prepare the behavioral response. Here we discuss the

broader implications of these principles for sensory-motor

processing and cognition.

Sensory information as weight of evidence. The monkey’s

direction decisions appear to be based on the difference in
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activity between pools of motion-sensitive neurons with

preferences for the two alternative directions. This

difference provides a weight of evidence that quantifies

the relative likelihoods of the alternatives given the

sensory activity. Thus, the decision is not simply a reflex

that associates a pattern of sensory activity with an

appropriate behavioral response (an eye movement). Instead,

the decision is a process of interpretation that uses the

weight of evidence to make sense of noisy, distributed

sensory information to reach a categorical judgment.

The usefulness of the weight of evidence is not

limited to decisions about motion. In general, it can be

used to maximize the probability of deciding correctly

between two alternatives (Good, 1979; Gold and Shadlen,

2001; Gold and Shadlen, 2002). The basic principles can

even be extended to decisions with many alternatives

(Laming, 1968; Usher et al., 2002), although it is unknown

whether the brain uses this method for such complicated

problems.

The weight of evidence is also easy to compute. Motion

direction is represented systematically in the middle

temporal area (MT or V5) of extrastriate visual cortex
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(Zeki, 1974; Albright et al., 1984). Other sensory

parameters, including location, orientation, and disparity,

are similarly mapped in sensory cortex. A simple difference

in activity within any of these maps represents a weight of

evidence that can distinguish between different values of

the mapped parameter. In principle, differences computed

from other representations can also be used as a weight of

evidence; for example, the difference between sensory

activity and memory activity could help to distinguish

between sequentially presented stimuli.

Finally, the weight of evidence constitutes a currency

that allows signals with dissimilar origins to be compared

and combined. By analogy, monetary currency can define the

relative values of seemingly unrelated quantities, like an

hour’s labor versus a new car. Similarly, the weight of

evidence can, in principle, be used to compare the

information provided by different sources, sensory or

otherwise, to make decisions. For example, the evidence

provided by a sensory stimulus can be weighed against other

factors like bias, reward expectation, and utility (Gold

and Shadlen, 2001; Gold and Shadlen, 2002; Montague and

Berns, 2002; Glimcher, 2003). Indeed, such a confluence of

factors is evident in the activity of neurons in
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association areas of cortex (Leon and Shadlen, 1999; Platt

and Glimcher, 1999; Amador et al., 2000; Hikosaka and

Watanabe, 2000; Tremblay and Schultz, 2000).

Accumulation of evidence over time. Time is needed to form

the direction decision. At any given moment, the weight of

evidence provided by the stochastic motion stimulus is too

vague to reach a decision. However, the motion signals are

presented continuously over time. Appropriately, the

decision appears to be formed by accumulating over time the

moment-by-moment weight of evidence. Thus, less time

implies less accumulated evidence and lower accuracy. More

time implies more evidence and higher accuracy.

Accumulation is undoubtedly just one of many

strategies that the brain uses to interpret incoming

sensory information. For the motion task, a continuous

accumulation is appropriate for a continuously arriving

signal. For other tasks, different temporal functions might

be more appropriate if, for example, information arrives at

separate, predictable intervals. The point is that

decisions about stochastic stimuli like the dots are not

simply processes that take time. Rather, they are processes

that can use strategies like accumulation to interpret
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information that arrives at different times. This capacity

is central to organizing behavior that is not tied to the

immediacy of a particular sensory input or motor output

(Fuster, 1985).

In general, mechanisms that establish a logical

relationship between sensory input and motor output but are

not invariably tied to either exemplify the close

relationship between sensory-motor and cognitive function

in the brain. For example, in the association cortex,

activity that persists between sensory and motor events has

been implicated in short term (working) memory (Fuster and

Alexander, 1971; Miyashita and Chang, 1988; Goldman-Rakic

et al., 1990; Quintana and Fuster, 1992; Miller et al.,

1996l; Graziano et al., 1997; Romo et al., 1999),

allocation of attention (Colby and Goldberg, 1999), motor

planning (Crammond and Kalaska, 1989; Andersen and Buneo,

2002), motor sequencing (Shima and Tanji, 2000), the

representation of motor set or rules (Evarts and Tanji,

1974; di Pellegrino and Wise, 1993; Hoshi et al., 2000;

Tanji and Hoshi, 2001; Wallis et al., 2001), and, as we

have discussed, the formation of decisions (Schall, 2001;

Glimcher, 2003; Romo and Salinas, 2003). It is intriguing

to think that these higher functions have co-opted
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mechanisms that evolved to solve more mundane problems in

sensory-motor processing. For example, persistent activity

in certain brainstem nuclei holds the gaze in a fixed

position. This activity arises through a process resembling

integration with respect to time: eye position is the

integral of a pulse-like motor command signal, which

controls eye velocity (Robinson, 1989). By analogy, neurons

in association areas might integrate over time the “pulses”

of evidence that bear on decisions.

Thus, cognition appears to rest, in part, on

mechanisms that liberate the brain from time constraints

imposed by the environment and the body. However, this

freedom poses new problems. How does the brain organize in

time computations that are not linked to immediate sensory

or motor events? When do the computations begin and end?

How can they take into account sensory input from the past?

Or affect future behavior? To solve these problems, time

itself is likely to be represented explicitly in brain

structures with persistent activity. Indeed, recent

experiments suggest that elapsed time is represented in the

parietal cortex (Leon and Shadlen, 2003). The

representation of this and other time parameters will
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likely emerge as an important future direction in the

pursuit of the neural mechanisms of higher brain function.

Commitment to one alternative when a criterion level of

evidence is reached. To form the direction decision, the

weight of evidence appears to be accumulated until a

criterion level or “barrier height” is reached. Setting the

barrier height controls the trade-off between speed and

accuracy. A low barrier provides fast-but-uncertain

decisions. A high barrier provides slow-but-certain

decisions. This process—accumulating a difference to a

barrier—can explain not just decisions about motion, but

also a wide variety of laws of sensation and perception.

These include Weber’s Law, which governs the appreciation

of increments, and both Fechner’s and Stevens’ Laws, which

explain estimates of subjective magnitude of sensory

experience (Link, 1992).

The barrier crossing also represents a form of

temporal control. For the RT task, it determines the end-

point of decision processing and the beginning of motor

execution. In principle, a barrier crossing could help

control how cognitive processing is organized in time, as

well. It could determine the end-point of decision
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processing and a commitment to a more abstract proposition

than an immediate behavior, like more computations. In this

sense, accumulations to barriers seem intimately related to

internal representations of time. This mechanism could help

control the brain’s ability to process sequences of sensory

inputs, plan sequences of behavior, and in general cascade

sequences of operations on a flexible time scale.

Representation of the decision variable in brain structures

that control the motor response. In monkeys trained to

indicate their direction decision with an eye movement to a

predictable location in the same direction, formation of

the decision and formation of the eye-movement response

seem to be closely linked in the brain. Neurons in several

structures involved in oculomotor preparation, including

area LIP, the FEF, the dorsolateral prefrontal cortex, and

the superior colliculus, represent both the impending eye-

movement response and the accumulation of motion evidence

used to select that response. Indeed, the decision variable

appears to be represented in the very motor commands that

ultimately generate the eye-movement response.

These results certainly reflect the design of the

task. If the monkeys were trained to indicate their
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decision with an arm movement, not an eye movement, we

would expect the decision variable to be represented in

neurons that prepare arm movements. It seems to be, in

part, a matter of efficiency. When the decision is

associated with a particular, predictable, and impending

motor response, there is a continuous flow of up-to-date

information about the decision – both sensory and

psychological – in the circuits that prepare the response

(Bichot et al., 2001).

The same principles can be extended to include

decisions not linked to specific movements. This is

illustrated with a new version of the motion task. This

task requires the monkey to indicate its direction decision

with an eye movement to a target not at a particular

location but of a particular color: red for rightward

motion, green for leftward motion. Critically, the

locations of the targets are not known until after the

decision is formed. FEF microstimulation confirms that, for

this task, the decision variable is not represented in

commands to generate a specific eye movement (Gold and

Shadlen, 2003). Instead, the brain might construe incoming

motion information as evidence for implementing a

particular behavioral rule. The possible rules are “When



26

two targets appear, look at the red one” or “look at the

green one.” Thus, the decision can still be formed in an

intention-oriented framework, but the intention – a

behavioral rule – is more abstract than a specific

movement.

An obvious question is whether intention-related

structures form the decisions or simply reflect

computations performed elsewhere. As a practical issue of

determining what those computations are, the answer might

not matter: studying the computations themselves or their

faithful reflections will yield similar insights. To

understand the flow of information in the brain, however,

the answer certainly does matter. Is information that

arrives in intention-related structures already processed

thoroughly, having been sent there by higher-order circuits

that do the hard work of cognition? If so, where are those

circuits? If not, what are the implications of high-order

brain function being processed in an intention-oriented

framework?

We do not know the answers to these questions.

However, there is reason to speculate that intention-

related structures indeed play pivotal roles in forming
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decisions. In our view, the most compelling reason is that

decision-making implies a goal. The most obvious goals are

behaviors and consequences of behaviors: to get from here

to there, to avoid bad things, to get good things. Thus,

brain structures involved in achieving these goals – that

is, structures that determine what to do and how and when

to do it – seem likely to make decisions. With flexible

representations of behaviors and behavioral goals, along

with a flexible currency like the weight of evidence, it

seems unnecessary to posit other structures to do the hard

work.

The generalization of this principle shifts the

emphasis of brain function from the descriptive analysis of

sensory data to the informed control of behavior.

Intention-related mechanisms provide goals. These goals

establish the utility and meaning of sensory and

psychological signals, which are used as evidence to help

decide among alternatives and achieve these goals. Thus,

intention-related structures provide the framework for both

sensory-motor processing and the rudiments of higher

cognitive function. These ideas on the centrality of

intention to perception and higher brain function have a

long tradition. For example, Helmholtz suggested that the
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perception of space, including the interpretation of

curvature and straightness, could be understood in terms of

the way our motor systems are organized to rotate our eyes

along great circles (Helmhotz, 1925). These ideas also

emerge under various guises in philosophy, notably in the

writings of Merleau-Ponty and other descendants of

Heidegger, who recognized that the properties of things are

related in a profound sense to their utility (Heidegger,

1962; Merleau-Ponty, 1962; Clark, 1997; O'Regan and Noë,

2001).

An intention-based framework for information processing

might also point the way towards understanding one of the

deepest mysteries of neuroscience: consciousness. Our

understanding of consciousness seems stymied by the same

conundrum posed at the beginning of this article.

Consciousness, like cognition, seems unrelated to the

operations that neurons perform. For example, there seem to

be too few constraints to explain the leap from raw sensory

information to the coherence and salience of conscious

perception. How can we group the elements of visual scenes

into meaningful wholes and background, despite the

combinatorial complexity posed by the raw data of light,

edges, and color (see Figure 7)? To solve this kind of
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problem, many theories of consciousness posit a central

interpreter, or homunculus. The intention-based framework

provides an alternative view. According to this view, our

conscious experience is indeed constrained. Conscious

perception derives from, in effect, questions related to

behavior (e.g., is that something I can grab? Can I walk

there?). Sensory and memory signals are interrogated for

evidence that can be used to provide answers. Thus, our

conscious experiences – and the underlying neural

computations – are constrained to what is being asked and

what is answered. Because the questions are determined from

the repertoire of possible behaviors, the underlying

mechanisms of consciousness are intimately tied to the fact

that the brain controls a body.

This intention-based architecture seems to take the hard

work of consciousness away from the homunculus. However,

another, equally mysterious mechanism seems to be required.

If sensory information flows to circuits where it can exert

leverage on intentions, plans, and rules, what controls the

flow? Which intentions, plans, and rules are under

consideration at any moment? The need for a homunculus has

apparently been replaced by the need for a traffic cop.
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We speculate that, unlike for the homunculus, we

already have insights into the brain mechanisms that serve

as traffic cop. These are the same mechanisms that allow an

animal to explore its environment; that is, to forage.

Foraging is about connecting data in the environment to a

prediction of reward through complex behavior (Gallistel,

2000). However, in principle, the mechanisms of foraging,

like the mechanisms of decision-making, do not need to be

tied to overt behaviors. The same principles that apply to

visits to flowers could direct the parietal lobe to query

the visual cortex for evidence needed to answer a question

about motion. More generally, foraging might be related to

the leaps our brains make to replace one percept with

another (e.g., binocular rivalry), to escape one behavioral

context for another, or to explore new ideas. For cognitive

neuroscientists, these ideas inspire research on how reward

expectation influences sensory-motor and higher processing

in association areas of the brain. For the philosopher of

mind, these ideas provide an inkling of how properties of

the brain give rise to agency and, perhaps, free will.

Conclusions
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When designing an experiment to study decision-making and

other cognitive functions, among the critical questions we

ask is, where should we put our electrodes? That is, where

in the brain will we find neurons that contribute to these

higher functions? We and others are finding success by

recording from neurons at the nexus of sensory-motor

processing. By studying how sensory information is

converted into a categorical decision that guides behavior,

we gain insight into flexible and efficient mechanisms that

could subserve cognitive functions, as well. These

mechanisms provide a common currency for integrating

information from a variety of sources, sensory or

otherwise; they disengage information processing from the

immediacy of sensory and motor events; and they establish

rules for committing to a proposition. The mechanisms we

study also hint at a broad principle of brain organization:

behavior and behavioral goals are the hubs around which

other information is organized. These hubs define, for

example, how utility and meaning should be ascribed to

sensory signals. This organization lights the path to

future research in cognition and perhaps even

consciousness.
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Figure Legends

Figure 1. Two versions of the motion task used to study

decision-making in monkeys. This task was formerly used to

study the relationship between the properties of neurons in

the visual cortex and the limits of perception (see Parker

and Newsome, 1998). The monkey decides whether the net

direction of random-dot motion is in one of two directions,

here right or left. The ease and difficulty of the task can

be controlled by varying the percentage of dots that are

moving coherently in one of the two directions. The

remaining dots merely appear and disappear at random

locations. The monkey does not know beforehand what

percentage of dots will be moving coherently or in which

direction they will be moving. Even the moving dots are not

shown for more than ~40 msec before being replotted

elsewhere. Thus, the decision depends on assessing the net

motion across all the dots and across time. The monkey is

trained to look at a target to the right for rightward

motion, to the left for leftward motion, etc. The monkey is

also trained to handle stimuli with different directions,

speeds, and locations in the visual field. To study sensory

processing, the random-dot stimulus is placed in the

receptive field of a direction-selective neuron. To study

decision-making, one of the targets that signals the
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monkey’s commitment to a particular choice is placed in a

neuron’s response field. A, In the variable-duration

version of the task, the viewing time is a random value

drawn from an exponential distribution with minimum and

maximum times shown. The experimenter controls the duration

of motion viewing. The monkey indicates his choice when the

fixation point is extinguished. B, In the response-time

(RT) version of the task, the monkey controls the viewing

duration. Whenever ready, he makes an eye movement to one

of the choice targets. The RT is the time from the onset of

random-dot motion to the beginning of the eye movement.

Figure 2. Performance on the variable-duration version of

the discrimination task depends on motion coherence and

viewing time. Solid lines are best-fitting functions based

on a model for the decision using signal detection theory.

The best fits suggest that the internal signals are

proportional to motion strength and viewing time. N=45,511

trials from 32 experiments using two monkeys. Reprinted

with permission from Gold and Shadlen, 2003.

Figure 3. Accuracy and speed of decisions in the response-

time version of the motion task. Data points are from two

monkeys. A, Psychometric function depicting accuracy as a
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function of motion strength. B, Chronometric function

depicting response time as a function of motion strength.

The solid curve in B is the fit of Equation 1 to the data.

It describes the amount of time it would take accumulating

evidence to reach a criterion level were it to diffuse like

a particle in Brownian motion with average drift

proportional to motion coherence (see Fig. 4). The sigmoid

curve in A is the predicted psychometric function based on

the model fit to the response-time data.

Figure 4. Diffusion-to-barrier as a model for decision-

making. In 1-dimensional Brownian motion of a particle,

random displacements are accumulated in a trajectory that

stops at ±B. The displacements at each moment are drawn

from a normal distribution (insert). Decisions about

direction are based on an accumulation of evidence, which

is the difference in spike rates from ensembles of

direction selective neurons in the visual cortex.

Figure 5. A neural correlate of a decision process in the

parietal cortex. A, The right hemisphere of the macaque

brain. Experiments focus on neurons in the lateral

intraparietal area (LIP), which lies on the lateral bank of

the intraparietal sulcus. It receives input from direction-
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selective neurons in area MT, along the superior temporal

sulcus, and projects to structures involved in eye-movement

control. B, Persistent activity from an LIP neuron recorded

during memory-guided saccadic eye movements. Targets

appeared in one of 8 locations arranged around a circle.

The responses are aligned to the onset of the target that

was flashed on and immediately off. The monkey made an eye

movement to the remembered location of the target when the

fixation point was extinguished (triangles). Rasters and

peristimulus time histograms are arranged to illustrate the

position of the target. The response histograms do not

include activity after the initiation of the saccadic eye

movement. The polar graph at the center of the figure shows

the memory-period response as a function of target

location. This neuron exhibited activity in the delay

period before saccadic eye movements to the left. Adapted

from Shadlen and Newsome, 2001. C, Time course of LIP

activity in the RT version of the motion task. Traces are

averaged responses from 54 LIP neurons. Responses are

grouped by motion strength and choice as indicated by color

and line type, respectively. The task is arranged so that

one of the choice targets is in the neuron’s RF. The other

target and the random dots are outside the RF, as indicated

by the icons. On the left, responses are aligned to the
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onset of stimulus motion. Response averages in this portion

of the graph show only activity accompanying motion

viewing. They stop at the median RT for each motion

strength and exclude any activity within 100 msec of eye

movement initiation. On the right, responses are aligned to

initiation of the eye-movement response. Response averages

in this portion of the graph show the build up and decline

in activity at the end of the decision process. They

exclude any activity within 200 msec of motion onset. The

average firing rate was smoothed using a 60 msec running

mean. D, Time course of activity on trials with similar RT.

Curves are population average responses for trials that end

with an eye movement to the choice target in the RF. The

responses are aligned to saccade initiation. Color

designates the RT of the trials included in the average,

which fall within 25 msec of the time indicated (e.g., 400-

425 msec). All spikes are included in these averages (N=54

neurons). Average firing rate was smoothed using a 60 msec

running mean. Panels C and D adapted from Roitman and

Shadlen, 2002.

Figure 6. An evolving decision variable is represented in

brain structures that prepare the motor response.

Microstimulation of the frontal eye field (FEF, which is
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located in the anterior bank of the arcuate sulcus; see

Fig. 5A) evokes a stereotyped saccadic eye movement. When

evoked at a random time during motion viewing, this eye

movement reflects the evolving direction decision. A, The

monkey performs the motion task as in Fig. 1A. The axis of

the direction discrimination is aligned perpendicular to

the direction of stimulation-evoked eye movements. On some

trials, a brief train of stimulating current (50 msec of

biphasic stimulation, 20-70 µA) evokes an eye movement.

After ~100 ms, the monkey makes a second, voluntary eye

movement to indicate its direction decision. B, Examples of

eye movement trajectories. Fixation point is at the origin.

The two larger circles are the choice targets. The random-

dot stimulus (not shown) was centered on the fixation

point. The symbols mark eye position in 2 ms steps.

Stimulation during fixation, in the absence of motion and

choice targets, elicited a rightward saccade (trace marked

‘fix’). Stimulation while viewing upward and downward

motion induced saccades that deviated in the direction of

the subsequent, voluntary eye movements. C, The average

amount of deviation depends on motion strength and viewing

time. The amount of deviation toward the chosen target was

estimated using the evoked saccades from 32 stimulation

sites (14,972 trials). This result shows that the
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oculomotor system is privy to information about the

evolving decision, not just the final outcome of the

decision process. Adapted from Gold and Shadlen, 2001.

Figure 7. An example of a binding problem. A famous problem

in visual perception concerns the ability to combine the

elements of the representation of vision into appropriate

groups – that is, to determine which elements are bound to

a common object and which are not. To perceive this scene,

the brain must combine information from small regions of

the visual field (dashed ellipses) corresponding to the

receptive fields of neurons in visual cortex.  For example,

the contours falling in the receptive fields x and y are

bound to a common object. The contours falling in y and z

are not bound despite their colinearity and shared color.

The brain performs this task with little effort despite the

large number of ways that information about surface order,

border ownership, and other properties of the objects could

be combined in principle. An intention-based architecture

would tame this combinatorial explosion by restating the

problem in terms of potential actions that could be

performed, interrogating the visual cortex for evidence

supporting hypotheses of the form: if the topmost arrowhead

is moved, which other contours are likely to be displaced?
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The answer is presumably based on the way the contours

trace paths that support or oppose a hypothesis of

continuity. The underlying mechanisms seem likely to be

related to those that form the motion decision, because in

both cases sensory evidence is assembled across space and

time to support a particular action. Adapted from Shadlen

and Movshon, 1999.
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