What I think the other 85% is doing

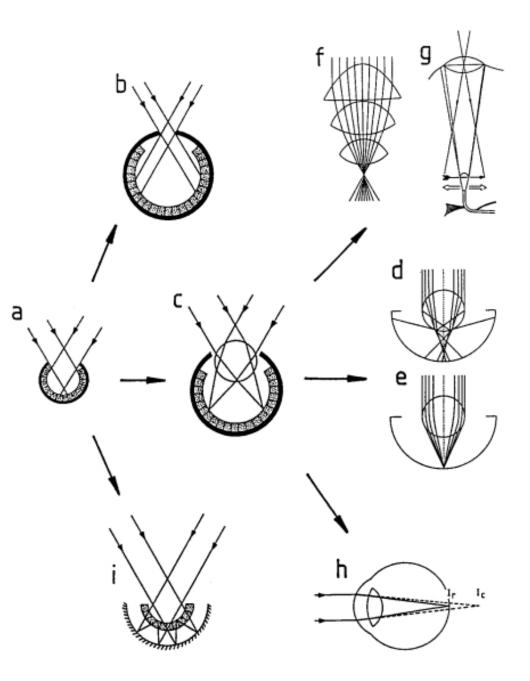
Bruno A. Olshausen

&

Center for Neuroscience and Dept. of Neurobiology, Physiology & Behavior, UC Davis

Main Points

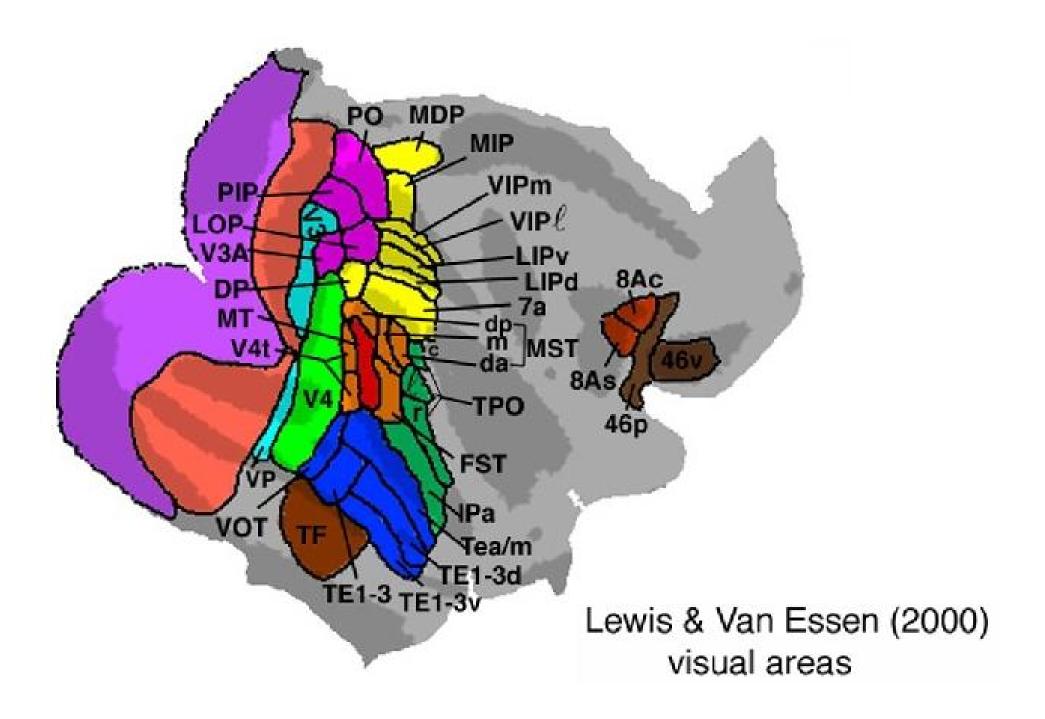
- Vision as inference
- Sparse coding
- Learning what and where in images



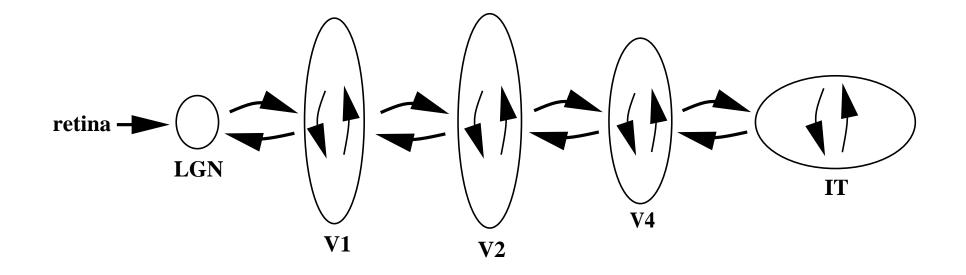
THE EVOLUTION OF EYES

Michael F. Land

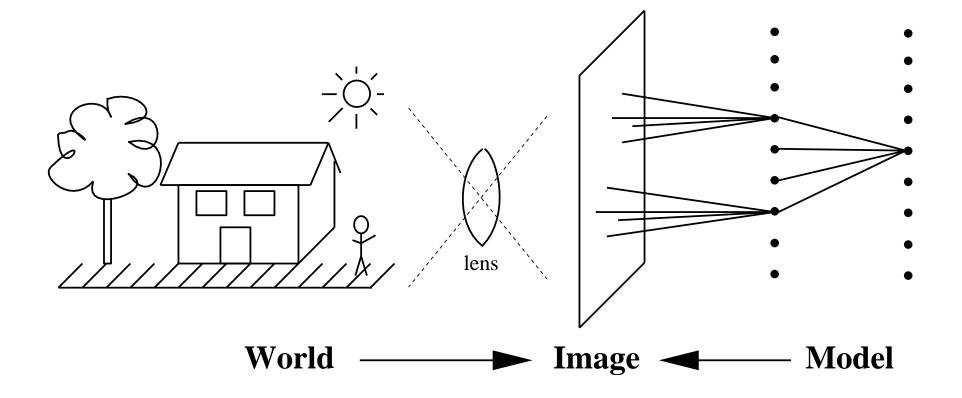
Russell D. Fernald



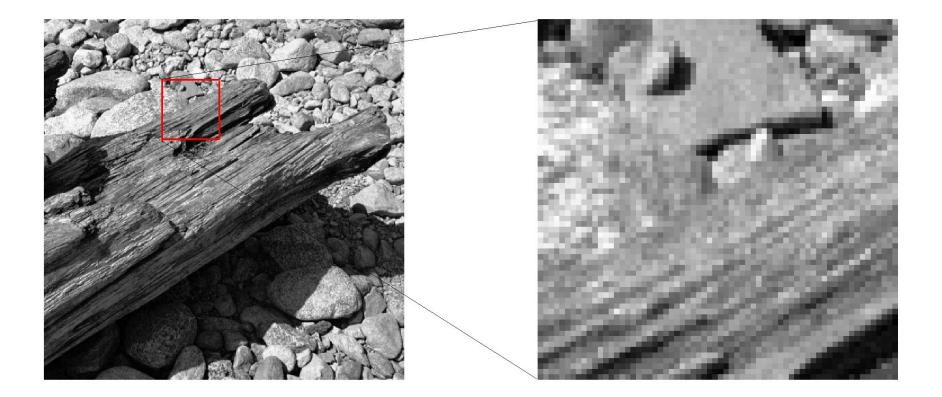
Recurrent computation is pervasive throughout cortex

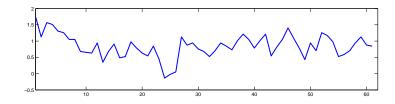


Vision as inference



Natural scenes are filled with ambiguity





Bayes' rule

$$P(E|D) \propto$$

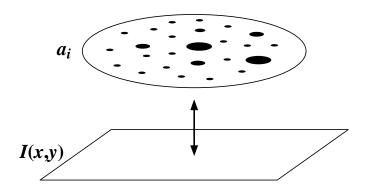
 \times

how data is generated by the environment

prior beliefs about the environment

- E = the actual state of the environment
- D = data about the environment

Sparse coding



- Provides a simple description of images
- Makes image structure explicit \rightarrow Grouping
- Makes it easier to learn associations
- Field's (1987) analysis of simple-cell receptive fields suggests they have been optimized for sparseness.

Overcomplete representations

- In oriented, multiscale pyramids, overcompleteness is necessary for shiftability (Simoncelli, Freeman, Adelson, and Heeger, 1992).
- Overcomplete time-frequency dictionaries are best able to reveal timefrequency structure embedded in signals (Chen, Donoho, Saunders, 2001).
- Area V1 is highly overcomplete, by approximately 25:1 (in cat).

Image model

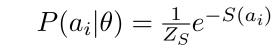
$$I(x,y) = \sum_{i} a_i \phi_i(x,y) + \nu(x,y) .$$

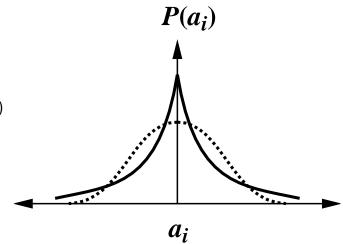
$$P(\mathbf{a}|\mathbf{I}, \theta) \propto P(\mathbf{I}|\mathbf{a}, \theta) P(\mathbf{a}|\theta)$$
$$P(\mathbf{I}|\theta) = \int P(\mathbf{I}|\mathbf{a}, \theta) P(\mathbf{a}|\theta) d\mathbf{a}$$

Goal: Find a set of basis functions $\{\phi_i\}$ for representing natural images such that the coefficients a_i are as sparse and statistically independent as possible.

Prior

• Factorial: $P(\mathbf{a}|\theta) = \prod_i P(a_i|\theta)$





Objective functions for inference and learning

Inference (perception):

 $P(\mathbf{a}|\mathbf{I}, \theta) \propto P(\mathbf{I}|\mathbf{a}, \theta) P(\mathbf{a}|\theta)$

Learning:

$$\langle \log P(\mathbf{I}|\theta) \rangle = \left\langle \log \int P(\mathbf{I}|\mathbf{a},\theta) P(\mathbf{a}|\theta) d\mathbf{a} \right\rangle$$

Energy function

$$E = \log P(\mathbf{a}|\mathbf{I}, \theta)$$

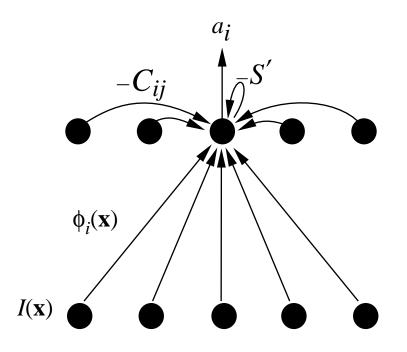
= $\frac{\lambda_N}{2} \sum_{x,y} \left[I(x, y) - \sum_i a_i \phi_i(x, y) \right]^2 + \sum_i S(a_i) + \text{const.}$

Dynamics

$$\dot{a}_i \propto -rac{\partial E}{\partial a_i}$$
:

$$\tau \dot{a}_i = b_i - \sum_j C_{ij} a_j - S'(a_i)$$
$$b_i = \lambda_N \sum_{x,y} \phi_i(x,y) I(x,y)$$
$$C_{ij} = \lambda_N \sum_{x,y} \phi_i(x,y) \phi_j(x,y)$$

Network implementation

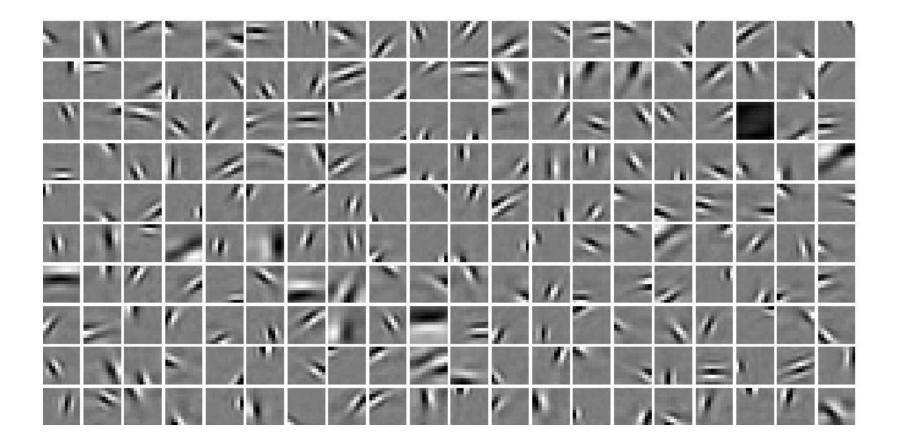


Learning

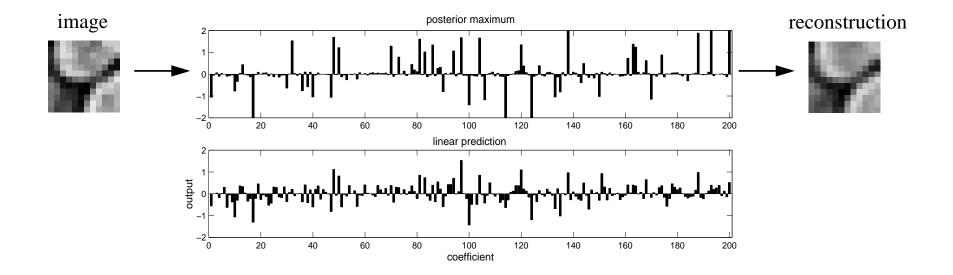
$$\Delta \phi_i \propto -\left\langle \frac{\partial E}{\partial \phi_i} \right\rangle$$
:

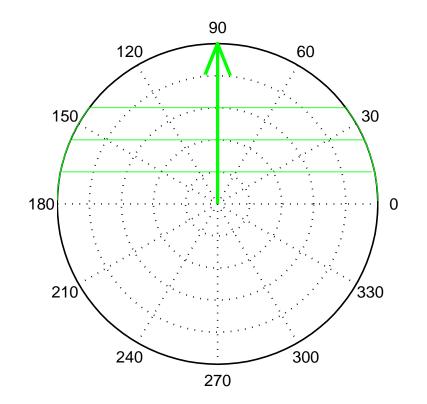
$$\Delta \phi_i(x,y) = \eta \langle a_i r(x,y) \rangle$$
$$r(x,y) = I(x,y) - \sum_i a_i \phi_i(x,y)$$

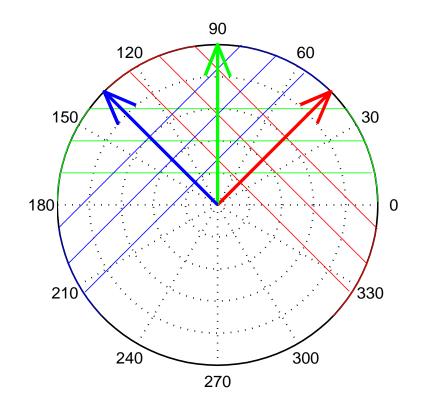
Learned basis functions (200, 12x12)

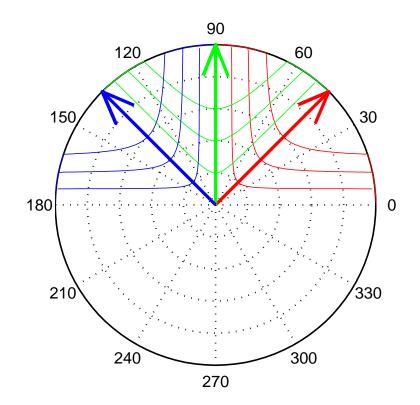


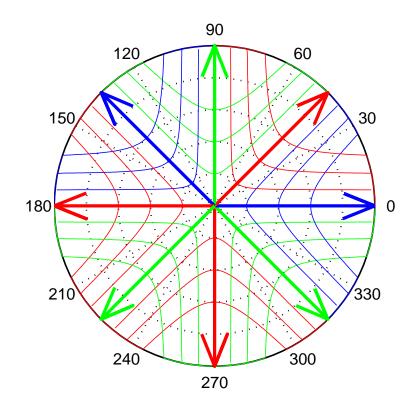
Sparsification

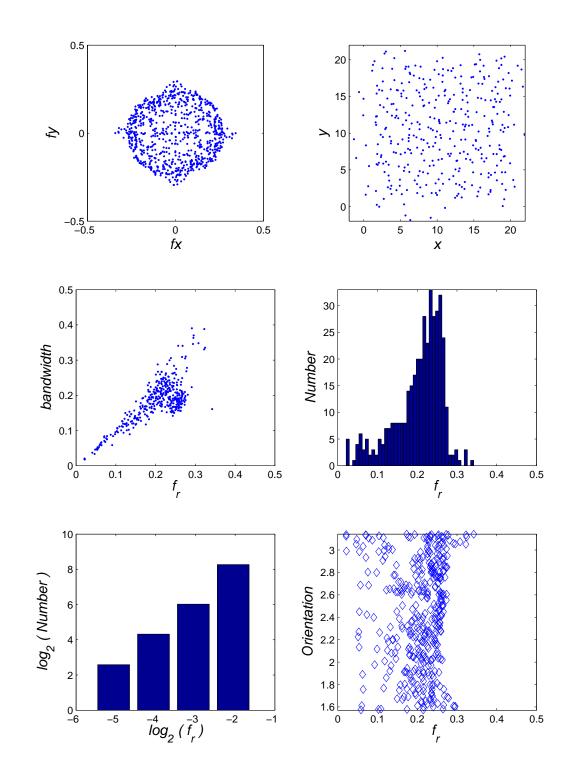




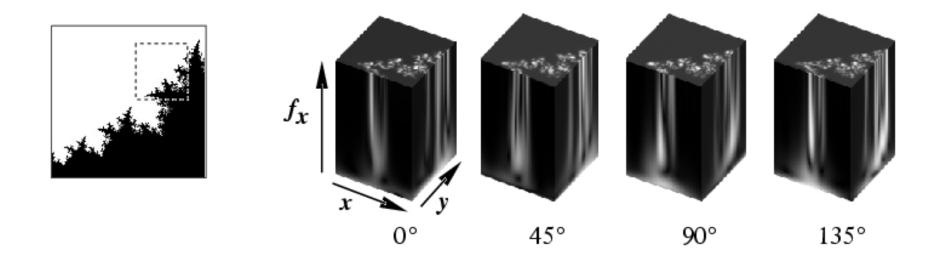






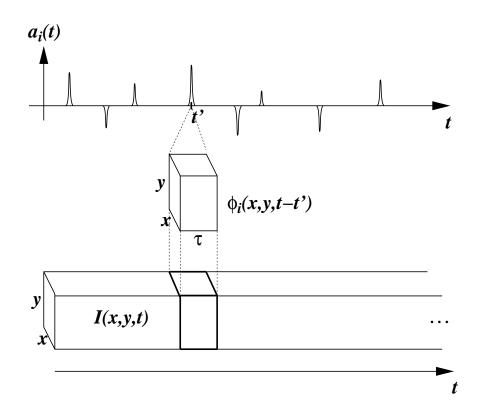


Scale space cross-section of a fractal contour



Space-time image model

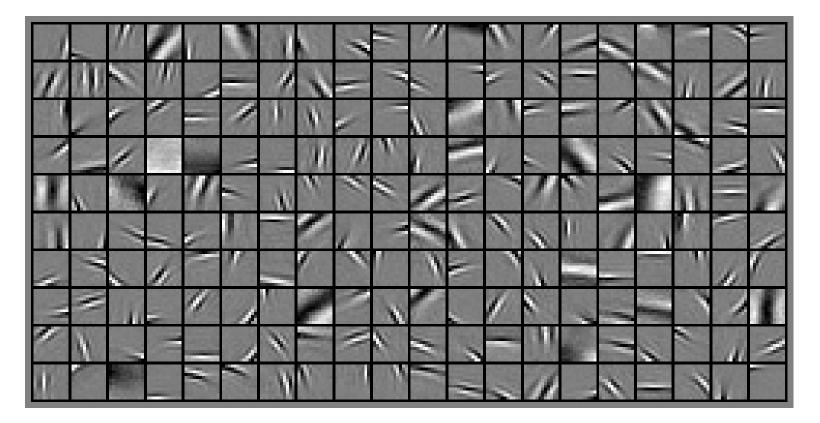
$$I(x, y, t) = \sum_{i} a_i(t) * \phi_i(x, y, t) + \nu(x, y, t)$$



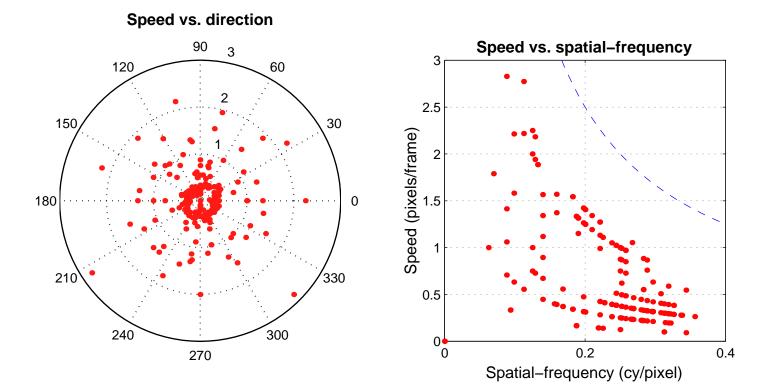
Goal: Find a set of spacetime basis functions $\{\phi_i\}$ for representing natural images such that the *time-varying* coefficients $a_i(t)$ are as sparse and statistically independent as possible over both space and time.

Learned space-time basis functions (200, $12 \times 12 \times 7$)

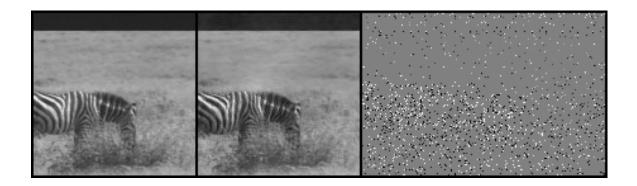
Training set: nature documentary

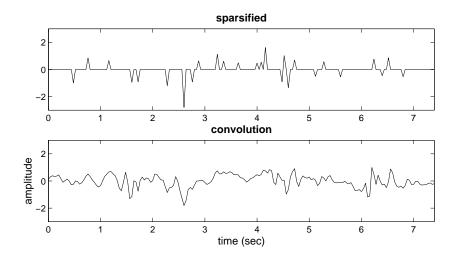


Basis function properties



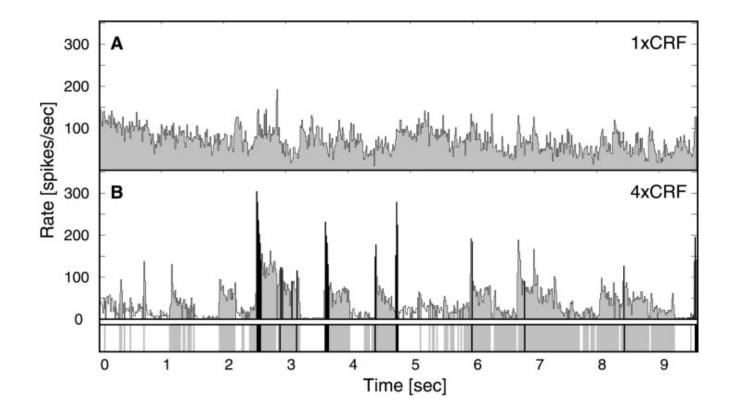
Spike encoding and reconstruction





Context in natural scenes sparsifies responses

Vinje & Gallant (2000, 2002)



Review article

Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. *Current Opinion in Neurobiology, 14*, 481-487.

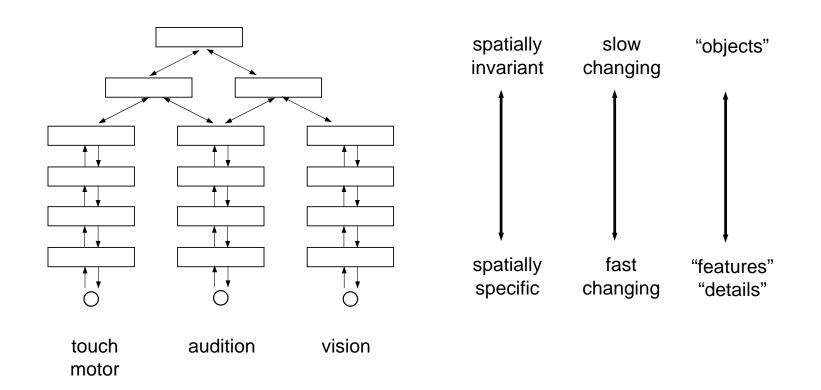
http://redwood.ucdavis.edu/bruno

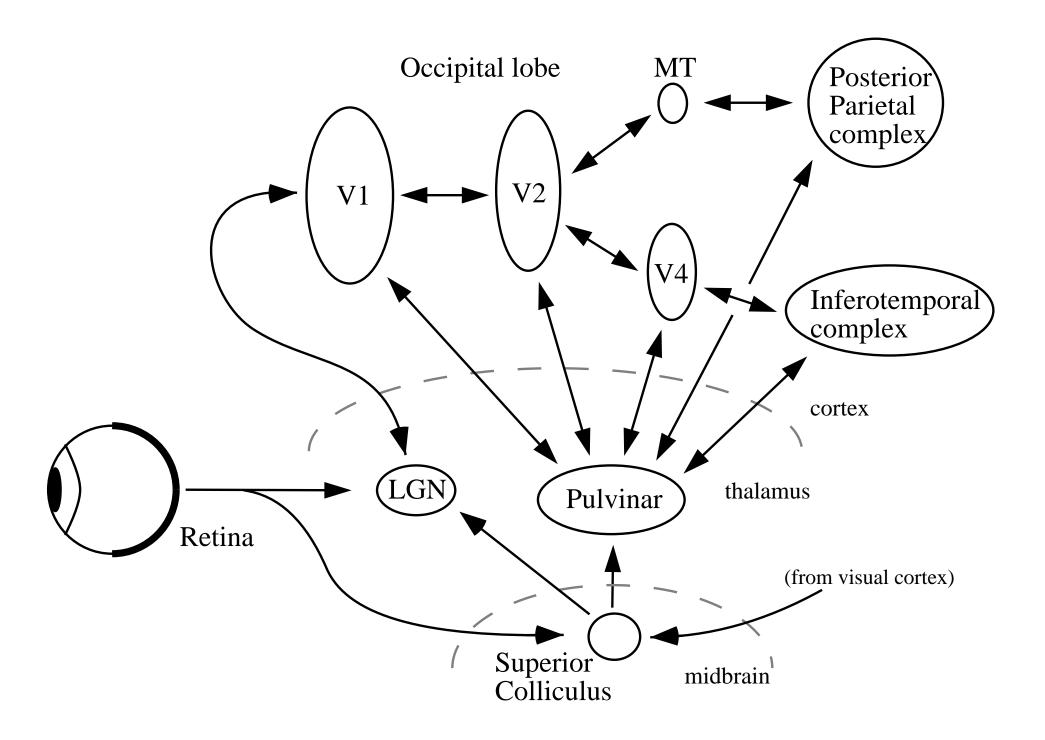
Problems with the current model

- Sparsification: small changes in the image could lead to drastic changes in the output representation.
- Factorial prior: coefficients exhibit strong dependencies, so the factorial prior is wrong.
- Linear model: how to extend to a hierarchical model?

Hierarchical representation

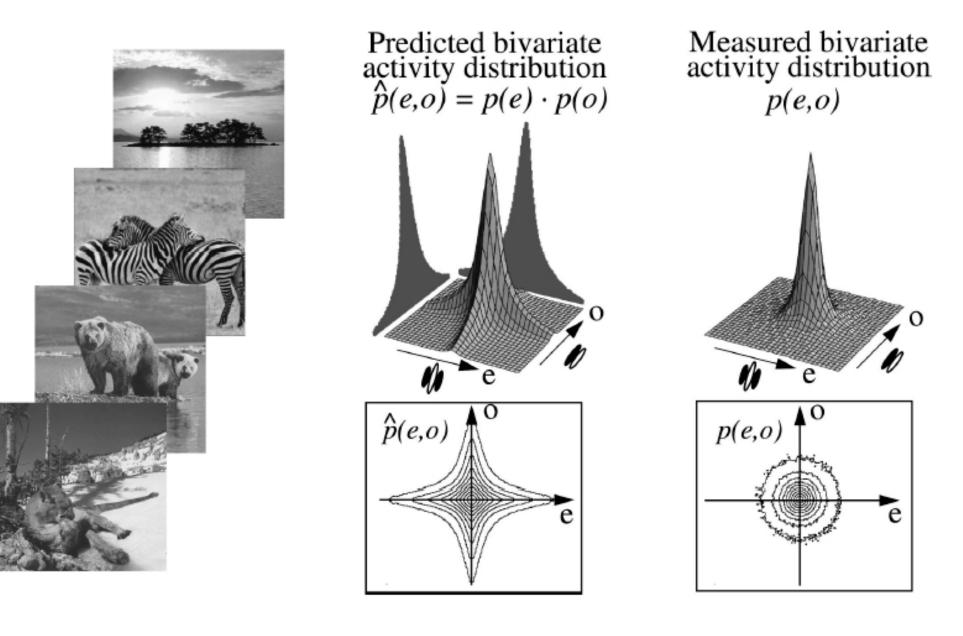
Hawkins (2004) - "On Intelligence"



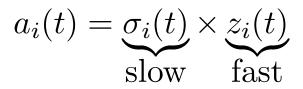


1556 J. Opt. Soc. Am. A/Vol. 16, No. 7/July 1999

Zetzsche et al.



Bilinear model



Sparse bubbles Hyvarinen et al. (2003) JOSA *20*

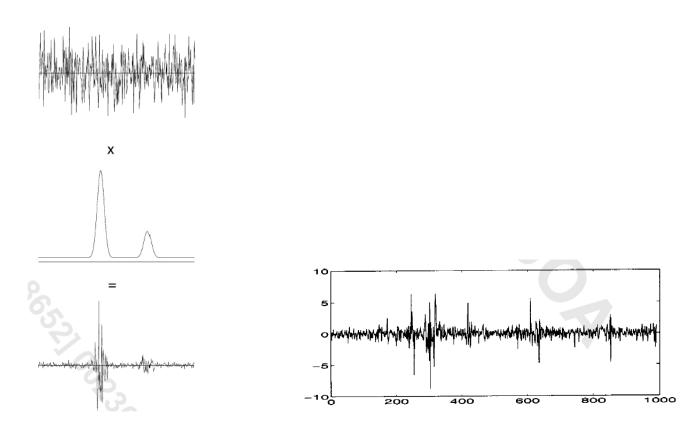


Image model with 'shiftable' basis functions

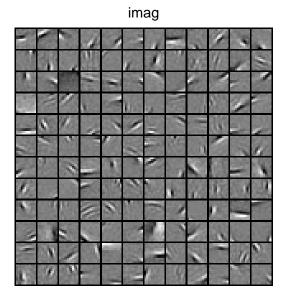
$$I(x) = \sum_{i} \Re\{z_{i} \phi_{i}(x)\}$$
$$z_{i} = a_{i} e^{j \alpha_{i}}$$
$$\phi_{i}(x) = \phi_{i}^{R}(x) + j \phi_{i}^{I}(x)$$

$$I(x) = \sum_{i} a_{i} \left[\cos \alpha_{i} \phi_{i}^{R}(x) + \sin \alpha_{i} \phi_{i}^{I}(x) \right]$$

Learned complex basis functions (144, 12 \times 12 patches)

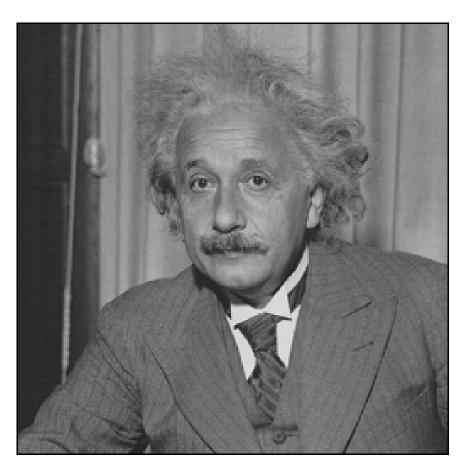
real

=	*	1	14	1	11	1		1	*	11
· "		-1		6	3			H.		1
1. 1		1	1	1		3	1	3		1
									1	
- 11	E.			1		1	11	-		1
1			"	1	1			11		1
	+			N.	Ň	1	1	50	15	*
11		1	4	1			1			
1		1	-		1	11				
10	4			1		1	1	5		
	1	1		1	1		10		1	*
8 11.				N.	1	11	1			



animate!

Local phase is important



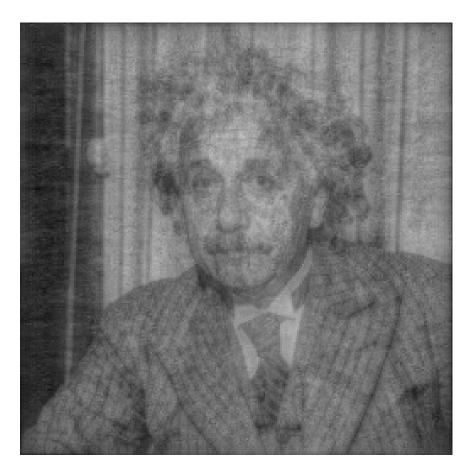
Original image

Local phase is important



Magnitudes only

Local phase is important



Phases only

Conclusions

- V1 neurons represent time-varying natural images in terms of sparse events.
- Joint dependencies among coefficients may be modeled with shiftable basis functions → neurons carry both amplitude and phase?

Further information and details

baolshausen@ucdavis.edu
http://redwood.ucdavis.edu/bruno